scholarly journals Perfecting CAR Engraftment to a Tee (Cell) through Characterization of Single Cell Transcriptome Product and Understanding Neurotoxicity

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1707-1707
Author(s):  
Wesley Wilson ◽  
Fei Miao ◽  
Alfred L Garfall ◽  
Dexiu Bu ◽  
Elena J Orlando ◽  
...  

Abstract Background: Autologous chimeric antigen receptor T (CAR-T) cell therapies show significant clinical activity against hematologic malignancies including multiple myeloma (MM). Numerous factors influence the effectiveness of this therapeutic approach. The fitness of a CAR-T cell product is an important factor affecting T cell engraftment and persistence, a pre-requisite for effective CAR-T cell therapy. In an effort to deconstruct the cellular heterogeneity of CAR-T cell products and explore relationships between T cell states within the cellular product, gene expression and CAR-T cell engraftment following adoptive transfer, we performed single cell RNA-sequencing (scRNA-seq) on CAR-T cell products from a phase I trial of BCMA-specific CAR-T cells in relapsed/refractory MM patients that included cohorts receiving a similar CAR-T cell dose with and without preconditioning with cyclophosphamide (NCT02546167, Cohen et al, J Clin Invest 2019). Method: scRNA-seq was performed on 25 unique products with an average of 8823 cells captured per product at an average depth of 40779 reads per cell. Batch effects were controlled by integration using established metrics for quality control. The linked inference of genomic experimental relationships (LIGER) method exhibited the most effective integration of 228,752 single cells across the 25 products. Annotation was completed by comparing transcriptomes of cells to the Blueprint/ENCODE references of pure immune cells. Differential gene expression (DGE) analysis was conducted by both Wilcoxon rank sum test testing and negative binomial distribution. Gene enrichment analysis was performed by comparing DGE with the Molecular Signatures Database v7.4. Cell to cell communication utilized the KEGG signaling pathway maps and curated lists of interactions from the literature. The intercellular communication probability was estimated on the DE genes before statistically significant intercellular communications were calculated by a permutation test, with dominant senders, receivers, mediators, and influencers identified using graph theory. Patients were grouped based upon "good" or "poor" engraftment using a peak blood vector copies per cell cutoff of 10,000. Association of transcriptional variation with neurotoxicity was explored for all patients. Results: The CD4:CD8 ratio of 2.51 single cells in the data was comparable to the observed average CD4:CD8 ratio of total T cells in the product based upon flow cytometric analysis of the products at harvest. Cell annotation showed significant heterogeneity of CD4+ and CD8+ T cells with cells exhibiting a CD4 Tcm transcriptional profile comprising the largest subset of T cells within the product. DGE analysis found 205 genes that were up or down regulated between the "good" vs "poor" engraftment phenotypes with 75 genes being detected using both mathematical approaches. CAR-BCMA expression was increased in "good" engraftment groups which has not previously been shown in CAR sorted cells. Within both CD4+ and CD8+ T cell subsets, transcriptional pathways associated with the RXF5/RFXAP/RFXANK transcriptional activator complex and the IL-2/STAT5 signaling were identified as upregulated in the "good" engrafted products. Cell to cell communication analysis for both secreted signaling and cell to cell contact revealed similar ligand-receptor interaction differences between the engraftment groups. Within the neurotoxicity groups CAR-BCMA expression was not associated with either neurotoxicity or with high and low neurotoxicity effects in the product. High vs low neurotoxicity showed a shift with interferon gamma and cytokine-cytokine interactions. We also detected IL-6/JAK/STAT3 signaling activation increases in this group. Conclusion: The RFX5/RFXAP/RFXANK pathway associated with MHC class II expression and IL-2/STAT5 signaling show a significant association with engraftment of BCMA-specific CAR-T cells. Although IL-2 signaling is well known to be critical to T cell survival and a potential key driver for long-term persistence, the role of the RFX5 transcriptional activator complex in T cells, outside of its important role in regulating MHC expression, is largely unknown. Both pathways deserve further investigation. Cell to cell communication between engraftment groups suggests CD4/CD8 interactions that might be beneficial to engraftment at the product manufacturing stage. Figure 1 Figure 1. Disclosures Garfall: Amgen: Honoraria; CRISPR Therapeutics: Research Funding; GlaxoSmithKline: Honoraria; Janssen: Honoraria, Research Funding; Novartis: Research Funding; Tmunity: Research Funding. Bu: Novartis: Current Employment, Patents & Royalties: Co-inventor on patent applications. Orlando: Novartis: Current Employment. Brogdon: Novartis Institutes for Biomedical Research: Current Employment. Pruteanu-Malinici: Novartis: Current Employment. Cohen: Janssen: Consultancy; Oncopeptides: Consultancy; Genentech/Roche: Consultancy; BMS/Celgene: Consultancy; AstraZeneca: Consultancy; Novartis: Research Funding; Takeda: Consultancy; GlaxoSmithKline: Consultancy, Research Funding.

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 776-776
Author(s):  
Claire Roddie ◽  
Maeve A O'Reilly ◽  
Maria A V Marzolini ◽  
Leigh Wood ◽  
Juliana Dias Alves Pinto ◽  
...  

