scholarly journals Anti-FLT3 CAR T Cells in Acute Myeloid Leukemia

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1703-1703
Author(s):  
Sara Sleiman ◽  
Olga Shestova ◽  
Francisco Santiago ◽  
Elina Shrestha ◽  
Raymond Liang ◽  
...  

Abstract INTRODUCTION In patients with AML who are eligible for intensive therapy, the goal of treatment is the achievement of complete response followed by consolidation chemotherapy (in favorable risk disease) or hematopoietic stem cell transplantation (in intermediate or adverse risk disease). Patients who do not attain this initial goal lack effective therapeutic options. Extensive experience with chimeric antigen receptor (CAR) T cells in B-ALL has shown that CART cells can deliver potent and durable antigen-specific leukemia control, and that targeting a single antigen (CD19 for B-ALL) is associated with antigen-negative relapse. In this context, we sought to expand the existing preclinical CART armamentarium in AML by developing FLT3-specific CART cells and comparing them to our existing gold standard CD123-specific CART cells. Since activating mutations in FLT3 occur commonly in AML, we reasoned that this molecule would serve as an "Achilles heel" in AML immunotherapy. METHODS Novel fully humanized anti-human FLT3 receptor single chain variable fragments (scFV) were fused to CD28 and CD137 (41BB) costimulatory molecules and the CD3zeta signaling domain and cloned into a lentiviral expression vector. Based on recently published data, we tested linker lengths ranging from 5 to 20 amino acids between the light and heavy chains of the CAR. We used a FLT3-ITD mutated AML cell line (MOLM14) expressing luciferase for in vitro function studies including an exhaustion assay. For in vivo function studies, we engrafted MOLM14 expressing luciferase into NSG mice and treated with CART-FLT3 or untransduced T cells (negative control). RESULTS All FLT3 and CD123-specific CART cells degranulated and produced the effector cytokines IL-2, INFg, TNF and GM-CSF in an antigen-specific manner, with some variability between the different linker lengths and with some superiority of the CAR123 likely resulting from the higher expression of CD123 compared with FLT3 in this model (p < 0.0001, one way ANOVA) (Figure 1). Short-term killing assays (24 hours) revealed that all CART cells killed MOLM14 with equivalent efficiency at low effector:target ratios (Figure 2A). Since short-term killing assays likely do not replicate the physiological situation in vivo wherein CART cells encounter cancer cells repeatedly over many days, we next developed an in vitro exhaustion assay. We incubated MOLM14 cells with CAR T cells at 1:10 E:T ratio and added MOLM 14 tumor cells along with fresh media every other day. Killing was quantified every 48 hours. Interestingly, all CAR constructs showed equivalently efficient cytotoxicity from days 5-15. However, after day 15 there was progressive dysfunction and loss of cytotoxic activity. This exhaustion "stress test" revealed some superiority of the FLT3 CAR 10AA construct (p = 0.042 on day 17, two way ANOVA) (Figure 2B). NOD/SCID gamma chain KO (NSG) mice were then engrafted with 1x10 6 luciferized MOLM14 cells and treated with 0.5x10 6 CAR T cells 7 days later, randomized to treatment groups based on tumor burden. CAR T cells expansion was monitored in peripheral blood by flow cytometry. (Fig 3A). Serial BLI revealed prompt and durable leukemia remissions and survival (Figure 3B,C). CONCLUSIONS We have developed CART-FLT3 for AML using novel human anti-FLT3 targeting domains and demonstrated preclinical efficacy similar to that of CART-123 in an AML model with substantially lower expression of FLT3 compared to CD123 (data not shown). Since inhibition of FLT3 leads to upregulation of surface FLT3 expression, future experiments will explore combinatorial FLT3 inhibition with CART-FLT3. If successful, these experiments will provide a strong rationale for a combination clinical trial in AML where leukemia control by small molecules is followed by a coup-de-grace delivered by CART cells. Figure 1 Figure 1. Disclosures Sleiman: Hemogenyx Pharmaceuticals LLC: Research Funding. Shestova: Hemogenyx Pharmaceuticals LLC: Research Funding. Santiago: Hemogenyx Pharmaceuticals LLC: Research Funding. Shrestha: Hemogenyx Pharmaceuticals LLC: Current Employment. Liang: Hemogenyx Pharmaceuticals LLC: Current Employment. Ben Jehuda: Hemogenyx Pharmaceuticals LLC: Current Employment. Sandler: Hemogenyx Pharmaceuticals LLC: Current Employment, Current equity holder in publicly-traded company. Gill: Novartis: Other: licensed intellectual property, Research Funding; Interius Biotherapeutics: Current holder of stock options in a privately-held company, Research Funding; Carisma Therapeutics: Current holder of stock options in a privately-held company, Research Funding.

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2776-2776
Author(s):  
Salvatore Fiorenza ◽  
George S. Laszlo ◽  
Tinh-Doan Phi ◽  
Margaret C. Lunn ◽  
Delaney R. Kirchmeier ◽  
...  

