scholarly journals Therapeutic Targeting of Mesothelin with Chimeric Antigen Receptor Natural Killer Cell Therapy in Acute Myeloid Leukemia

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1712-1712
Author(s):  
Thao T. Tang ◽  
Lindsey F Call ◽  
Sommer Castro ◽  
Cynthia Nourigat-Mckay ◽  
LaKeisha Perkins ◽  
...  

Abstract Effective immunotherapy for acute myeloid leukemia (AML) has been limited by the lack of AML-restricted targets (expression in AML but silent in normal hematopoiesis). Current immunotherapies targeting lineage markers CD33 and CD123 (if effective) would lead to prolonged myelosuppression or myeloablation, requiring stem cell transplantation to restore hematopoiesis after treatment. In search for AML-restricted targets, we interrogated the AML transcriptome of nearly 3000 cases in pediatric and young adults and contrasting it to normal bone marrow and peripheral blood CD34+ samples. This extensive discovery effort has identified over 200 AML-restricted targets with mesothelin (MSLN) emerged as one of the highest expressing AML-restricted targets and highly enriched in the KMT2A-rearranged AML subtype. We previously validated cell surface expression of MSLN on both AML blasts and leukemic stem cells (Le et. al. 2021). We further showed efficacy targeting MSLN in AML using antibody-drug conjugates (Kaeding et. al. 2021) and chimeric antigen receptor (CAR) T cells (Le et. al. 2021). Given that natural killer (NK) cells are potent immune effector cells and generally have a more favorable toxicity profile than CAR T cells (i.e without cytokine release syndrome), we developed CAR NK cells targeting MSLN and evaluated their efficacy in AML preclinical models. From primary patient samples, we verified MSLN cell surface expression and showed high correlation between cell surface expression (mean fluorescence intensity, MFI) and transcript expression (TPM, R = 0.72, p = 2.1x10 -8, Figure 1A) . Importantly, MSLN expression was restricted to AML blasts and entirely absent in normal lymphocytes and myeloid cells in individual patients (Figure 1B, C). Having confirmed cell surface and AML-restricted expression of MSLN, we developed CAR NK cells targeting MSLN. The VH and VL sequences from immunotoxin SS1P were used to create the single-chain variable fragment domain of the standard CAR (41-BB and CD3Zeta, Figure 1D). CAR NK cells were generated by transducing NK-92 cells with the MSLN CAR construct. Cytotoxicity of CAR NK cells was evaluated against Nomo-1 AML cell line, which expresses endogenous level of MSLN; MV4;11 and Kasumi-1 cell lines engineered to express MSLN with a lentivirus construct (MV4;11 MSLN+ and Kasumi-1 MSLN+). We initially tested the target specificity of MSLN-directed CAR NK cells against MSLN-positive (Nomo-1, MV4;11 MSLN+ and Kasumi-1 MSLN+) and MSLN-negative (Nomo-1 MSLN KO, MV4;11 and Kasumi-1) cells. CAR NK cells exhibited enhanced cytolytic activity against MSLN-positive but not MSLN-negative AML cells after 12 hours of co-incubation at the indicated effector: target (E:T) ratios (Figure 1E). We next assessed the in vivo efficacy of CAR NK cells. Nomo-1 cells transduced with GFP/Luciferase were transplanted into NSG mice at 1x10 6 cells/mouse. Unmodified or CAR NK cells were infused 1 week following leukemic cell injection at 1x10 7 cells/mouse. Monitoring leukemia burden by bioluminescence IVIS imaging showed that after 4 days post NK injection, the leukemia was significantly reduced in Nomo-1 xenograft mice treated with CAR NK cells compared to mice that received unmodified NK cells (Figure 1F), suggesting highly potent anti-leukemia activity of CAR NK cells. In this study, we demonstrate that the cell surface expression of MSLN is restricted to AML blasts but is entirely silent in normal hematopoietic subsets in individual patients. Previous and current clinical trials utilizing NK-92 cells have demonstrated safety and efficacy in variety of cancers, including AML. Here, we demonstrate that NK-92 cells genetically modified with a CAR to redirect their specificity against MSLN-positive AML cells exhibit potent, target-dependent anti-leukemia activity in vitro and in vivo. These results provide compelling data to evaluate MSLN-directed CAR NK cell therapy in clinical trials for refractory/relapsed AML, especially for high-risk KMT2A-rearranged leukemia where majority of patients express MSLN at diagnosis and relapse. Figure 1 Figure 1. Disclosures Pardo: Hematologics, Inc.: Current Employment.