Introduction: 2nd generation CD19 CAR T cells show unprecedented efficacy in B-ALL, but several challenges remain: (1) scaling manufacture to meet patient need and (2) feasibility of generating products from lymphopenic patients post allogeneic stem cell transplant (allo-SCT). To overcome these issues we propose: (1) use of the CliniMACS Prodigy (Miltenyi Biotec), a semi-automated cGMP platform that simplifies CAR T cell manufacture and (2) the use of matched donor T cells to overcome the challenge posed by patient lymphopenia, albeit this may come with a heightened risk of graft versus host disease (GvHD). CARD (NCT02893189) is a Phase I study of matched donor derived CD19 CAR T cells generated on the CliniMACS Prodigy in 14 adult patients with relapsed/refractory (r/r) B ALL following allo-SCT. We additionally explore the requirement for lymphodepletion (LD) in the allogeneic CAR T cell setting and report on the incidence of GvHD with this therapy. Methods: Manufacturing: CARD utilises non-mobilised matched donor leucapheresate to manufacture 2nd generation CD19CAR T cells using a closed CliniMACS® Prodigy/ TransACTTM process. Study design: Eligible subjects are aged 16-70y with r/r B ALL following allo SCT. Study endpoints include feasibility of CD19CAR T cell manufacture from allo-SCT donors on the CliniMACS Prodigy and assessments of engraftment and safety including GvHD. To assess the requirement for LD prior to CD19CAR T cells in lymphopenic post-allo-SCT patients, the study is split into Cohort 1 (no LD) and Cohort 2 (fludarabine (30 mg/m2 x3) and cyclophosphamide (300mg/m2 x3)). To mitigate for the potential GvHD risk, cell dosing on study mirrors conventional donor lymphocyte infusion (DLI) schedules and is based on total CD3+ (not CAR T) cell numbers: Dose 1=1x106/kg CD3+ T cells; Dose 2= 3x106/kg CD3+ T cells; Dose 3= 1x107/kg CD3+ T cells. Results: As of 26 July 2019, 17 matched allo SCT donors were leukapheresed and 16 products were successfully manufactured and QP released. Patient demographics are as follows: (1) median patient age was 43y (range 19-64y); (2) 4/17 had prior blinatumomab and 5/17 prior inotuzumab ozogamicin; (3) 7/17 had myeloablative allo SCT and 10/17 reduced intensity allo SCT of which 6/17 were sibling donors and 12/17 were matched unrelated donors. No patients with haploidentical transplant were enrolled. To date, 12/16 patients have received at least 1 dose of CD19CAR T cells: 7/16 on Cohort 1 and 5/16 on Cohort 2 (2/16 are pending infusion on Cohort 2 and 2/16 died of fungal infection prior to infusion). Median follow-up for all 12 patients is 22.9 months (IQR 2.9-25.9; range 0.7 - 25.9). At the time of CAR T cell infusion, 7/12 patients were in morphological relapse with >5% leukemic blasts. Despite this, CD19CAR T cells were administered safely: only 2/12 patients experienced Grade 3 CRS (UPenn criteria), both in Cohort 1, which fully resolved with Tocilizumab and corticosteroids. No patients experienced ≥Grade 3 neurotoxicity and importantly, no patients experienced clinically significant GvHD. In Cohort 1 (7 patients), median peak CAR expansion by flow was 87 CD19CAR/uL blood whereas in Cohort 2 (5 patients to date), median peak CAR expansion was 1309 CD19CAR/uL blood. This difference is likely to reflect the use of LD in Cohort 2. CAR T cell persistence by qPCR in Cohort 1 is short, with demonstrable CAR in only 2/7 treated patients at Month 2. Data for Cohort 2 is immature, but this will also be reported at the meeting in addition to potential mechanisms underlying the short persistence observed in Cohort 1. Of the 10 response evaluable patients (2/12 pending marrow assessment), 9/10 (90%) achieved flow/molecular MRD negative CR at 6 weeks. 2/9 responders experienced CD19 negative relapse (one at M3, one at M5) and 3/9 responders experienced CD19+ relapse (one at M3, one at M9, one at M12). 4/10 (40%) response evaluable patients remain on study and continue in flow/molecular MRD negative remission at a median follow up of 11.9 months (range 2.9-25.9). Conclusions: Donor-derived matched allogeneic CD19 CAR T cells are straightforward to manufacture using the CliniMACS Prodigy and deliver excellent early remission rates, with 90% MRD negative CR observed at Week 6 in the absence of severe CAR associated toxicity or GvHD. Peak CAR expansion appears to be compromised by the absence of LD and this may lead to a higher relapse rate. Updated results from Cohorts 1 and 2 will be presented. Disclosures Roddie: Novartis: Consultancy; Gilead: Consultancy, Speakers Bureau; Celgene: Consultancy, Speakers Bureau. O'Reilly:Kite Gilead: Honoraria. Farzaneh:Autolus Ltd: Equity Ownership, Research Funding. Qasim:Autolus: Equity Ownership; Orchard Therapeutics: Equity Ownership; UCLB: Other: revenue share eligibility; Servier: Research Funding; Bellicum: Research Funding; CellMedica: Research Funding. Linch:Autolus: Membership on an entity's Board of Directors or advisory committees. Pule:Autolus: Membership on an entity's Board of Directors or advisory committees. Peggs:Gilead: Consultancy, Speakers Bureau; Autolus: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 196-196
Author(s):  
Bishwas Shrestha ◽  
Kelly Walton ◽  
Jordan Reff ◽  
Elizabeth M. Sagatys ◽  
Nhan Tu ◽  
...  

Distinct from pharmacologic immunosuppression, we designed a programmed cytolytic effector T cell that prevents graft versus host disease (GVHD). CD83 is expressed on allo-activated conventional T cells (Tconv) and pro-inflammatory dendritic cells (DCs), which are implicated in GVHD pathogenesis. Therefore we developed a novel human CD83 targeted chimeric antigen receptor (CAR) T cell for GVHD prophylaxis. Here we demonstrate that human CD83 CAR T cells eradicate cell mediators of GVHD, significantly increase the ratio of regulatory T cells (Treg) to allo-activated Tconv, and provide lasting protection from xenogeneic GVHD. Further, we show human, acute myeloid leukemia (AML) expresses CD83 and can be targeted by CD83 CAR T cells. A 2nd generation CD83 CAR was generated with CD3ζ and 41BB costimulatory domain that was retrovirally transduced in human T cells to generate CD83 CAR T cells. The CD83 CAR construct exhibited a high degree of transduction efficiency of about 60%. The CD83 CAR T cells demonstrated robust IFN-γ and IL-2 production, killing, and proliferation when cultured with CD83+ target cells. To test whether human CD83 CAR T cells reduce alloreactivity in vitro, we investigated their suppressive function in allogeneic mixed leukocyte reactions (alloMLR). CD83 CAR T cells were added to 5-day alloMLRs consisting of autologous T cells and allogeneic monocyte-derived DCs at ratios ranging from 3:1 to 1:10. The CD83 CAR T cells potently reduced alloreactive T cell proliferation compared to mock transduced and CD19 CAR T cells. We identified that CD83 is differentially expressed on alloreactive Tconv, compared to Tregs. Moreover, the CD83 CAR T cell efficiently depletes CD83+ Tconv and proinflammatory DCs with 48 hours of engagement. To test the efficacy of human CD83 CAR T cells in vivo, we used an established xenogeneic GVHD model, where mice were inoculated with human PBMCs (25x106) and autologous CD83 CAR (1-10x106) or mock transduced T cells. The CD83 CAR T cells were well tolerated by the mice, and significantly improved survival compared to mock transduced T cells (Figure 1A). Mice treated with CD83 CAR T cells exhibited negligible GVHD target organ damage at day +21 (Figure 1B). Mice inoculated with CD83 CAR T cells demonstrated significantly fewer CD1c+, CD83+ DCs (1.7x106 v 6.2x105, P=0.002), CD4+, CD83+ T cells (4.8x103 v 5.8x102, P=0.005), and pathogenic Th1 cells (3.1x105 v 1.1x102, P=0.005) at day +21, compared to mice treated with mock transduced T cells. Moreover, the ratio of Treg to alloreactive Tconv (CD25+ non-Treg) was significantly increased among mice treated with CD83 CAR T cells (78 v 346, P=0.02), compared to mice injected with mock transduced T cells. Further, CD83 appears to be a promising candidate to target myeloid malignancies. We observed CD83 expression on malignant myeloid K562, Thp-1, U937, and MOLM-13 cells. Moreover, the CD83 CAR T cells effectively killed AML cell lines. Many AML antigens are expressed on progenitor stem cells. Thus, we evaluated for stem cell killing in human colony forming unit (CFU) assays, which demonstrated negligible on-target, off-tumor toxicity. Therefore, the human CD83 CAR T cell is an innovative cell-based approach to prevent GVHD, while providing direct anti-tumor activity against myeloid malignancies. Figure Disclosures Blazar: Kamon Pharmaceuticals, Inc: Membership on an entity's Board of Directors or advisory committees; Five Prime Therapeutics Inc: Co-Founder, Membership on an entity's Board of Directors or advisory committees; BlueRock Therapeutics: Membership on an entity's Board of Directors or advisory committees; Abbvie Inc: Research Funding; Leukemia and Lymphoma Society: Research Funding; Childrens' Cancer Research Fund: Research Funding; KidsFirst Fund: Research Funding; Tmunity: Other: Co-Founder; Alpine Immune Sciences, Inc.: Research Funding; RXi Pharmaceuticals: Research Funding; Fate Therapeutics, Inc.: Research Funding; Magenta Therapeutics and BlueRock Therapeuetics: Membership on an entity's Board of Directors or advisory committees; Regeneron Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees. Davila:Atara: Research Funding; Celgene: Research Funding; Precision Biosciences: Consultancy; Bellicum: Consultancy; GlaxoSmithKline: Consultancy; Adaptive: Consultancy; Anixa: Consultancy; Novartis: Research Funding.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 44-44
Author(s):  
McKensie Collins ◽  
Weimin Kong ◽  
Inyoung Jung ◽  
Stefan M Lundh ◽  
J. Joseph Melenhorst