Abstract Background: There is increasing interest in targeting CD33 in malignant and non-malignant disorders, but available drugs are ineffective in many patients. As one limitation, therapeutic CD33 antibodies typically recognize the membrane-distal V-set domain. Likewise, currently tested CD33-directed chimeric antigen receptor (CAR) T cells likewise target the V-set domain and have thus far shown limited clinical activity. We have recently demonstrated that binding closer to the cell membrane enhances the effector functions of CD33 antibodies. We therefore raised antibodies against the membrane-proximal C2-set domain of CD33 and identified antibodies that bound CD33 regardless of the presence/absence of the V-set domain ("CD33 PAN antibodies"). Here, we tested their properties as targeting moiety in CD33 PAN CAR T cell constructs, using a clinically validated lentiviral backbone. Methods: To generate CAR T cells, negatively selected CD8 + T cells were transduced with an epHIV7 lentivirus encoding the scFv from a CD33 PAN antibody (clone 1H7 or 9G2) linked to either a short (IgG 4 hinge only), intermediate (hinge plus IgG 4 CH3 domain), or long (hinge plus IgG 4 CH3 domain plus IgG 4 CH2 domain) spacer, the CD28-transmembrane domain, CD3zeta and 4-1BB intracellular signaling domains, and non-functional truncated CD19 (tCD19) as transduction marker. Similar constructs using scFvs from 2 different V-set domain-targeting CD33 antibodies, including hP67.6 (My96; used in gemtuzumab ozogamicin), were generated for comparison. CAR-T cells were sorted, expanded in IL-7 and IL-15, and used in vitro or in vivo against human AML cell lines endogenously expressing CD33 and cell lines engineered to lack CD33 (via CRISPR/Cas9) with/or without forced expression of different CD33 variants. Results: CD33 V-set-directed CAR T cells exerted significantly more cytolytic activity against AML cells expressing an artificial CD33 variant lacking the C2-set domain (CD33 ΔE3-4) than cells expressing full-length CD33 at similar or higher levels, consistent with the notion that CD33 CAR T cell efficacy is enhanced when targeting an epitope that is located closer to the cell membrane. CD33 PAN CAR T cells were highly potent against human AML cells in a strictly CD33-dependent fashion, with constructs containing the short and intermediate-length spacer demonstrating robust cytokine secretion, cell proliferation, and in vitro cytolytic activity, as determined by 51Cr release cytotoxicity assays. When compared to optimized CD33 V-set CAR T cells, optimized CD33 PAN CAR T cells were significantly more potent in cytotoxicity, proliferation, and cytokine production without appreciably increased acquisition of exhaustion markers. In vivo, CD33 PAN CAR T cells extended survival in immunodeficient NOD.SCID. IL2rg -/- (NSG) mice bearing significant leukemic burdens from various cell line-derived xenografts (HL-60, KG1α and MOLM14) with efficient tumor clearance demonstrated in a dose-dependent fashion. Conclusion: Targeting the membrane proximal domain of CD33 enhances the anti-leukemic potency of CAR T cells. Our data provide the rationale for the further development of CD33 PAN CAR T cells toward clinical testing. Disclosures Fiorenza: Link Immunotherapeutics: Consultancy; Bristol Myers Squibb: Research Funding. Godwin: Pfizer: Research Funding; Bristol Myers Squibb: Current Employment, Current equity holder in publicly-traded company. Turtle: Allogene: Consultancy; Amgen: Consultancy; Arsenal Bio: Consultancy; Asher bio: Consultancy; Astrazeneca: Consultancy, Research Funding; Caribou Biosciences: Consultancy, Current holder of individual stocks in a privately-held company; Century Therapeutics: Consultancy, Other; Eureka therapeutics: Current holder of individual stocks in a privately-held company, Other; Juno therapeutics/BMS: Patents & Royalties, Research Funding; Myeloid Therapeutics: Current holder of individual stocks in a privately-held company, Other; Nektar therapeutics: Consultancy, Research Funding; PACT Pharma: Consultancy; Precision Biosciences: Current holder of individual stocks in a privately-held company, Other; T-CURX: Other; TCR2 Therapeutics: Research Funding. Walter: Kite: Consultancy; Janssen: Consultancy; Genentech: Consultancy; BMS: Consultancy; Astellas: Consultancy; Agios: Consultancy; Amphivena: Consultancy, Other: ownership interests; Selvita: Research Funding; Pfizer: Consultancy, Research Funding; Jazz: Research Funding; Macrogenics: Consultancy, Research Funding; Immunogen: Research Funding; Celgene: Consultancy, Research Funding; Aptevo: Consultancy, Research Funding; Amgen: Research Funding.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2771-2771
Author(s):  
Mark A Wallet ◽  
Toshinobu Nishimura ◽  
Christina Del Casale ◽  
Andriana Lebid ◽  
Brenda Salantes ◽  
...  

Abstract Introduction Allogenic CAR-T cell therapies for cancer provide a new option to reduce barriers faced by autologous cell therapies, but several challenges remain. One challenge is the risk of graft versus host disease (GvHD) caused by the infused T cells. A potential solution is the use of a subset of gamma delta (γδ) CAR-T cells whose T cell receptors (TCRs) recognize invariant antigens rather than hypervariable MHC molecules. Here we describe an off-the-shelf, induced pluripotent stem cell (iPSC)-derived γδ CAR-T (γδ CAR-iT) for treatment of cancer and a process for deriving such cells. Methods T cell-derived iPSCs (TiPSC) are generated by reprogramming γδ T cells to yield pluripotent stem cells. For proof-of-concept studies, TiPSC were engineered using CRISPR gene editing to deliver a CD19 CAR transgene. TiPSC are then subjected to a two-stage differentiation process. First, TiPSC are differentiated into CD34-expressing hematopoietic progenitor cells (HPCs). HPCs are then exposed to a feeder-free differentiation process that results in uniform γδ CAR-iT cells. The purity and identity of γδ CAR-iT cells were assessed by flow cytometry and the ability of γδ CAR-iT cells to respond to homeostatic growth factors was determined by intracellular staining of phosphorylated signaling proteins and mRNA transcriptome analysis. Cytokine production by CAR-iT cells was measured by immunoassays following stimulation of the CAR. Tumor cell killing by γδ CAR-iT cells was performed using IncuCyte cytotoxicity assays. In vivo control of tumors by γδ CAR-iT in immunodeficient mice was determined using a NALM-6 B cell lymphoblastic xenograft model. Results A research-grade γδ TiPSC line was used to develop an iT differentiation process. This γδ TiPSC line was engineered to express a CD19 CAR molecule and then subjected to the differentiation process after which >95% of cells were CD3 + γδ TCR + CAR + iT cells. These γδ CAR-iT cells responded to IL-2 and IL-15. STAT5 phosphorylation levels were similar but STAT3 phosphorylation levels were greater in response to IL-15 compared to IL-2 at equimolar concentrations of cytokine. IL-2 and IL-15 elicited qualitatively similar transcriptional responses, but the magnitude of cytokine-induced gene expression was generally greater in IL-15-treated cells. Upon activation, γδ CAR-iT cells released markedly less IFN-γ and other inflammatory cytokines than conventional blood-derived ab CAR-T cells. In an IncuCyte serial killing assay, γδ CAR-iT cells exhibited sustained killing of