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2555-2555 ◽  
Author(s):  
Roman Galetto ◽  
Céline Lebuhotel ◽  
Agnès Gouble ◽  
Nuria Mencia-Trinchant ◽  
Cruz M Nicole ◽  
...  

Abstract The remissions achieved using autologous T-cells expressing chimeric antigen receptors (CARs) in patients with advanced B cell leukemia and lymphomas have encouraged the use of CAR technology to treat different types of cancers by targeting distinct tumor-specific antigens. Since the current autologous approach utilizes CAR T-cells manufactured on a "per patient" basis, we propose an alternative approach based on the use of a standardized platform for manufacturing T-cells from third-party healthy donors to generate allogeneic "off-the-shelf" CAR T-cell-based frozen products. In the present work we have adapted this allogeneic platform to the production of T-cells targeting CD123, the transmembrane alpha chain of the interleukin-3 receptor, which is expressed on tumor cells from the majority of patients with Acute Myeloid Leukemia (AML). Multiple antigen recognition domains were screened in the context of different CAR architectures to identify candidates displaying activity against cells expressing variable levels of the CD123 antigen. The three lead candidates were tested in an orthotopic human AML cell line xenograft mouse model. From the three candidates that displayed comparable activity in vitro, we found two candidates capable of eradicating tumor cells in vivo with high efficiency. Subsequently, Transcription Activator-Like Effector Nuclease (TALEN) gene editing technology was used to inactivate the TCRα constant (TRAC) gene, eliminating the potential for engineered T-cells to mediate Graft versus Host Disease (GvHD). Editing of the TRAC gene can be achieved at high frequencies, and allows efficient amplification of TCR-deficient T-cells that no longer mediate alloreactivity in a xeno-GvHD mouse model. In addition, we show that TCR-deficient T-cells display equivalent in vitro and in vivo activity to non-edited T-cells expressing the same CAR. We have performed an initial evaluation of the expression of CD123 in AML patients and found an average cell surface expression of CD123 was of 67% in leukemic blasts (95% CI 48-82), 71% in CD34+CD38+ cells (95% CI 56-86), and 64% in CD34+CD38- (95% CI 41-87). Importantly, we have found that CD123 surface expression persists in CD34+CD38-CD90- cells after therapy in at least 20% of patients in remission (n=25), thus emphasizing the relevance of the target. Currently, the sensitivity of primary AML cells to CAR T-cells is being tested. Finally, we will also present our large scale manufacturing process of allogeneic CD123 specific T-cells from healthy donors, showing the feasibility for this off-the-shelf T-cell product that could be available for administration to a large number of AML patients. Disclosures Galetto: Cellectis SA: Employment. Lebuhotel:Cellectis SA: Employment. Gouble:Cellectis SA: Employment. Smith:Cellectis: Employment, Patents & Royalties.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2789-2789
Author(s):  
Lindsey F Call ◽  
Sommer Castro ◽  
Thao T. Tang ◽  
Cynthia Nourigat-Mckay ◽  
LaKeisha Perkins ◽  
...  