Chronic Lymphocytic Leukemia (CLL) is a B cell malignancy that accounts for nearly 1/3rd of adult leukemia diagnoses in the Western world. Conventional chemo-immunotherapies initially control progression, but in the absence of curative options patients ultimately succumb to their disease. Chimeric Antigen Receptor (CAR) T cell therapy is potentially curative, but only 26% of CLL patients have a complete response. CLL-stimulated T cells have reduced effector functions and B-CLL cells themselves are believed to be immunosuppressive. Our work demonstrates that insufficient activation of CAR T cells by CLL cells mediates some of these effects and that the results are conserved between ROR1- and CD19-targeting CARs. Results: In this study we used an in vitro system to model the in vivo anti-tumor response in which CAR T cells serially engage with CLL cells. Multiple stimulations of CD19 or ROR1-targeting CAR T cells with primary CLL cells recapitulated many aspects of known T cell dysfunction including reduced proliferation, cytokine production, and activation. While the initial stimulation induced low level proliferation, subsequent stimulations failed to elicit additional effector functions. We further found that these functional defects were not permanent, and that CAR T cell function could be restored by switching to a stimulus with an aAPC (artificial Antigen Presenting Cell) control cell line. The aAPCs are well-characterized as potent stimulators of CAR T cell effector responses. Flow cytometry revealed that CLL-stimulated CAR T cells retained a non-activated, baseline differentiation profile, suggesting that CLL cells fail to stimulate CAR T cells rather than rendering them non-functional. One mechanism that could dampen activation is immune suppression. We assessed this at a high level by stimulating CAR T cells with CLL cells and aAPCs mixed at known ratios. However, even cultures containing 75% CLL cells stimulated proliferation and cytokine production. Extensive immune-phenotyping revealed high level expression of the IL-2 Receptor on 90% (18/20) of the B-CLL cells tested. Since cytokine sinking via IL-2 receptor expression is a well-known mechanism of regulatory T cell suppression, we hypothesized that CLL cells similarly sink IL-2, blunting T cell activation. To test this, we supplemented IL-2 into CLL/CAR T cell co-cultures and showed that this rescued proliferation but only partially restored cytokine production. In contrast to our hypothesis, analysis of cytokine production by flow cytometry showed that CLL-stimulated CAR T cells did not produce IL-2 following a 6- or 12-hour stimulus, but TNFα was expressed after 12-hours. Similarly, CAR T cell degranulation, a prerequisite for target cell lysis was triggered after CLL recognition. These data again suggested that CLL cells insufficiently stimulate CAR T cell cytokine production, but also showed that cytolytic activity against CLL cells is intact. We further proposed that CLL cells express insufficient levels of co-stimulatory and adhesion molecules to activate CAR T cells. Flow cytometry showed that most CLL cells expressed co-stimulatory and adhesion molecules at low levels; we hypothesized that up-regulating these molecules would enhance CAR T cell targeting of CLL cells. CLL cells were activated with CD40L and IL-4, which increased expression of CD54, CD58, CD80, and CD86. Stimulating CAR T cells with activated CLL cells enhanced CAR T cell proliferation and induced cell conjugate formation, indicating cell activation. Therefore, improving CLL stimulatory capacity can rescue T cell dysfunctions. To assess whether IL-2 addition and CD40 ligation were synergistic, we combined the two assays; however, we saw no additional improvement over IL-2 addition alone, suggesting that the two interventions may act upon the same pathway. Importantly, we also showed that rescue of CAR T cell function via IL-2 addition or CD40 ligation was not CAR-specific, as we observed the functional defects and subsequent rescue with both a ROR1-targeting CAR and the gold standard CD19-targeting CAR. Conclusions: Together, these data show that CAR T cell "defects" in CLL are actually insufficient activation, and improving the stimulatory capacity of CLL cells may enable better clinical responses. Further, this effect is not CAR-specific and these results may therefore be broadly applicable to multiple therapies for this disease. Disclosures Melenhorst: IASO Biotherapeutics: Membership on an entity's Board of Directors or advisory committees, Research Funding; Kite Pharma: Research Funding; Novartis: Other: Speaker, Research Funding; Johnson & Johnson: Consultancy, Other: Speaker; Simcere of America: Consultancy; Poseida Therapeutics: Consultancy.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3032-3032
Author(s):  
Arantxa Romero-Toledo ◽  
Robin Sanderson ◽  
John G. Gribben