NALM-6 tumor cells for at least one week in the presence of IL-15. In vivo, γδ CAR-iT cells caused a significant reduction in NALM-6 tumor burden with a single dose of γδ CAR-iT resulting in >95% tumor growth inhibition. To establish an efficient method for derivation of clinical grade γδ TiPSC lines, we investigated methods to isolate, expand, and reprogram human γδ T cells. When γδ T cells were expanded by exposure to the chemical zoledronic acid (zoledronate) and IL-2, we found a large disparity between donors; some donors exhibit robust expansion while others are seemingly resistant to zoledronate. In order to enhance γδ T cell expansion we screened dozens of activation conditions and eventually established a universal activation protocol that can elicit robust expansion of γδ T cells from all donors tested. When expanded γδ T cells were subjected to reprogramming conditions, dozens to hundreds of individual TiPSC colonies were obtained from each donor. The identity of the rearranged γδ TCR locus was confirmed using molecular assays. New γδ TiPSC lines were engineered with a CD19 CAR molecule and killing activity was confirmed in an in vitro serial killing assay. Conclusions γδ CAR-iT cells provide a new opportunity to treat cancers with an off-the-shelf universal T cell platform without the risk for GvHD. γδ CAR-iT cells are readily manufacturable, and we have derived an end-to-end process that enables new TiPSC line reprogramming, genetic modification of TiPSC lines, and feeder-free differentiation. γδ CAR-iT cells exhibit potent antigen-specific tumor killing and they release less inflammatory cytokine than conventional CAR-T cells, potentially reducing the risk for cytokine-mediated toxicities. We believe that this off-the-shelf platform will enable safer and more accessible allogenic cell therapies for hematologic and solid cancers. Disclosures Wallet: Century Therapeutics: Current Employment, Current holder of stock options in a privately-held company. Nishimura: Century Therapeutics: Current Employment, Current holder of stock options in a privately-held company. Del Casale: Century Therapeutics: Current Employment, Current holder of stock options in a privately-held company. Lebid: Century Therapeutics: Current Employment, Current holder of stock options in a privately-held company. Salantes: Century Therapeutics: Current Employment, Current holder of stock options in a privately-held company. Santostefano: Century Therapeutics: Current Employment, Current holder of stock options in a privately-held company. Bucher: Century Therapeutics: Current Employment, Current holder of stock options in a privately-held company. Mendonca: Century Therapeutics: Current Employment, Current holder of stock options in a privately-held company. Beqiri: Century Therapeutics: Current Employment, Current holder of stock options in a privately-held company. Thompson: Century Therapeutics: Current Employment, Current holder of stock options in a privately-held company. Morse: Century Therapeutics: Current Employment, Current holder of stock options in a privately-held company. Millar Quinn: Century Therapeutics: Current Employment, Current holder of stock options in a privately-held company. Borges: Century Therapeutics: Current Employment, Current equity holder in publicly-traded company.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A115-A116
Author(s):  
Emiliano Roselli ◽  
Justin Boucher ◽  
Gongbo Li ◽  
Hiroshi Kotani ◽  
Kristen Spitler ◽  
...  

BackgroundCo-stimulatory signals regulate the expansion, persistence, and function of chimeric antigen receptor (CAR) T cells. Most studies have focused on the co-stimulatory domains CD28 or 4-1BB. CAR T cell persistence is enhanced by 4-1BB co-stimulation leading to NF-κB signaling, while resistance to exhaustion is enhanced by mutations of the CD28 co-stimulatory domain.MethodsWe hypothesized that a third-generation CAR containing 4-1BB and CD28 with only PYAP signaling motif (mut06) would provide beneficial aspects of both. We designed CD19-specific CAR T cells with 4-1BB or mut06 together with the combination of both (BB06). We evaluated their immune-phenotype, cytokine secretion, real-time cytotoxic ability and polyfunctionality against CD19-expressing cells. We analyzed LCK recruitment by the different constructs by immunoblotting. We further determined their ability to control growth of Raji cells in NSG mice. Additionally, we engineered bi-specific CARs against CD20/CD19 combining 4-1BB and mut06 and performed repeated in vitro antigenic stimulation experiments to evaluate their expansion, memory phenotype and phenotypic (PD1+CD39+) and functional exhaustion. Bi-specific CAR T cells were transferred into Raji or Nalm6-bearing mice to study their ability to eradicate CD20/CD19-expressing tumors.ResultsCo-stimulatory domains combining 4-1BB and mut06 confers CAR T cells with an increased polyfunctionality and LCK recruitment to the CAR (figure 1A), after repeated-antigen stimulation these cells expanded significantly better than second-generation CAR T cells (figure 1B). A bi-specific CAR targeting CD20/CD19, incorporating 4-1BB and mut06 co-stimulation, showed enhanced antigen-dependent in vitro expansion with lower exhaustion-associated markers (figure 1C). Bi-specific CAR T cells exhibited improved in vivo anti-tumor activity with increased persistence and decreased exhaustion (figure 1D).Abstract 105 Figure 1A. pLCK is increased in h19BB06z CAR T cells and associated with the CAR. CAR T cells were stimulated with irradiated 3T3-hCD19 cells at a 10:1 E:T ratio for 24hr. Cells were lysed and CAR bound and unbound fractions were western blotted. A single-cell measure of polyfunctional strength index (PSI) of CAR T cells. B. h19BB06z CAR T cells have the highest proliferation after repeated antigen stimulations. 5x105 CAR T cells were stimulated with 1x105 irradiated 3T3-hCD19 cells. After 1 week, half of the cells were enumerated by flow cytometry and the other half was re-stimulated with 1x105 fresh irradiated 3T3-hCD19 cells. This was repeated for a total of 4 weeks. C. 5x105 CAR T cells were co-cultured with 5x105 target cells (Raji-CD19High). After 1 week half the cells were harvested enumerated and stained by flow cytometry while the other half was re-stimulated with 5x105 fresh target cells (indicated by arrows). This was repeated for a total of 4 weeks. Frequency of PD1+CD39+ cells within CD8+ CAR T cells. D. Raji-FFLuc-bearing NSG mice were treated with 1x106 CAR T cells 5 days after initial tumor cell injection. Tumor burden (average luminescence) of mice treated with bi-specific or monospecific CAR T cells, UT and tumor control. Each line represents an individual mouse. (n = 7 mice per group).ConclusionsThese results demonstrate that co-stimulation combining 4-1BB with an optimized form of CD28 is a valid approach to optimize CAR T cell function. Cells with both mono- and bi-specific versions of this design showed enhanced in vitro and in vivo features such as expansion, persistence and resistance to exhaustion. Our observations validate the approach and justify clinical studies to test the efficacy and safety of this CAR in patients.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2059-2059 ◽  
Author(s):  
Andrea Schmidts ◽  
Maria Ormhoj ◽  
Allison O. Taylor ◽  
Selena J. Lorrey ◽  
Irene Scarfò ◽  
...  