Abstract Adoptive transfer of T cells engineered to express chimeric antigen receptors (CARs) has achieved impressive outcomes in the treatment of refractory/relapsed B-ALL, providing potentially curative treatment options for these patients. The use of CAR T in AML, however, is still in its infancy with limitations due to the innate heterogeneity associated with AML and the lack of AML-specific targets for therapeutic development. The CRLF2 gene encodes for thymic stromal lymphopoietin receptor (TSLPR) and has previously been shown to be highly upregulated in a subset of children and adults with B-ALL. Targeting TSLPR with CAR T cells demonstrates potent anti-leukemia activity against TSLPR-positive B-ALL (PMID 26041741). Through Target Pediatric AML (TpAML), we profiled the transcriptome of nearly 3000 children and young adults with AML and identified CRLF2 (TSLPR) to be highly expressed in a subset of AML, including the majority of AML harboring KM2TA (aka MLL) fusions. TSLPR cell surface expression was validated in primary patient samples using flow cytometry, which showed uniform expression of TSLPR on AML blasts. Given that TSLPR is expressed in AML with confirmed cell surface expression, we developed TSLPR-directed CAR T for preclinical evaluation in AML. We generated a TSLPR-directed CAR using the single-chain variable fragment (scFv) derived from an anti-TSLPR binder (clone 3G1, MD Anderson), IgG4 spacer and 41-BB/CD3zeta signaling domains. The in vitro cytotoxicity of TSLPR CAR T cells was evaluated against the REH-1 cell line and primary AML specimens. TSLPR CAR T cells demonstrated anti-leukemia activity against REH-1 as well as against primary AML specimens. To evaluate the in vivo efficacy of TSLPR CAR T cells, we developed a patient-derived xenograft (PDX) model using bone marrow cells from a TSLPR-positive patient. These cells provided a robust model system to evaluate the in vivo activity of TSLPR CAR T cells, as they produced an aggressive leukemia in humanized NSG-SGM3 mice. The PDX generated from these cells died within 2 months of transplant with significant leukemia infiltration into the bone marrow, liver, and spleen. In the in vivo study, the leukemia burden was assessed by flow cytometric analysis of AML cells in the peripheral blood and bone marrow aspirates following treatment with unmodified control or TSLPR CAR T cells given at 10x10 6 T cells per mouse. After CAR T treatment, we detected a significant decrease in leukemia infiltration into the peripheral blood and bone marrow in the CAR T-treated mice compared to mice that received unmodified T cells. In this study, we report that similar to B-ALL, CRLF2 (TSLPR) is overexpressed in a subset of AML, providing a strategy to eliminate AML cells with CAR T cell therapy. We validated the cell surface expression of TSLPR and showed that the expression is uniform across AML specimens. We further demonstrate that CAR T cells targeting TSLPR were effective in eliminating AML cells in vitro and in vivo. Given that TSLPR is highly expressed in the KMT2A-rearranged AML, a subtype that is associated with poor outcomes, TSLPR-directed CAR T cells represent a promising immunotherapy for this high-risk AML subset. Disclosures Pardo: Hematologics, Inc.: Current Employment.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 11-11 ◽  
Author(s):  
Quy Le ◽  
Sommer Castro ◽  
Thao T. Tang ◽  
Anisha Loeb ◽  
Amanda R. Leonti ◽  
...  