The complex crosstalk between malignant chronic lymphocytic leukemia (CLL) cells and the tumor microenvironment (TME) is not fully understood. CLL is associated with an inflammatory TME and T cells exhibit exhaustion and multiple functional defects, fully recapitulated in Eµ-TCL1 (TCL1) mice and induced in healthy mice by adoptive transfer (AT) of murine CLL cells, making it an ideal model to test novel immunotherapies for this disease. Myeloid-derived suppressor cells (MDSCs), a non-leukemic cell type within the TME, are immature myeloid cells with the ability to suppress T cell function and promote Treg expansion. In humans, CLL cells can induce conversion of monocytes to MDSCs provoking their accumulation in peripheral blood (PB). MDSCs include two major subsets granulocytic (Gr) and monocytic (M)-MDSC. In mice, Gr-MDSCs are defined as CD11b+Ly6G+Ly6Clo and M-MDSC as CD11b+Ly6G-Ly6Chi. Both murine and human MDSCs express BTK. We observed that in CLL-bearing mice, MDSCs cells are lost in PB as disease progresses. Treatment with both BTK inhibitors (BTKi), ibrutinib (Ibr) and acalabrutinib (Acala), result in shift of T cell function from Th2 towards Th1 polarity and increase MDSC populations in vivo. We aimed to determine whether combination treatment with BTKi and chimeric antigen receptor (CAR) T cells renders recovery of the MDSC population in CLL-bearing mice. To address this question we designed a two-part experiment, aiming to mimic the clinically relevant scenario of pre-treatment of CLL with BTKi to improve CAR T cell function. Part 1 of our experiment consisted of 4 groups (n=12) of 2.5 month old C57/Bl6 mice. Three groups had AT with 30x106 TCL1 splenocytes. A fourth group of WT mice remained CLL-free as a positive control and donors for WT T cells. When PB CLL load reached >10% (day 14) animals were randomized to either Ibr or Acala at 0.15 mg/l in 2% HPBC or no treatment for 21 days. All animals from part 1 were culled at day 35 post-AT and splenic cells were isolated, analyzed and used to manufacture CAR T cells. WT, CLL, Ibr and Acala treated T cells were activated and transduced with a CD19-CD28 CAR to treat mice in part 2. Here, 50 WT mice were given AT with 20x106 TCL1 splenocytes for CLL engraftment. All mice were injected with lymphodepleting cyclophosphamide (100mg/kg IP) one day prior to IV CAR injection. At day 21 post-AT, mice were treated with WT CAR, CLL CAR, IbrCAR, AcalaCAR or untransduced T cells. MDSC sub-populations were monitored weekly in PB and SP were analysed by flow cytometry. As malignant CD19+CD5+ cells expands in PB, the overall myeloid (CD19-CD11b+) cell population was not affected, but MDSCs significantly decreased (p<0.0001). Treatment with Acala, but not Ibr restores total MDSCs. However, MDSC impairment occurs in the Gr- but not M- MDSC population and both Acala and Ibr restores this population (Figure 1a). When we examined the spleen, treatment with both Ibr (p<0.001) and Acala (p<0.001) reduced CD5+CD19+ cells, whereas neither BTKi affected the overall myeloid (CD19-CD11b+) cell population. Gr-MDSCs were restored by both treatments whilst M-MDSCs were only restored after Ibr treatment (p<0.001 in each case). In part 2 of this experiment we observed that treatment with all CAR-T cell groups provokes the clearance of all CD19+CD5+ cells. The overall CD19-CD11b+ population stays the same across all mice groups 35 days after treatment in PB with any group of CAR and untransduced T cells. Overall MDSC population is maintained following all CAR T cells compared to CLL-bearing mice (p<0.0001) and it is the Gr- but not the M- MDSC population which is recovered in PB (Figure 1b). These parts of the experiments can of course be influenced by treatment with cyclophosphamide. We conclude that novel therapies for CLL treatment have an effect not only in CLL cells but also in non-malignant cell components of the TME. In this animal model of CLL, the rapid expansion of CLL cells in PB and secondary lymphoid organs provokes loss of MDSC, particularly the Gr-MDSC subpopulation is affected. Treatment with BTKi and CAR T cells provokes clearance of CLL cells in PB and spleen allowing MDSC recovery; suggesting this may be BTK and ITK independent. We continue to explore secondary lymphoid organs to further characterize the shift of the CLL microenvironment from an immunosuppressive to an immune effective one and its impact on immune function in this model. Disclosures Sanderson: Kite/Gilead: Honoraria. Gribben:Celgene: Consultancy, Honoraria, Research Funding; Janssen: Consultancy, Honoraria, Research Funding; Abbvie: Consultancy, Honoraria, Research Funding; Acerta/Astra Zeneca: Consultancy, Honoraria, Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3113-3113 ◽  
Author(s):  
Nico Gagelmann ◽  
Francis Ayuketang Ayuk ◽  
Djordje Atanackovic ◽  
Nicolaus Kroeger

Background Cellular immunotherapies represent an enormously promising strategy for relapsed/refractory multiple myeloma (RRMM). Chimeric antigen receptor (CAR) T cells targeting B cell maturation antigen (BCMA) have shown impressive results in early-phase clinical studies. Here, we summarize the current body of evidence on the role of anti-BCMA CAR T cell therapy for RRMM. Methods We performed a systematic literature review to identify all publicly available prospective studies. We searched Medline, Cochrane trials registry, and www.clinicaltrials.gov. To include the most recent evidence, meeting abstracts from international hematology congresses were added. A conventional meta-analysis was conducted using meta and metafor packages in R statistical software. Pooled event rates and 95% confidence intervals (CIs) were calculated using the inverse variance method within a random-effects framework. Main efficacy outcomes were overall response, complete response (CR), and minimal residual disease (MRD). Furthermore, relapse rates, progression-free survival, and overall survival were evaluated. In terms of safety, outcomes were cytokine release syndrome (CRS), neurotoxicity, and hematologic toxic effects. Results Fifteen studies comprising a total of 285 patients with heavily pretreated RRMM were included in quantitative analyses. Patients received a median of seven prior treatment lines (such as proteasome inhibitors, immunomodulatory drugs, monoclonal antibodies, stem cell transplantation) which included autologous stem cell transplantation in 90% of patients. The median age of patients was 59 years and median follow-up duration ranged from 1.1 to 11.3 months. Most studies used 4-1BB (or CD137), a member of the TNF receptor superfamily, as an activation-induced T-cell costimulatory molecule. Most studies used fludarabine and cyclophosphamide for lymphodepletion while one study used busulfan and cyclophosphamide and one study used cyclophosphamide only. Most studies used the former Lee criteria for CRS grading. Anti-BCMA CAR T cells resulted in a pooled overall response of 82% (95% CI, 74-88%). The pooled proportion of CR in all evaluable patients was 36% (95% CI, 24-50%). Within responders, the pooled proportion of MRD negativity was 77% (95% CI, 67-85%). Higher dose levels of infused CAR+ cells were associated with higher overall response rates resulting in a pooled proportion of 88% (95% CI, 78-94%). In addition, peak CAR T cell expansion appeared to be associated with responses.The presence of high-risk cytogenetics appeared to be associated with lower overall response rates resulting in a pooled proportion of 68% (95% CI, 47-83%). The presence of extramedullary disease at time of infusion did not influence outcome and was associated with similar response rates compared with RRMM patients who did not have extramedullary disease, resulting in a pooled proportion of 78% (95% CI, 47-93%). The pooled relapse rate of all responders was 45% (95% CI, 27-64%) and the median progression-free survival was 10 months. In terms of overall survival, pooled survival rates were 84% (95% CI, 60-95%) at last follow-up (median, 11 months). In terms of safety, the pooled proportion of CRS of any grade was 69% (95% CI, 51-83%). Notably, the pooled proportions of CRS grades 3-4 and neurotoxicity were 15% (95% CI, 10-23%) and 18% (95% CI, 10-31%). Peak CAR T cell expansion appeared to be more likely in the setting of more severe CRS in three studies. Most hematologic toxic effects of grade 3 or higher were neutropenia (85%), thrombocytopenia (70%), and leukopenia (60%). Conclusion Anti-BCMA CAR T cells showed high response rates, even in high-risk features such as high-risk cytogenetics and extramedullary disease at time of CAR T cell infusion. Toxicity was manageable across all early-phase studies. However, almost half of the patients who achieved a response eventually relapsed. Larger studies with longer follow-up evaluating the association of response and survival are needed. Disclosures Ayuk: Novartis: Honoraria, Other: Advisory Board, Research Funding. Kroeger:Medac: Honoraria; Sanofi-Aventis: Honoraria; Neovii: Honoraria, Research Funding; Riemser: Research Funding; JAZZ: Honoraria; Novartis: Honoraria, Research Funding; Celgene: Honoraria, Research Funding; DKMS: Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2866-2866 ◽  
Author(s):  
Cassie Chou ◽  
Simon Fraessle ◽  
Rachel Steinmetz ◽  
Reed M. Hawkins ◽  
Tinh-Doan Phi ◽  
...  