Abstract Background: Targeting BCMA (B-cell maturation factor) with chimeric antigen receptor (CAR) T cells has shown great success in the treatment of multiple myeloma (MM), but is limited by heterogeneous antigen expression and imminent antigen escape of tumor cells. Combinatorial antigen targeting may help address these challenges. Taking the naturally occurring receptor-ligand pairs as a model, we designed monomeric and trimeric APRIL- (A proliferation-inducing ligand) based CARs targeting BCMA and TACI (transmembrane activator and CAML interactor) simultaneously. Methods: The following 2nd generation CARs were designed to target BCMA and TACI concurrently: membrane-tethered truncated APRIL monomer ("APRIL-CAR") and three truncated and fused APRIL monomers ("TriPRIL-CAR"). A single chain variable fragment-based anti(α)-BCMA CAR served as control. CAR multimerization and binding affinity to BCMA and TACI were characterized. In vitro effector function was compared by cytotoxic potency, activation (CD69), degranulation (CD107a), cytokine production and proliferation in response to target antigens. In vivo anti-tumor efficiency was assessed in a xenograft mouse model of MM. Results: CAR T cell manufacturing of all three constructs was accomplished successfully (transduction efficiency 46-78%) from three different donors. Western blot analysis of CARs showed multimerized forms of the TriPRIL and α-BCMA CAR, while only the monomeric form of the APRIL CAR was detected. Binding affinity to soluble BCMA and TACI was higher for the TriPRIL CAR compared to the APRIL CAR. Evaluating the cytotoxic potential, activation and degranulation kinetics as well as long-term proliferation against a panel of BCMA and/or TACI positive target cells, the TriPRIL CAR T cells outperformed the APRIL CAR T cells. All three CAR constructs demonstrated robust antigen-specific production of Th1-type cytokines, like Il-2, IFNƔ, GM-CSF and TNFα. Next, we performed an in vivo stress test, engrafting NSG mice with high tumor burden of MM.1s myeloma cells. The TriPRIL and α-BCMA CAR T cells were able to eradicate the tumors while the APRIL CAR T cells only led to a stabilization of tumor burden. In vivo studies with a mixed antigen population aiming at modeling heterogeneous antigen expression and antigen escape are ongoing. Conclusion: Our APRIL-based chimeric antigen receptors were able to redirect T cell cytotoxicity to both BCMA and TACI positive tumor cells. Since both these receptors are consistently up-regulated on malignant plasma cells this is an attractive method to target MM. Furthermore, we found that using a trimeric form of APRIL rather than monomeric form as the CAR binding domain increased recognition of MM antigens in vitro and in vivo. Disclosures Maus: crispr therapeutics: Consultancy, Research Funding; adaptimmune: Consultancy; novartis: Consultancy; kite therapeutics: Consultancy, Research Funding; windmil therapeutics: Consultancy; agentus: Consultancy, Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2069-2069
Author(s):  
Biagio De Angelis ◽  
Marika Guercio ◽  
Domenico Orlando ◽  
Stefano Di Cecca ◽  
Matilde Sinibaldi ◽  
...  

Prognosis of a significant proportion of patients with chemotherapy-refractory or multiply-relapsed CD30+ Non-Hodgkin's Lymphoma (NHL) or Hodgkin lymphoma (HL) still remain poor. Targeting CD30 with monoclonal antibodies in HL and anaplastic large cell lymphoma was shown to induce remarkable clinical activity; however, occurrence of adverse events (mainly neuropathy) may result into treatment discontinuation in many patients. Immunotherapeutic approaches targeting CD30 by chimeric antigen receptor (CAR) has been demonstrated to be of value in two independent clinical trials, although clinical benefit was sub-optimal. We designed a new CAR construct characterized by an anti-CD30 single-chain variable-fragment cassette (AC10), linked to CD3ζ by the signaling domains of two costimulatory molecules, namely either CD28.4-1BB or CD28.OX40. The inducible Caspase-9 (iCasp9) safety switch was included in both constructs with the goal of promptly controlling undue toxicity. As a selectable marker, we added in frame the CD34 antigen. The in vitro anti-tumor efficacy was evaluated by using either the NHL cell line: Karpas299, or the HL cell lines: L428, in both short-term cytotoxic assay (51Cr release assays) and long-term co-cultures for 6 days. Supernatant from co-culture experiments was analyzed by Elisa. We assessed the antitumor effect of CAR.CD30 T cells in a in vivo NSG mouse model engrafted i.v. with lymphoma FF-luciferase cell lines Karpas299 or L428, and monitored tumor growth by IVIS Imaging system. For tumor re-challenging, mice of the NHL model surviving until day +140, were i.v. infused with 0.2x106 Karpas299 cells, and subsequently followed for additional 110 days. Persistence of CAR.CD30 T cells was evaluated, together with a deep characterization of memory profile of T cells. Independently from the costimulatory domains CD28.OX40 or CD28.4-1BB, the generated retroviral vectors showed similar transduction efficiency of T cells (86.5±5.1% and 79.3±5.3%, respectively). Nevertheless, CD28.OX40 costimulatory domains was associated with more stable expression of the CAR over time, during extensive in vitro culture (84.72±5.30% vs 63.98±11.51% CD28.4-1BB CAR T cells at 30 days after transduction; p=0.002). For both CAR constructs, we did not observe any significant difference in the suicide gene iCasp9 activity, both in vitro and in vivo. In short-term cytotoxic assay, both CAR.CD30 T cells significantly and specifically lysed CD30+ NHL and HL tumor cell lines. In long-term co-culture, CD28.OX40 showed a superior anti-lymphoma in vitro activity as compared to CD28.41BB T cells, when challenged at very high tumor/effector ratio (8:1) (for Karpas 299; p=0.03). Moreover, the antigen stimulation was associated to higher levels of Th1 cytokine production, with CD28.OX40 T cells secreting a significantly higher amount of IFNγ, IL2 and TNFα as compared to CD28.41BB T cells (p= 0.040; p=0.008; p=0.02; respectively). Bioluminescence in HL (L428) tumor-bearing mice, treated with NT T cells, rapidly increased up to 5 log in less than 50 days and mice either died or were sacrificed due to morbidity. The best outcome was observed in mice treated with CD28.OX40, as three out of five mice were still alive at the experimental end-point of day+165, as compared with mice treated with CD28.4-1BB (60% vs 0%, p=0.0021). In NHL (Karpas 299) mouse models, CD28.OX40 had an extensive anti-tumor control superior to that of CD28.41BB T cells, leading to a significant reduction of tumor bioluminescence at day 45 (3.32x10 vs 2.29x10, p=0.04). The median survival of mice treated with NT and CD28.4-1BB CAR T cells was 45.5 and 58 days respectively, but undetermined for mice treated with CD28.OX40 CAR T cells (p=0.0002). After 140 days, cured mice were re-challenged with Karpas 299; mice were followed for other 100 days. Bioluminescence analysis showed rapid progression of the tumor in the control mice cohort, as well as in CD28.4-1BB treated mice. In contrast, in CD28.OX40 treated mice, at day+240 days, 4 out of 6 mice were tumor-free, resulting into a statistically significant survival benefit (p=0.0014). Only in mice treated with 28.OX40 T cells, we observed a long-lasting persistence of circulating CAR-T cells up to day +221. In summary, we have developed a novel CAR.CD30 construct displaying features that make it a particularly suitable candidate for a clinical trial in patients suffering from CD30+ tumors. Disclosures Merli: Novartis: Honoraria; Sobi: Consultancy; Amgen: Honoraria; Bellicum: Consultancy. Locatelli:Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees; Bellicum: Consultancy, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; BluebirdBio: Consultancy; Miltenyi: Honoraria; Amgen: Consultancy, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4443-4443 ◽  
Author(s):  
Mark Leick ◽  
Irene Scarfò ◽  
Bryan D. Choi ◽  
Rebecca Larson ◽  
Amanda A Bouffard ◽  
...  

Background: CAR-T cells have led to a revolution in the treatment of advanced hematologic malignancies. Since these cells target antigens that are expressed on the cellular surface, it is imperative that there is near ubiquitous tumor expression with minimal expression vital human tissues. Finding targets with these characteristics in myeloid malignancies has been challenging. Typical markers expressed on the surface of AML are also expressed on essential innate immune effector cells (e.g. neutrophils) which, if targeted, could lead to prolonged absence of this immune arm, which is not survivable or replaceable. Current approaches rely on the use of CAR-T cells against common myeloid targets (e.g. CD123, CD33) as an ablative strategy with a planned allogeneic stem cell transplant rescue to eradicate the CAR-T cells afterwards. These solutions have resulted in significant toxicity with several deaths resulting from CD123-targeted CAR-T cells. Another approach has involved gene editing donor progenitor cells to delete CD33, repopulation of the marrow with these CD33 negative cells, and then treatment with CD33-targeted CAR-T cells. (Kim, Cell 2018). However, this approach is challenging, costly, and genomic editing of stem cells remains a concern. CD70 is an immune checkpoint found on antigen presenting cells and activated T cells. Multiple studies have shown a strong degree of expression on AML blasts and leukemic stem cells, with minimal normal tissue expression (Perna, Cell 2017, Riether J Exp Med 2017). A Phase 1 study of a CD70 targeted antibody drug conjugate in combination with azacitidine (which has been shown to increase CD70 expression on leukemic stem cells) for untreated AML patients has shown impressive results (Blood 2018 132:2680, Blood 2017 130:2652). Based on these findings, we explored CD70-targeting CARs for the treatment of AML. Methods: Based on our success with a trimeric ligand-based CAR of another TNFα family member, APRIL, for multiple myeloma (Schmidt Blood 2018 132:2059), we generated monomeric and trimeric second-generation ligand-based CAR constructs to target CD70 on AML. In vitro effector function was compared by cytotoxic potency and cytokine production. In vivo anti-tumor efficiency was assessed in a xenograft mouse model of AML. Effect of surface CD70 expression on AML cell lines after co-culture with azacitidine was assessed. Results: CAR T cell manufacturing of both constructs was accomplished successfully (transduction efficiency 70-93%) from three different healthy donors with no apparent fratricide. CD70 CARs were efficacious in in vitro cytotoxicity assays targeting an AML cell line Molm13. Unexpectedly, monomeric CD70 targeted CAR-T cells were superior to trimeric in cytotoxicity assays and, thus, were carried forward for in vivo assays. Next, we treated NSG mice that had been engrafted with Molm13 and demonstrated a substantial dose-dependent therapeutic effect with prolonged survival of CAR treated mice compared to those treated with untransduced T-cells (UTD). Treated mice demonstrated a CAR-T robust expansion in the peripheral blood assessed by flow cytometry that was commensurate with individual animal treatment responses. Bone marrow from these mice revealed substantially reduced CD70 in all groups. Preliminary in vitro co-culture of AML cells with azacitidine showed increased CD70 expression. Conclusion: CD70 based CAR-T targeting of AML is effective in vitro and in vivo. Combination treatment with azacitidine may increase target antigen expression and lead to synergistic activity and represents a viable therapeutic strategy that warrants further investigation. Treatment of AML engrafted NSG mice with CD70 CAR-T cells in conjunction with azacitidine is ongoing. Disclosures Frigault: Xenetic: Consultancy; Novartis: Consultancy; Juno/Celgene: Consultancy; Foundation Medicine: Consultancy; Incyte: Consultancy; Nkarta: Consultancy; Kite/Gilead: Honoraria. Maus:INFO PENDING: Other: INFO PENDING.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 480-480
Author(s):  
Anthony M Battram ◽  
Aina Oliver-Caldés ◽  
Miquel Bosch i Crespo ◽  
María Suárez-Lledó ◽  
Miquel Lozano ◽  
...  