Background: Acute myeloid leukemia (AML) is one of the most highly refractory hematologic malignancies despite intensive combination chemotherapy and bone marrow stem cell transplantation. Lack of curative treatments is in large part due to our poor understanding of the disease biology and paucity of therapeutic targets. In an effort to identify actionable targets, we recently completed the largest genome, epigenome and transcriptome profiling of AML in nearly 3000 children and young adults. This discovery effort has led to the identification of a library of novel AML-restricted targets (high expression in AML, minimal-to-no expression in normal hematopoiesis) for therapeutic development. One such target was MSLN which encodes for mesothelin, a cell surface adhesion molecule that is highly expressed in 30-50% of AML cases in pediatric (Children Oncology Group) and adult (MD Anderson) cohorts and is entirely absent in normal bone marrow and peripheral blood CD34+ cells. MSLN expression in normal tissues is confined to mesothelial cells lining the pleura, pericardium, and peritoneum. Previous studies targeting MSLN in solid tumors have demonstrated clinical efficacy with minimal toxicities. Given that T cells genetically modified to express chimeric antigen receptors (CARs) are extremely effective at eradicating relapsed and refractory malignancy, we developed MSLN-directed CAR T cells for pre-clinical evaluation in AML. Methods: From primary patient samples, we verified MSLN expression by RT-PCR and confirmed mesothelin surface protein expression on leukemic blasts by flow-cytometry as well as detected soluble mesothelin in the plasma by ELISA. The VH and VL sequences from Amatuximab were used to create the scFv domain of the standard CAR (41-BB and CD3Zeta). For in vivo CAR T study, Nomo-1 cells, which express endogenous level of MSLN, and Kasumi-1 cells engineered to express MSLN with a lentivirus construct (Kasumi-1 MSLN+) were transplanted into NSG mice. Mock transduced MSLN-directed CAR T cells were infused 1 week (Nomo-1) and 2 weeks (Kasumi-1 MSLN+) following leukemic cell injection. Leukemic burden was measured by bioluminescence IVIS imaging weekly. For in vitro study, Nomo-1 cells were treated with GM6001 (50uM), a metalloprotease inhibitor, or DMSO control for 48 hr prior to evaluation of surface mesothelin by flow cytometry and soluble mesothelin in the culture supernatant by ELISA. Results: In vivo cytotoxicity of CAR T cells against Nomo-1 and Kasumi-1MSLN+ AML models demonstrated potent, target-dependent tumor killing. After 1- and 2-weeks post CAR T infusion, leukemic cells were eradicated in both Nomo-1 (p<0.0005, week 2, Figure 1A) and Kasumi-1 MSLN+ xenografts (p<0.005 at week 2, Figure 1B). Mesothelin undergoes shedding at the cell membrane as a result of ADAM17-mediated cleavage. Blocking ADAM17 activity with GM6001 in Nomo-1 cells led to increased cell surface mesothelin (Figure 1C) with a corresponding reduction in the shed form (Figure 1D), suggesting that GM6001 treatment stabilizes mesothelin on the cell surface. Furthermore, GM6001 treatment during co-culture of Nomo-1 and CAR T cells enhanced cytolytic activity of CAR T cells (Figure 1E). GM6001 treatment did not significantly impact cell viability of Nomo-1 cells in the absence of CAR T cells (data not shown). Conclusion: In this study, we demonstrate that mesothelin is a viable therapeutic target and a potential diagnostic biomarker in AML. We show that MSLN CAR T cells were highly effective in eliminating MSLN-positive AML cells in vitro and in vivo. Shedding contributes to the loss of mesothelin antigen and provides a source of soluble mesothelin that may interfere with antibody-based therapies, including CAR T cells. Modulating MSLN shedding by inhibiting ADAM17-mediated cleavage resulted in stabilized mesothelin and improved CAR T cell functionality. This work warrants further evaluation of MSLN CAR T cells to be tested in clinical trials for AML and demonstrates that inhibiting MSLN shedding is a promising approach to improve CAR T efficacy. Disclosures No relevant conflicts of interest to declare.


2019 ◽  
Vol 10 (18) ◽  
pp. 4408-4419 ◽  
Author(s):  
Huda Salman ◽  
Kevin G. Pinz ◽  
Masayuki Wada ◽  
Xiao Shuai ◽  
Lulu E. Yan ◽  
...  

2014 ◽  
Vol 4 (6) ◽  
pp. e218-e218 ◽  
Author(s):  
A Ehninger ◽  
◽  
M Kramer ◽  
C Röllig ◽  
C Thiede ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Roberto Limongello ◽  
Andrea Marra ◽  
Antonella Mancusi ◽  
Samanta Bonato ◽  
Eni Hoxha ◽  
...  