Background CD19 CAR T immunotherapy has been successful in achieving durable remissions in some patients with relapsed/refractory B cell lymphomas, but disease progression and loss of CAR T cell persistence remains problematic. Interleukin 15 (IL-15) is known to support T cell proliferation and survival, and therefore may enhance CAR T cell efficacy, however, utilizing native IL-15 is challenging due to its short half-life and poor tolerability in the clinical setting. NKTR-255 is a polymer-conjugated IL-15 that retains binding affinity to IL15Rα and exhibits reduced clearance, providing sustained pharmacodynamic responses. We investigated the effects of NKTR-255 on human CD19 CAR T cells both in vitro and in an in vivo xenogeneic B cell lymphoma model and found improved survival of lymphoma bearing mice receiving NKTR-255 and CAR T cells compared to CAR T cells alone. Here, we extend upon these findings to further characterize CAR T cells in vivo and examine potential mechanisms underlying improved anti-tumor efficacy. Methods CD19 CAR T cells incorporating 4-1BB co-stimulation were generated from CD8 and CD4 T cells isolated from healthy donors. For in vitro studies, CAR T cells were incubated with NKTR-255 or native IL-15 with and without CD19 antigen. STAT5 phosphorylation, CAR T cell phenotype and CFSE dilution were assessed by flow cytometry and cytokine production by Luminex. For in vivo studies, NSG mice received 5x105 Raji lymphoma cells IV on day (D)-7 and a subtherapeutic dose (0.8x106) of CAR T cells (1:1 CD4:CD8) on D0. To determine optimal start date of NKTR-255, mice were treated weekly starting on D-1, 7, or 14 post CAR T cell infusion. Tumors were assessed by bioluminescence imaging. Tumor-free mice were re-challenged with Raji cells. For necropsy studies mice received NKTR-255 every 7 days following CAR T cell infusion and were euthanized at various timepoints post CAR T cell infusion. Results Treatment of CD8 and CD4 CAR T cells in vitro with NKTR-255 resulted in dose dependent STAT5 phosphorylation and antigen independent proliferation. Co-culture of CD8 CAR T cells with CD19 positive targets and NKTR-255 led to enhanced proliferation, expansion and TNFα and IFNγ production, particularly at lower effector to target ratios. Further studies showed that treatment of CD8 CAR T cells with NKTR-255 led to decreased expression of activated caspase 3 and increased expression of bcl-2. In Raji lymphoma bearing NSG mice, administration of NKTR-255 in combination with CAR T cells increased peak CAR T cell numbers, Ki-67 expression and persistence in the bone marrow compared to mice receiving CAR T cells alone. There was a higher percentage of EMRA like (CD45RA+CCR7-) CD4 and CD8 CAR T cells in NKTR-255 treated mice compared to mice treated with CAR T cells alone and persistent CAR T cells in mice treated with NKTR-255 were able to reject re-challenge of Raji tumor cells. Additionally, starting NKTR-255 on D7 post T cell infusion resulted in superior tumor control and survival compared to starting NKTR-255 on D-1 or D14. Conclusion Administration of NKTR-255 in combination with CD19 CAR T cells leads to improved anti-tumor efficacy making NKTR-255 an attractive candidate for enhancing CAR T cell therapy in the clinic. Disclosures Chou: Nektar Therapeutics: Other: Travel grant. Fraessle:Technical University of Munich: Patents & Royalties. Busch:Juno Therapeutics/Celgene: Consultancy, Equity Ownership, Research Funding; Kite Pharma: Equity Ownership; Technical University of Munich: Patents & Royalties. Miyazaki:Nektar Therapeutics: Employment, Equity Ownership. Marcondes:Nektar Therapeutics: Employment, Equity Ownership. Riddell:Juno Therapeutics: Equity Ownership, Patents & Royalties, Research Funding; Adaptive Biotechnologies: Consultancy; Lyell Immunopharma: Equity Ownership, Patents & Royalties, Research Funding. Turtle:Allogene: Other: Ad hoc advisory board member; Novartis: Other: Ad hoc advisory board member; Humanigen: Other: Ad hoc advisory board member; Nektar Therapeutics: Other: Ad hoc advisory board member, Research Funding; Caribou Biosciences: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; T-CURX: Membership on an entity's Board of Directors or advisory committees; Juno Therapeutics: Patents & Royalties: Co-inventor with staff from Juno Therapeutics; pending, Research Funding; Precision Biosciences: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Eureka Therapeutics: Equity Ownership, Membership on an entity's Board of Directors or advisory committees; Kite/Gilead: Other: Ad hoc advisory board member.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 681-681
Author(s):  
McKensie Collins ◽  
Weimin Kong ◽  
Inyoung Jung ◽  
Meng Wang ◽  
Stefan M Lundh ◽  
...  