Abstract Background: Autologous chimeric antigen receptor-T (CAR-T) cells that target BCMA (BCMA-CARs) have emerged as a promising treatment for multiple myeloma (MM). Current clinical protocols dictate that BCMA-CAR therapy is only used after patients have repeatedly relapsed. However, at this stage, the immunosuppressive nature of advanced MM and/or side-effects of the previous therapies cause T cell dysfunction and an unfavourable phenotype, such as exhaustion, senescence and loss of early memory cells. An alternative and convenient pool of 'fitter' T cells are apheresis products that are routinely collected to obtain progenitor cells for autologous stem cell transplantation (ASCT), an intervention that is often carried out early in MM treatment. However, to mobilise the progenitor cells, patients are treated with G-CSF, which could have negative effects on T cells such as reduce proliferation, impair CD8 + T cell function and induce regulatory T cell (Treg) expansion. Whether this has an effect on the BCMA-CARs generated from these T cells, however, is unknown. Therefore, we aimed to establish whether G-CSF treatment had detrimental effects on T cell phenotype, and moreover, to ascertain whether BCMA-CARs that are generated from these T cells were impaired compared to those produced from T cells prior to G-CSF infusion. Methods: T cells were isolated from the blood of 9 patients with MM before and after 4 days of subcutaneous G-CSF administration (PRE G-CSF and POST G-CSF, respectively) prior to peripheral blood CD34 + cell harvesting for an ASCT as consolidation after first-line induction treatment. Following stimulation with anti-CD3/anti-CD28 beads and IL-2, T cells were transduced with ARI2h, an anti-BCMA CAR produced at our institution that is currently being explored in a clinical trial for relapsed/refractory MM (NCT04309981). Freshly-isolated T cells or expanded ARI2h cells were analysed by flow cytometry for markers of cell identity, activation, dysfunction and memory, or alternatively, challenged with an MM cell line (ARP-1 or U266) and then tested for cytokine production and cytotoxic ability. In addition, PRE and POST G-CSF ARI2h CARs were injected into ARP-1 tumour-bearing mice to assess their in vivo function. Results: Firstly, the phenotype of PRE G-CSF and POST G-CSF T cells, before CAR production, was analysed to identify effects of G-CSF treatment. Interestingly, there were fewer POST G-CSF CD8 + T cells with a stem cell memory (CCR7 +CD45RA +CD95 +) phenotype, but the proportion of naïve (CCR7 +CD45RA +CD95 -) cells and other memory populations was not significantly different. Moreover, POST G-CSF T cells had a lower CD4:CD8 ratio, but did not contain more senescent-like cells or display evidence of pre-activation or increased expression of exhaustion markers. Due to the known effect of G-CSF on CD4 + Treg expansion, the percentage of Tregs was also compared between the PRE G-CSF and POST G-CSF samples, but no difference was observed. Following T-cell activation and CAR transduction, comparable transduction efficiencies and proliferation rates were obtained. Likewise, the in vitro function of PRE G-CSF and POST G-CSF ARI2h cells, as determined by assessing their cytotoxic response to MM cell lines and ability to produce effector molecules such as granzyme B, was similar. To test the in vivo function of ARI2h CAR-T cells expanded from PRE G-CSF and POST G-CSF samples, they were injected into a murine xenograft model of advanced MM. Mice administered with both PRE and POST G-CSF ARI2h cells survived longer than those given untransduced T cells (p=0.015 and p=0.039, respectively), but there was no difference in the longevity of mice between the PRE G-CSF and POST G-CSF groups (p=0.990) (Figure 1). The similarity of the in vitro and in vivo function of PRE and POST G-CSF ARI2h cells was reflected in the phenotype of the CAR-T cells after ex vivo expansion, with cells from both groups displaying equal levels of activation, exhaustion, and importantly for CAR-T cell activity, memory/effector phenotype. Conclusions: The in vitro and in vivo functions of ARI2h CAR-T cells when generated from either PRE G-CSF or POST G-CSF samples were comparable, despite G-CSF administration decreasing the CD8 + stem cell memory pool. Overall, we conclude that T cells from apheresis products, performed to collect G-CSF-mobilised peripheral blood progenitor cells for ASCT, are suitable for BCMA-CAR manufacture. Figure 1 Figure 1. Disclosures Lozano: Grifols: Honoraria; Terumo BCT: Honoraria, Research Funding; Macopharma: Research Funding. Fernandez de Larrea: BMS: Consultancy, Honoraria, Research Funding; Amgen: Consultancy, Honoraria, Research Funding; Takeda: Honoraria, Research Funding; GSK: Honoraria; Sanofi: Consultancy; Janssen: Consultancy, Honoraria, Research Funding.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3693-3693 ◽  
Author(s):  
Hyung C Suh ◽  
Katherine A. Pohl ◽  
Christina Termini ◽  
Jenny Kan ◽  
John M. Timmerman ◽  
...  