Adverse genetic risk acute myeloid leukemia (AML) includes a wide range of clinical-pathological entities with extremely poor outcomes; thus, novel therapeutic approaches are needed. Promising results achieved by engineered chimeric antigen receptor (CAR) T cells in other blood neoplasms have paved the way for the development of immune cell-based therapies for adverse genetic risk AML. Among these, adoptive cell immunotherapies with single/multiple CAR-T cells, CAR-natural killer (NK) cells, cytokine-induced killer cells (CIK), and NK cells are subjects of ongoing clinical trials. On the other hand, allogeneic hematopoietic stem cell transplantation (allo-HSCT) still represents the only curative option for adverse genetic risk AML patients. Unfortunately, high relapse rates (above 50%) and associated dismal outcomes (reported survival ~10–20%) even question the role of current allo-HSCT protocols and emphasize the urgency of adopting novel effective transplant strategies. We have recently demonstrated that haploidentical allo-HSCT combined with regulatory and conventional T cells adoptive immunotherapy (Treg-Tcon haplo-HSCT) is able to overcome disease-intrinsic chemoresistance, prevent leukemia-relapse, and improve survival of adverse genetic risk AML patients. In this Perspective, we briefly review the recent advancements with immune cell-based strategies against adverse genetic risk AML and discuss how such approaches could favorably impact on patients’ outcomes.


2020 ◽  
Vol 9 (2) ◽  
pp. 8-12
Author(s):  
Robert P. Gale

There is considerable progress in immune therapy of diverse cancers. In haematology these advances are mostly limited to lymphoid cancers. Effective therapies include monoclonal antibodies and chimeric antigen receptor (CAR)-T-cells to lymphoid lineage-antigens such as CD19, CD20 and B-cell maturation antigen (BCMA). Gemtuzumab ozogamicin (Myelotarg®) is the only FDA-approved immune-based therapy for acute myeloid leukemia (AML). Several clinical trials of antibodies to CD38 and CD123 are reported with unimpressive efficacy and safety concerns. Reasons are higher daily production rates of myeloid cells and unacceptable collateral damage to normal haematopoietic cells because of imperfect specificity for AML cells. Potential targets of anti-AML immune therapy are (1) HLA antigens; (2) minor histocompatibility antigens; (3) leukemia-associated antigens; and (4) leukemia-specific antigens. Data supporting an effective allogeneic anti-AML effect come from studies in recipients of haematopoietic cell transplants with graft-versus-host disease (GvHD) and recipients of donor lymphocyte infusions (DLI). A special problem is a relative paucity of neo-antigens in AML compared with solid cancers because of a low cumulative mutation frequency. Cell immune therapy trials are in progress including CAR-T-cells, CAR-NK-cells and allogeneic NK-cells. Approaches using synthetic biology are being developed. Presently, except for gemtuzumab ozogamicin there are no convincing data of efficacy of immune therapy in AML.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 4-5
Author(s):  
Elina Shrestha ◽  
Raymond Liang ◽  
Carina Sirochinsky ◽  
Ronen Ben Jehuda ◽  
Vladislav Sandler