Introduction: Chronic Lymphocytic Leukemia (CLL) is a CD19+ B-cell malignancy that accounts for approximately 25% of adult leukemia diagnoses in the developed world. While conventional therapies have some efficacy, there are few curative therapeutic options and many patients ultimately progress to relapsed or refractory disease. CD19-targeting chimeric antigen receptor (CAR) T cell therapy has provided some hope, but induces complete remission in only 26% of patients. This suboptimal response rate is believed to be due to T cell dysfunction and immune-suppression by CLL cells, the mechanisms of which are poorly understood. Results: To understand the causes of CAR T cell dysfunction in CLL we investigated the defects that CLL cells induced in normal donor CD19-targeting CAR T cells. CAR T cells were repeatedly stimulated at 5-day intervals with either primary CLL cells from patients or a CD19-expressing control cell line (aAPC). Repeat stimulation of CAR T cells with aAPCs resulted in 5.36 ± .94 population doublings after three stimulations, whereas CLL cells only evoked 2.39 ± .92 population doublings. We performed phenotyping, proliferation analysis, and cytokine analysis of stimulated CAR T cells. CLL-stimulated T cells appeared un-activated, with low levels of PD-1, LAG3, and TIM3, low levels of cytokine production, and a high proportion of non-cycling cells as measured by Ki67 staining. We first hypothesized that CLL cells induce an altered epigenetic program that prevents effector function and is stabilized by successive stimulations. To test this, we stimulated CAR T cells with CLL cells or aAPCs as indicated in Fig. 1A. CLL-stimulated CAR T cells failed to proliferate or produce cytokines, but subsequent stimulation with aAPCs rescued these functions (Fig. 1B). Further, CLL-stimulated CAR T cells did not differentiate, suggesting that CLL cells do not induce stable defects but rather insufficiently activate CAR T cells (Fig. 1C). These cells also appeared un-activated as indicated by low levels of PD-1 and Ki67. We then used flow cytometry to assess expression of costimulatory and inhibitory molecules on the primary CLL samples. We found that the levels of co-stimulatory and adhesion molecules, namely CD80/CD86 and CD54/CD58 respectively were found at low frequencies, and where present were expressed at low levels. This suggested that one mechanism behind the lack of CAR T cell effector responses may be that a lack of co-stimulation prevents proper CAR T cell targeting of these cells. Towards this, we incubated CLL cells with a murine fibroblast line expressing CD40 ligand for 24 hours with IL-4 to activate the CLL cells. We found that this activation significantly increased expression of CD80, CD86, CD54, and CD58 on the CLL cells. We then used these cells to stimulate CAR T cells in our re-stimulation assay and found that CAR T cells were able to proliferate in response to these activated CLLs (Fig. 1D). In addition, CAR T cells stimulated with activated CLL cells formed more cell-to-cell conjugates than those stimulated with un-activated CLL cells. These data suggest not only that insufficient activation of CAR T cells may be responsible for the poor response rates to CAR T cell therapy in CLL, but also implicate a need for additional co-stimulation in this CAR T cell setting. Another contributing factor may be immune suppression by CLL cells. To determine if CLL cells are immune-suppressive, we used a co-culture assay to stimulate CAR T cells with aAPCs and CLL cells mixed at known ratios. Interestingly, all mixed cultures proliferated similarly, suggesting that CLL cells did not prevent T cell activation in the presence of a strong activation signal. We also found that CLL cells are responsive to IL-2, as addition of this cytokine to culture media prolongs survival of CLL cells out to 10 days depending on the dose. This suggests that CLL cells express a functional IL-2 receptor and may be taking up IL-2 from the culture media, further impairing T cell activation. In support of this, supplementing IL-2 into our CLL/CAR T cell co-cultures rescued T cell proliferative capacity. Taken together, these data suggest that T cell dysfunction in CLL is the result of insufficient activation rather than true functional defects. Disclosures June: Novartis: Research Funding; Tmunity: Other: scientific founder, for which he has founders stock but no income, Patents & Royalties. Melenhorst:National Institutes of Health: Research Funding; Parker Institute for Cancer Immunotherapy: Research Funding; Novartis: Research Funding, Speakers Bureau; IASO Biotherapeutics, Co: Consultancy; Simcere of America, Inc: Consultancy; Shanghai Unicar Therapy, Co: Consultancy; Colorado Clinical and Translational Sciences Institute: Membership on an entity's Board of Directors or advisory committees; Genentech: Speakers Bureau; Stand Up to Cancer: Research Funding; Incyte: Research Funding.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 4810-4810
Author(s):  
Mark B. Geyer ◽  
Briana Cadzin ◽  
Elizabeth Halton ◽  
Peter Kane ◽  
Brigitte Senechal ◽  
...  

Abstract Background: Autologous CD19-targeted chimeric antigen receptor-modified (CAR) T-cell therapy leads to complete responses (CR) in patients (pts) with (w/) relapsed or refractory (R/R) B-cell acute lymphoblastic leukemia (B-ALL, &gt;80% CR rate) and diffuse large B-cell lymphoma (DLBCL, ~40-55% CR rate). However, following fludarabine/cyclophosphamide (Flu/Cy) conditioning and CAR T-cell therapy w/ a CD28 costimulatory domain (e.g. 19-28z CAR T-cells), rates of grade ≥3 ICANS and grade ≥3 cytokine release syndrome (CRS) in pts w/ R/R DLBCL and morphologic R/R B-ALL exceed 30%. CRS and ICANS are associated w/ considerable morbidity, including increased length of hospitalization, and may be fatal. Host monocytes appear to be the major reservoir of cytokines driving CRS and ICANS post-CAR T-cell therapy (Giavradis et al. and Norelli et al., Nature Medicine, 2018). Circulating monocytic myeloid-derived suppressor cells (MDSCs) may also blunt efficacy of 19-28z CAR T-cells in R/R DLBCL (Jain et al., Blood, 2021). The CD45-targeted antibody radioconjugate (ARC) 131-I apamistamab is being investigated at myeloablative doses as conditioning prior to hematopoietic cell transplantation in pts w/ R/R acute myeloid leukemia. However, even at low doses (4-20 mCi), transient lymphocyte and blast reduction are observed. Preclinical studies in C57BL/6 mice demonstrate low-dose anti CD45 radioimmunotherapy (100 microCi) transiently depletes &gt;90% lymphocytes, including CD4/CD8 T-cells, B-cells, NK cells, and T-regs, as well as splenocytes and MDSCs, w/ negligible effect on bone marrow (BM) hematopoietic stem cells (Dawicki et al., Oncotarget, 2020). We hypothesized a higher, yet nonmyeloablative dose of 131-I apamistamab may achieve more sustained, but reversible depletion of lymphocytes and other CD45 + immune cells, including monocytes thought to drive CRS/ICANS. We additionally hypothesized this approach (vs Flu/Cy) prior to CAR T-cell therapy would promote CAR T-cell expansion while reducing CSF levels of monocyte-derived cytokines (e.g. IL-1, IL-6, and IL-10), thus lowering the risk of severe ICANS (Fig 1A). Study design and methods: We are conducting a single-institution pilot study of 131-I apamistamab in lieu of Flu/Cy prior to 19-28z CAR T-cells in adults w/ R/R BALL or DLBCL (NCT04512716; Iomab-ACT); accrual is ongoing. Pts are eligible for leukapheresis if they are ≥18 years-old w/ R/R DLBCL (de novo or transformed) following ≥2 chemoimmunotherapy regimens w/ ≥1 FDG-avid measurable lesion or B-ALL following ≥1 line of multi-agent chemotherapy (R/R following induction/consolidation; prior 2 nd/3 rd gen TKI required for pts w/ Ph+ ALL) w/ ≥5% BM involvement and/or FDG-avid extramedullary disease, ECOG performance status 0-2, and w/ appropriate organ function. Active or prior CNS disease is not exclusionary. Pts previously treated w/ CD19-targeted CAR T-cell therapy are eligible as long as CD19 expression is retained. See Fig 1B/C: Post-leukapheresis, 19-28z CAR T-cells are manufactured as previously described (Park et al., NEJM, 2018). Bridging therapy is permitted at investigator discretion. Thyroid blocking is started ≥48h pre-ARC. 131-I apamistamab 75 mCi is administered 5-7 days pre-CAR T-cell infusion to achieve total absorbed marrow dose ~200 cGy w/ remaining absorbed dose &lt;25 cGy at time of T-cell infusion. 19-28z CAR T-cells are administered as a single infusion (1x10 6/kg, B-ALL pts; 2x10 6/kg, DLBCL pts). The primary objective is to determine safety/tolerability of 131-I apamistamab 75 mCi given prior to 19-28z CAR T-cells in pts w/ R/R B-ALL/DLBCL. Secondary objectives include determining incidence/severity of ICANS and CRS, anti-tumor efficacy, and 19-28z CAR T-cell expansion/persistence. Key exploratory objectives include describing the cellular microenvironment following ARC and 19-28z CAR T-cell infusion using spectral cytometry, as well as cytokine levels in peripheral blood and CRS. The trial utilizes a 3+3 design in a single cohort. If dose-limiting toxicity (severe infusion-related reactions, treatment-resistant severe CRS/ICANS, persistent regimen-related cytopenias, among others defined in protocol) is seen in 0-1 of the first 3 pts treated, then up to 6 total (up to 3 additional) pts will be treated. We have designed this study to provide preliminary data to support further investigation of CD45-targeted ARCs prior to adoptive cellular therapy. Figure 1 Figure 1. Disclosures Geyer: Sanofi: Honoraria, Membership on an entity's Board of Directors or advisory committees; Actinium Pharmaceuticals, Inc: Research Funding; Amgen: Research Funding. Geoghegan: Actinium Pharmaceuticals, Inc: Current Employment. Reddy: Actinium Pharmaceuticals: Current Employment, Current holder of stock options in a privately-held company. Berger: Actinium Pharmaceuticals, Inc: Current Employment. Ludwig: Actinium Pharmaceuticals, Inc: Current Employment. Pandit-Taskar: Bristol Myers Squibb: Research Funding; Bayer: Research Funding; Clarity Pharma: Research Funding; Illumina: Consultancy, Honoraria; ImaginAb: Consultancy, Honoraria, Research Funding; Ymabs: Research Funding; Progenics: Consultancy, Honoraria; Medimmune/Astrazeneca: Consultancy, Honoraria; Actinium Pharmaceuticals, Inc: Consultancy, Honoraria; Janssen: Research Funding; Regeneron: Research Funding. Sauter: Genmab: Consultancy; Celgene: Consultancy, Research Funding; Precision Biosciences: Consultancy; Kite/Gilead: Consultancy; Bristol-Myers Squibb: Research Funding; GSK: Consultancy; Gamida Cell: Consultancy; Novartis: Consultancy; Spectrum Pharmaceuticals: Consultancy; Juno Therapeutics: Consultancy, Research Funding; Sanofi-Genzyme: Consultancy, Research Funding. OffLabel Disclosure: 131-I apamistamab and 19-28z CAR T-cells are investigational agents in treatment of ALL and DLBCL