Abstract Background: The combination of antigen recognition, costimulatory ligands, and dendritic cells (DC)-derived cytokines (IL-12 or type I IFNs) stimulate T cells upon antigen presentation of DC. Chimeric antigen receptor (CAR) T cells induce anti-tumor cytotoxicity independent of DC by employing antigen recognition portion (single chain variable fragment)/CD3zeta and costimulatory signaling domain. However, the clinically available CARs are not engineered to provide DC-derived cytokine stimulation to T cells. This deficiency may prevent the CAR T cells from developing optimal effector functions, surviving, and forming a responsive memory T cell population. DC can enhance CAR T cell functionality by producing T cell stimulating cytokines. Intratumoral DC, marked by the expression of CD141/CLEC9A, play a critical role in recruiting T cells into the intratumoral area and inducing T cell cytotoxicity against the tumor. IRF8 is an essential transcription factor in developing intratumoral DCs. A co-stimulatory protein, 4-1BB is expressed on activated T cells and is a part of a CAR construct. 4-1BB has been suggested to stimulate IRF8 through the NF-kB signaling and could participate in the generation of intratumoral DC. Therefore, we hypothesized that autologous DCs transduced with 4-1BB CAR would enhance the efficacy of anti-CD33 CAR T cell therapy against acute myelogenous leukemia (AML) by providing DC-derived cytokines and recruiting CAR T cells in bone marrow microenvironment. Methods: We sorted bone marrow CD34+ progenitors and T cells. Cells were transduced with an anti-CD33 41BBz CAR lentivector (pCCL-HP67.6-4-1BB-CD3z). We sorted transduced T (CAR T), and CD34+ progenitors three days after transduction. While expanding transduced CAR T cells further, we induced the differentiation of transduced CD34+ cells to DC (CAR-DC) in vitro by incubating cells with Flt3L/GM-CSF/IL-4 and AML cell lysate. After an additional four days of culture, we analyzed CAR-DC using flow cytometry. We co-cultured a human AML cell line, Kasumi-1 cells with CAR T +/- CAR-DC (E/T ratio=1), or mock control, and quantified cell death in different CAR T to Kasumi-1 ratios (10, 5, and 2) using CytoTox 96 NonRadioactive Cytotoxicity Assay and Annexin V. We also utilized multiplex cytokine immunoassays to quantify cytokine production. For in vivo studies, we injected luciferase-GFP tagged Kasumi-1 cells (10X106) into NSG mice, followed by injection of CAR T (5X105) +/- CAR-DC (1.5X105) or control T cells (5X105). We monitored the NSG mice using serial bioluminescence imaging and compared the survival of each group. Results: On phenotypic analysis using flow cytometry, we found that frequencies of cells expressing CD141/CLEC9A+ were significantly higher in CAR-DC vs. control DC (35.2 +/- 4.1 % vs. 9.0 +/- 1.7 % of HLA-DR+ cells), which suggest 4-1BB activation induce CD34+ progenitors to intratumoral DCs. The cytotoxicity assay showed 63.2 +/- 0.6 % Kasumi-1 death with CAR T/CAR-DC compared to 46.5 +/- 3.5 % with CAR T cells alone. CAR T/CAR-DC also demonstrated more Annexin V positive Kasumi-1 cells compared to CAR T and control T cells (78.4 +/- 5.1 % vs 39.9 +/- 7.7 % vs 17.6 +/- 2.2 %). These cytotoxicity assays demonstrated that CAR-DC enhanced the anti-Kasumi-1 cytotoxicity of anti-CD33 CAR T cells. CAR T cells co-cultured with CAR-DC produced a two-fold higher IFN-gamma and TNF-alpha than CAR T cells alone (p<0.01). The IFN-gamma and TNF-alpha production increases in correlation with the counts of CAR T cells. However, CAR T/CAR-DC group produced a four-fold higher IL-12 throughout different E/T ratios compared to CAR T alone group (p<0.01), which suggest DCs are the major source of IL-12 production and CAR T cells produce a higher level of IFN-gamma and TNF-alpha in response to DCs. In vivo NSG mice experiments demonstrated that CAR T/CAR-DC group had increased survival (p<0.01) and decreased AML burden than CAR T alone group. Conclusions: Our data show that 1) in vitro differentiation of DCs with 4-1BB stimulation increases intratumoral CD141/CLEC9A+ DCs, 2) interaction between CAR-DC and CAR T cells enhances cytotoxic cytokine production in response to DC-derived IL-12. These combined effects resulted in improved anti-CD33 CAR T cytotoxicity in vitro and in vivo NSG AML mice model. Our findings implicate the development of a new strategy of CAR T therapy combined to CAR-DC to increase the efficacy of cancer immunotherapy. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1723-1723
Author(s):  
Stefanie R. Bailey ◽  
Sonika Vatsa ◽  
Rebecca Larson ◽  
Amanda A Bouffard ◽  
Irene Scarfò ◽  
...  

Abstract Background: Chimeric antigen receptor T cells (CAR-T) induce impressive responses in patients with hematologic malignancies but can also mediate a systemic inflammatory toxicity known as cytokine release syndrome (CRS), marked by elevated levels of pro-inflammatory cytokines and chemokines released from activated CAR-T and innate immune cells. Release of the pro-inflammatory cytokine interferon-gamma (IFNγ) in response to antigen is used as a potency assay for CAR-T cells, but elevated levels have been identified in patients suffering from CAR-T-associated toxicities such as CRS and neurotoxicity. Mutations in IFNγ receptor signaling have been identified as a mechanism of resistance in checkpoint blockade in melanoma and other solid tumors, and we have recently identified that IFNγ receptor signaling also confers resistance to CAR-T cell mediated cytotoxicity in solid tumors, but its biologic role in conferring responses in hematologic malignancies is not established. Methods: CD19-targeted CAR-T were generated using either 4-1BB or CD28 costimulatory domains. CAR-T effector functions in vitro and in vivo were assessed in the presence of absence of IFNγ-blocking antibody. Furthermore, we used CRISPR/Cas9 editing to knock out IFNγ in CD19-directed CAR-T cells. The effects of IFNγ inhibition in CAR-T by pharmacologic and genetic approaches on T cell function, immune checkpoint inhibitor expression, cancer cell lysis and macrophage activation/phenotype were assessed using ELISA, flow cytometry, in vitro/in vivo tumor models and Luminex/fluorescence microscopy/NanoString, respectively. Finally, serum from B cell lymphoma patients treated with the CAR-T products tisagenlecleucel or axicabtagene ciloleucel was collected 3 days post-CAR infusion and added to human macrophages in vitro in the presence of blocking antibodies to IFNγ versus the current clinical agents for managing CRS, including those targeting IL-1Rα and IL-6R. Macrophage phenotype and function was determined using NanoString, ELISA, and immunofluorescence microscopy. Results: We found that pharmacologic blockade or genetic knockout of IFNγ specifically reduces IFNγ signaling without compromising T cell phenotype or