FMS-like tyrosine kinase 3 (FLT3) is a class III transmembrane receptor tyrosine kinase involved in survival, proliferation, and differentiation of hematopoietic stem/progenitor cells. It is preferentially expressed on the leukemic cells of myeloid lineage including acute myeloid leukemia (AML) and is mutated in approximately one-third of patients with AML, resulting in constitutive signaling associated with poor disease prognosis. Although small molecule inhibitors targeting FLT3 have shown some success in clinical trials, they only work transiently while resistance develops in virtually all patients. The only proven curative treatment for the relapsed or refractory (R/R) AML is allogenic hematopoietic stem cell transplantation (HSCT) which requires highly toxic conditioning regimens often associated with fatal side effects. Thus, there still remains an urgent need for the development of safe yet effective new therapies for the treatment of AML. We developed a novel chimeric antigen receptor modified T (CAR-T) cell therapy targeting FLT3 to eliminate FLT3+ R/R AML leukemia via cytotoxic T lymphocytes (CTL)-mediated cytolysis. Since FLT3 is also expressed on hematopoietic stem cells (HSCs) as well as on early hematopoietic progenitors (HPs), we evaluated the conditioning efficacy of our anti-FLT3 CAR-T in addition to its anti-leukemic activity. We first discovered a novel mouse monoclonal antibody that binds to the extracellular domain of human FLT3 with high affinity (0.8 nM EC50 in FLT3+ leukemic cell line REH) while not competing with FLT3 ligand in order to achieve unobstructed and efficient binding to FLT3. We next generated humanized single-chain variable fragment (scFv) antibodies and characterized their binding affinities. The scFv clone that exhibited highest binding to FLT3 (3.42 nM EC50 in REH cells) was used to design a third generation CAR construct with CD28 and 4-1BB costimulatory and CD3ζ activation domains. T cells isolated from peripheral blood (PB) were transduced with a lentiviral vector encoding the FLT3-CAR. Transduced cells exhibited stable expression of CAR protein and expanded over 120-fold after 18 days in culture. We demonstrated high cytotoxicity of FLT3-CAR-T cells towards AML-derived cell lines in co-culture experiments, even at effector-to-target cells ratios as low as 1:10. In vivo functionality of FLT3-CART was determined by flow cytometry analysis of leukemia burden in the peripheral blood of mice engrafted with GFP+ MOLM-13 (FLT3+ AML cell line) and treated with two doses of 4x106 control or FLT3-CAR-T cells. Compared to control, the appearance of MOLM-13 cells in peripheral blood was significantly delayed in FLT3-CAR-T treated mice. AML progression in mice was also assessed by detection of physical symptoms such as cachexia and hind-leg paralysis in terminal stages. FLT3-CAR-T treatment extended the median survival to 47 days compared to 24 days in control. Moreover, to test if our CAR-T therapy can also efficiently eliminate FLT3+ HSCs and HPs, humanized mice generated by engrafting human cord blood CD34+ cells were injected with autologous control or FLT3-CAR-T cells. Analysis of bone marrow 18 days post treatment, showed that mice that received FLT3-CAR-T cells exhibited dramatically lower frequencies (by 57% in CD38+ and 86% in CD38-) of human CD34+ hematopoietic stem and progenitor cells than control mice, suggesting the potential of CAR-T therapy for HSCT conditioning. In conclusion, our CAR-T therapy shows robust cytolytic activity against FLT3+ cells, demonstrates high efficacy in eradicating FLT3+ R/R AML leukemia in vivo and enables bone marrow conditioning for potentially curative HSCTs by specifically targeting FLT3+ HSCs and early HPs. To prevent the potentially harmful side effects associated with CAR-T therapies, such as cytokine release syndrome and cytotoxicity towards newly transplanted HSCs post conditioning, we are currently testing FLT3-CAR-T cells equipped with inducible caspase9 or EGFRT expression based safety switch to specifically eliminate CAR-Ts by administering FDA-approved small molecules or biologics. Disclosures Shrestha: Hemogenyx Pharmaceuticals LLC: Current Employment. Liang:Hemogenyx Pharmaceuticals LLC: Current Employment. Sirochinsky:Hemogenyx Pharmaceuticals LLC: Current Employment. Ben Jehuda:Hemogenyx Pharmaceuticals LLC: Current Employment. Sandler:Hemogenyx Pharmaceuticals LLC: Current Employment, Current equity holder in publicly-traded company.


Sign in / Sign up

Export Citation Format

Share Document