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2776-2776
Author(s):  
Salvatore Fiorenza ◽  
George S. Laszlo ◽  
Tinh-Doan Phi ◽  
Margaret C. Lunn ◽  
Delaney R. Kirchmeier ◽  
...  

Abstract Background: There is increasing interest in targeting CD33 in malignant and non-malignant disorders, but available drugs are ineffective in many patients. As one limitation, therapeutic CD33 antibodies typically recognize the membrane-distal V-set domain. Likewise, currently tested CD33-directed chimeric antigen receptor (CAR) T cells likewise target the V-set domain and have thus far shown limited clinical activity. We have recently demonstrated that binding closer to the cell membrane enhances the effector functions of CD33 antibodies. We therefore raised antibodies against the membrane-proximal C2-set domain of CD33 and identified antibodies that bound CD33 regardless of the presence/absence of the V-set domain ("CD33 PAN antibodies"). Here, we tested their properties as targeting moiety in CD33 PAN CAR T cell constructs, using a clinically validated lentiviral backbone. Methods: To generate CAR T cells, negatively selected CD8 + T cells were transduced with an epHIV7 lentivirus encoding the scFv from a CD33 PAN antibody (clone 1H7 or 9G2) linked to either a short (IgG 4 hinge only), intermediate (hinge plus IgG 4 CH3 domain), or long (hinge plus IgG 4 CH3 domain plus IgG 4 CH2 domain) spacer, the CD28-transmembrane domain, CD3zeta and 4-1BB intracellular signaling domains, and non-functional truncated CD19 (tCD19) as transduction marker. Similar constructs using scFvs from 2 different V-set domain-targeting CD33 antibodies, including hP67.6 (My96; used in gemtuzumab ozogamicin), were generated for comparison. CAR-T cells were sorted, expanded in IL-7 and IL-15, and used in vitro or in vivo against human AML cell lines endogenously expressing CD33 and cell lines engineered to lack CD33 (via CRISPR/Cas9) with/or without forced expression of different CD33 variants. Results: CD33 V-set-directed CAR T cells exerted significantly more cytolytic activity against AML cells expressing an artificial CD33 variant lacking the C2-set domain (CD33 ΔE3-4) than cells expressing full-length CD33 at similar or higher levels, consistent with the notion that CD33 CAR T cell efficacy is enhanced when targeting an epitope that is located closer to the cell membrane. CD33 PAN CAR T cells were highly potent against human AML cells in a strictly CD33-dependent fashion, with constructs containing the short and intermediate-length spacer demonstrating robust cytokine secretion, cell proliferation, and in vitro cytolytic activity, as determined by 51Cr release cytotoxicity assays. When compared to optimized CD33 V-set CAR T cells, optimized CD33 PAN CAR T cells were significantly more potent in cytotoxicity, proliferation, and cytokine production without appreciably increased acquisition of exhaustion markers. In vivo, CD33 PAN CAR T cells extended survival in immunodeficient NOD.SCID. IL2rg -/- (NSG) mice bearing significant leukemic burdens from various cell line-derived xenografts (HL-60, KG1α and MOLM14) with efficient tumor clearance demonstrated in a dose-dependent fashion. Conclusion: Targeting the membrane proximal domain of CD33 enhances the anti-leukemic potency of CAR T cells. Our data provide the rationale for the further development of CD33 PAN CAR T cells toward clinical testing. Disclosures Fiorenza: Link Immunotherapeutics: Consultancy; Bristol Myers Squibb: Research Funding. Godwin: Pfizer: Research Funding; Bristol Myers Squibb: Current Employment, Current equity holder in publicly-traded company. Turtle: Allogene: Consultancy; Amgen: Consultancy; Arsenal Bio: Consultancy; Asher bio: Consultancy; Astrazeneca: Consultancy, Research Funding; Caribou Biosciences: Consultancy, Current holder of individual stocks in a privately-held company; Century Therapeutics: Consultancy, Other; Eureka therapeutics: Current holder of individual stocks in a privately-held company, Other; Juno therapeutics/BMS: Patents & Royalties, Research Funding; Myeloid Therapeutics: Current holder of individual stocks in a privately-held company, Other; Nektar therapeutics: Consultancy, Research Funding; PACT Pharma: Consultancy; Precision Biosciences: Current holder of individual stocks in a privately-held company, Other; T-CURX: Other; TCR2 Therapeutics: Research Funding. Walter: Kite: Consultancy; Janssen: Consultancy; Genentech: Consultancy; BMS: Consultancy; Astellas: Consultancy; Agios: Consultancy; Amphivena: Consultancy, Other: ownership interests; Selvita: Research Funding; Pfizer: Consultancy, Research Funding; Jazz: Research Funding; Macrogenics: Consultancy, Research Funding; Immunogen: Research Funding; Celgene: Consultancy, Research Funding; Aptevo: Consultancy, Research Funding; Amgen: Research Funding.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 4193-4193 ◽  
Author(s):  
Nirav N Shah ◽  
Fenlu Zhu ◽  
Carolyn Taylor ◽  
Dina Schneider ◽  
Winfried Krueger ◽  
...  