effector function, including production of GM-CSF, IL-2, Granzyme B and TNFα. We also observed reduced expression of the immune checkpoint proteins CTLA-4, PD-1, Lag3 and Tim3, which correlated with enhanced antigen-specific CAR-T proliferation. Cytotoxicity assays and NSG xenograft tumor-bearing mouse models revealed that blocking IFNγ has no effect on therapeutic efficacy of CAR T cells against CD19 + leukemias or lymphomas in vitro or in vivo. Furthermore, pharmacologic blockade or genetic knockout of IFNγ in CD19-directed CAR T cells abrogated macrophage activation in vitro and in hybrid in vitro/in vivo models of CRS, as shown by a reduction of activation markers (CD69, CD86) and pro-inflammatory proteins (IL-6, IP-10, MIP-1β and MCP-1). Further interrogation revealed that these findings were IFNγ-dependent but cell contact-independent. Finally, data herein reveals that blocking IFNγ in both healthy donor CAR-T cultures and lymphoma patient serum results in reduced macrophage activation/function to a similar, if not superior, extent as current clinical approaches targeting IL-1Rα and IL-6R. In addition to reduced macrophage function, NanoString analysis revealed a decreased expression of immune checkpoint inhibitor genes HAVCR2, VSIR and PDCD1LG2 and upregulation of co-stimulatory genes DPP4 and ICOSL. Conclusions: Collectively, these data show that IFNγ is dispensable for the efficacy of CAR-T against hematologic malignancies and blocking IFNγ could simultaneously mitigate cytokine-related toxicities while enhancing T cell proliferation and persistence via reduced expression of immune checkpoint proteins. Furthermore, direct comparison of IFNγ blockade or knockout in the CAR T cell product with current clinical strategies suggests that targeting IFNγ could mitigate major cytokine-related toxicities to a greater extent than existing approaches. Disclosures Frigault: Arcellx: Consultancy; Novartis: Consultancy, Research Funding; Kite: Consultancy, Research Funding; BMS: Consultancy; Iovance: Consultancy; Takeda: Consultancy; Editas: Consultancy. Maus: WindMIL: Consultancy; Torque: Consultancy, Current holder of stock options in a privately-held company; Tmunity: Consultancy; Novartis: Consultancy; Micromedicine: Consultancy, Current holder of stock options in a privately-held company; Kite Pharma: Consultancy, Research Funding; GSK: Consultancy; Intellia: Consultancy; In8bio (SAB): Consultancy; CRISPR therapeutics: Consultancy; Cabaletta Bio (SAB): Consultancy; BMS: Consultancy; Bayer: Consultancy; Atara: Consultancy; AstraZeneca: Consultancy; Astellas: Consultancy; Arcellx: Consultancy; Agenus: Consultancy; Adaptimmune: Consultancy; tcr2: Consultancy, Divested equity in a private or publicly-traded company in the past 24 months; century: Current equity holder in publicly-traded company; ichnos biosciences: Consultancy, Current holder of stock options in a privately-held company.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 36-37
Author(s):  
Shoji Saito ◽  
Aiko Hasegawa ◽  
Mika Nagai ◽  
Yoichi Inada ◽  
Hirokazu Morokawa ◽  
...  

Background: The prognosis of relapsed/refractory (R/R) acute myeloid leukemia (AML) remains poor; therefore, novel treatment strategies are required urgently. Meanwhile, recent clinical trials have demonstrated that CAR-T cells for AML have been less successful than those targeting CD19 for B cell malignancies. Recently, we developed piggyBac-modified ligand-based CAR-T cells that target CD116, also called granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor (GMR) α chain, for treating juvenile myelomonocytic leukemia (Nakazawa, et al. J Hematol Oncol. 2016). Since CD116 is overexpressed in 60%-80% of AML cases, the present study aimed to develop a novel therapeutic method for R/R AML using GMR CAR-T cells. Methods: CD116 expression in AML cell lines or primary leukemia cells were examined using flow cytometry. The original piggyBac transposon plasmid for GMR CAR comprises GM-CSF as an antigen recognition site, IgG1 CH2CH3 hinge region, CD28 costimulatory domain, and CD3ζ chain. To improve the in vivo persistency and anti-tumor effects, two types of spacer (∆CH2H3 and G4S) that lack CH2CH3 lesion were newly constructed. In order to modulate the antigen recognition ability, mutated ligand-based GMR CAR vectors were constructed with a mutation at residue 21 of GM-CSF that is reported to play a critical role in its biological activity (Lopez, et al. Embo j. 1992). All the GMR CAR-T cells were generated with piggyBac gene modification. To investigate the in vitro anti-tumor activity, GMR CAR-T cells were co-cultured with AML cell lines. In order to evaluate the in vivo anti-tumor effects, NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice were intravenously injected with THP-1, THP1-ffLuc, or MV4-11 and then treated with GMR CAR-T cells. To characterize the safety profile of GMR CAR-T cells, peripheral blood mononuclear cells or polymorphonuclear cells were co-cultured with GMR CAR-T cells at an effector:target ratio of 1:1 for 3 days. Thereafter, B cells, NK cells, neutrophils, and monocytes were quantified using flow cytometry using counting beads. Results: Approximately 80% of the AML cells predominant in myelomonocytic leukemia expressed CD116. PiggyBac-modified GMR CAR-T cells displayed a favorable CD45RA+CCR7+-dominant phenotype, consistent with our previous findings. GMR CAR-T cells exhibited potent cytotoxic activities against CD116+ AML cells in vitro. GMR CAR-T cells incorporating a G4S spacer significantly improved the long-term in vitro and in vivo anti-tumor effects as compared to those incorporating a ∆CH2CH3 spacer. Furthermore, by employing a mutated GM-CSF at residue 21 (E21K and E21R) as an antigen recognition site, the in vivo anti-tumor effects were also substantially improved along with prolonged survival (Figure 1) over controls (PBS or CD19.CAR-T cells) (all, p &lt; 0.01) as well as over GMR CAR-T cells with a wild-type GM-CSF ligand (E21R: p &lt; 0.01; E21K: p = 0.02), with 4 out of 5 mice surviving for &gt; 150 days. Safety tests revealed that the toxicity of GMR CAR-T cells was restricted to normal monocytes. It is noteworthy that the cytotoxic effects of GMR CAR-T cells on normal neutrophils, T cells, B cells, and NK cells were minimal. Conclusions: GMR CAR-T cell therapy appears to be a potentially useful strategy for CD116+ R/R AML. Based on the promising results, we plan to perform the first-in-human clinical trial of GMR CAR-T cells. Disclosures Saito: Toshiba Corporation: Research Funding. Hasegawa:Toshiba Corporation: Research Funding. Inada:Kissei Pharmaceuticals: Ended employment in the past 24 months. Nakashima:Toshiba Corporation: Research Funding. Yagyu:Toshiba Corporation: Research Funding. Nakazawa:Toshiba Corporation: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document