Abstract Background: CAR-T cell therapy directed against the CD19 antigen is a breakthrough treatment for patients (pts) with relapsed/refractory (R/R) B-cell NHL. Despite impressive outcomes, not all pts respond and many that respond still relapse. Affordability and accessibility are further considerations that limit current commercial models of CAR-T products. Commercial CAR-T manufacturing is complex, time consuming, and expensive with a supply chain starting at the treating center with apheresis of mononuclear cells, cryopreservation, and shipping to and from a centralized third-party manufacturing site. We addressed these limitations in a Phase 1 clinical trial evaluating a first-in-human bispecific tandem CAR-T cell directed against both CD19 and CD20 (CAR-20.19-T) antigens for pts with R/R B-cell NHL. Through dual targeting we hope to improve response rates and durability of response while limiting antigen escape. We eliminated third party shipping logistics utilizing the CliniMACS Prodigy, a compact tabletop device that allows for automated manufacturing of CAR-T cells within a GMP compliant environment within the hospital. Most materials and reagents used to produce the CAR-T cell product were single-sourced from the device manufacturer. Methods: Phase 1 (NCT03019055), single center, dose escalation + expansion study to demonstrate feasibility and safety of locally manufactured second generation 41BB + CD3z CAR-20.19-T cells via the CliniMACS Prodigy. Feasibility was measured by ability to generate a target CAR-20.19-T cell dose for a minimum of 75% of subjects. Safety was assessed by the presence of dose limiting toxicities (DLTs) through 28 days post-infusion. Dose was escalated in a 3+3 fashion with a starting dose of 2.5 x 10^5 cells/kg, a target DLT rate <33%, and a goal treatment dose of 2.5 x 10^6 cells/kg. Adults with R/R Diffuse Large B-cell Lymphoma (DLBCL), Follicular Lymphoma (FL), Mantle Cell Lymphoma (MCL) or Chronic Lymphocytic Leukemia (CLL) were eligible. CAR-T production was set for a 14-day manufacturing process. Day 8 in-process testing was performed to ensure quality and suitability of CAR-T cells for a potential fresh infusion. On Day 10, pts eligible for a fresh CAR-T infusion initiated lymphodepletion (LDP) chemotherapy with fludarabine 30 mg/m2 x 3 days and cyclophosphamide 500 mg/m2 x 1 day, and cells were administered after harvest on Day 14. Pts ineligible for fresh infusion received cryopreserved product and LDP was delayed accordingly. Results: 6 pts have been enrolled and treated with CAR-20.19-T cells: 3 pts at 2.5 x 10^5 cells/kg and 3 pts at 7.5 x 10^5 cells/kg. Median age was 53 years (48-62). Underlying disease was MCL in 3 pts, DLBCL in 2 pts, and CLL in 1 patient. Baseline data and prior treatments are listed in Table 1. CAR-T production was successful in all runs and all pts received their target dose. Three pts received fresh CAR-T cells and 3 pts received CAR-T cells after cryopreservation. To date there are no DLTs to report. No cases of Grade 3/4 cytokine release syndrome (CRS) or neurotoxicity (NTX) were observed. One patient had Grade 2 CRS and Grade 2 NTX requiring intervention. The other had self-limited Grade 1 CRS and Grade 1 NTX. Median time to development of CRS was Day +11 post-infusion. All pts had neutrophil recovery (ANC>0.5 K/µL) by Day 28. Response at Day 28 (Table 2) is as follows: 2/6 pts achieved a complete response (CR), 2/6 achieved a partial response (PR), and 2/6 had progressive disease (PD). One subject with a PR subsequently progressed at Day 90. The 3 pts who did progress all underwent a repeat biopsy, and all retained either CD19 or CD20 positivity. Pts are currently being enrolled at the target dose (2.5 x 10^6 cells/kg) and updated results will be provided at ASH. Conclusions: Dual targeted anti-CD19 and anti-CD20 CAR-T cells were successfully produced for all pts demonstrating the feasibility of a point-of-care manufacturing process via the CliniMACS Prodigy device. With no DLTs or Grade 3-4 CRS or NTX to report, and 2/6 heavily pre-treated pts remaining in CR at 3 and 9 months respectively our approach represents a feasible and promising alternative to existing CAR-T models and costs. Down-regulation of both target antigens was not identified in any patient following CAR-T infusion, and in-process studies suggest that a shorter manufacturing timeline is appropriate for future trials (10 days). Disclosures Shah: Juno Pharmaceuticals: Honoraria; Lentigen Technology: Research Funding; Oncosec: Equity Ownership; Miltenyi: Other: Travel funding, Research Funding; Geron: Equity Ownership; Exelexis: Equity Ownership. Zhu:Lentigen Technology Inc., A Miltenyi Biotec Company: Research Funding. Schneider:Lentigen Technology Inc., A Miltenyi Biotec Company: Employment. Krueger:Lentigen Technology Inc., A Miltenyi Biotec Company: Employment. Worden:Lentigen Technology Inc., A Miltenyi Biotec Company: Employment. Hamadani:Sanofi Genzyme: Research Funding, Speakers Bureau; Merck: Research Funding; Janssen: Consultancy; MedImmune: Consultancy, Research Funding; Cellerant: Consultancy; Celgene Corporation: Consultancy; Takeda: Research Funding; Ostuka: Research Funding; ADC Therapeutics: Research Funding. Johnson:Miltenyi: Research Funding. Dropulic:Lentigen, A Miltenyi Biotec company: Employment. Orentas:Lentigen Technology Inc., A Miltenyi Biotec Company: Other: Prior Employment. Hari:Takeda: Consultancy, Honoraria, Research Funding; Janssen: Honoraria; Kite Pharma: Consultancy, Honoraria; Celgene: Consultancy, Honoraria, Research Funding; Spectrum: Consultancy, Research Funding; Bristol-Myers Squibb: Consultancy, Research Funding; Amgen Inc.: Research Funding; Sanofi: Honoraria, Research Funding.


Sign in / Sign up

Export Citation Format

Share Document