Anti-CD19 CAR T cells that secrete a biparatopic anti-CLEC12A bridging protein have potent activity against aggressive acute myeloid leukemia in vitro and in vivo

2021 ◽  
pp. molcanther.1030.2020
Author(s):  
Paul D. Rennert ◽  
Fay J. Dufort ◽  
Lihe Su ◽  
Tom Sanford ◽  
Alyssa Birt ◽  
...  
Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2555-2555 ◽  
Author(s):  
Roman Galetto ◽  
Céline Lebuhotel ◽  
Agnès Gouble ◽  
Nuria Mencia-Trinchant ◽  
Cruz M Nicole ◽  
...  

Abstract The remissions achieved using autologous T-cells expressing chimeric antigen receptors (CARs) in patients with advanced B cell leukemia and lymphomas have encouraged the use of CAR technology to treat different types of cancers by targeting distinct tumor-specific antigens. Since the current autologous approach utilizes CAR T-cells manufactured on a "per patient" basis, we propose an alternative approach based on the use of a standardized platform for manufacturing T-cells from third-party healthy donors to generate allogeneic "off-the-shelf" CAR T-cell-based frozen products. In the present work we have adapted this allogeneic platform to the production of T-cells targeting CD123, the transmembrane alpha chain of the interleukin-3 receptor, which is expressed on tumor cells from the majority of patients with Acute Myeloid Leukemia (AML). Multiple antigen recognition domains were screened in the context of different CAR architectures to identify candidates displaying activity against cells expressing variable levels of the CD123 antigen. The three lead candidates were tested in an orthotopic human AML cell line xenograft mouse model. From the three candidates that displayed comparable activity in vitro, we found two candidates capable of eradicating tumor cells in vivo with high efficiency. Subsequently, Transcription Activator-Like Effector Nuclease (TALEN) gene editing technology was used to inactivate the TCRα constant (TRAC) gene, eliminating the potential for engineered T-cells to mediate Graft versus Host Disease (GvHD). Editing of the TRAC gene can be achieved at high frequencies, and allows efficient amplification of TCR-deficient T-cells that no longer mediate alloreactivity in a xeno-GvHD mouse model. In addition, we show that TCR-deficient T-cells display equivalent in vitro and in vivo activity to non-edited T-cells expressing the same CAR. We have performed an initial evaluation of the expression of CD123 in AML patients and found an average cell surface expression of CD123 was of 67% in leukemic blasts (95% CI 48-82), 71% in CD34+CD38+ cells (95% CI 56-86), and 64% in CD34+CD38- (95% CI 41-87). Importantly, we have found that CD123 surface expression persists in CD34+CD38-CD90- cells after therapy in at least 20% of patients in remission (n=25), thus emphasizing the relevance of the target. Currently, the sensitivity of primary AML cells to CAR T-cells is being tested. Finally, we will also present our large scale manufacturing process of allogeneic CD123 specific T-cells from healthy donors, showing the feasibility for this off-the-shelf T-cell product that could be available for administration to a large number of AML patients. Disclosures Galetto: Cellectis SA: Employment. Lebuhotel:Cellectis SA: Employment. Gouble:Cellectis SA: Employment. Smith:Cellectis: Employment, Patents & Royalties.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2205-2205 ◽  
Author(s):  
Elisa De Togni ◽  
Miriam Y Kim ◽  
Matt L Cooper ◽  
Julie Ritchey ◽  
Julie O'Neal ◽  
...  

Abstract Chimeric antigen receptor (CAR) T cells are a novel therapeutic approach which have shown good clinical outcomes in patients receiving CD19 CAR T cells for B cell acute lymphoblastic leukemia. CAR T cells are made to express a CAR that recognizes a specific surface antigen on a cell upon which they can then exert cytotoxic effects. We aim to extend the success of this therapy to acute myeloid leukemia (AML), a disease with generally poor clinical outcomes. However, due to the genetic heterogeneity characteristic of AML and the limited number of distinctive tumor markers, it has been difficult to find effective targets for CAR T cells on AML. C-type lectin like molecule-1 (CLL-1), also known as CD371, is a transmembrane glycoprotein that is expressed on about 90% of AML patient samples. CLL-1 may function as an inhibitory signaling receptor, as it contains an intracellular immunoreceptor tyrosine based inhibitory motif (ITIM). CLL-1 is primarily expressed on myeloid lineage cells in the bone marrow and in peripheral blood. While CLL-1 has been shown to be expressed on some granulocytes in the spleen, it is not reported to be expressed in non-hematopoietic tissues or on hematopoietic stem cells, which make CLL-1 a potential therapeutic target for AML. We generated two types of CLL-1 CARs, termed A and B, by using two different single chain variable fragments (scFvs) recognizing CLL-1. We used second generation CARs containing the scFvs, CD8 hinge and transmembrane domain, 4-1BB co-stimulatory domain, and CD3 zeta signaling domains. Using a lentiviral vector, we transferred the CAR gene into healthy donor human T cells and detected CAR expression by flow cytometry. We then tested the specific cytotoxic effects of CLL-1 CART-A and B on a CLL-1-expressing AML cell line, U937, by conducting a 4-hour chromium release assay. We found that both CAR T cells exhibited a dose-dependent killing of U937 (CLL-1 positive), while the untransduced (UTD) T cells had no cytotoxic effect (Figure 1A). We also found that U937 induces degranulation of CLL-1 CAR T cells as measured by CD107a expression by flow cytometry, while Ramos, a CLL-1 negative cell line, does not (Figure 1B). We then proceeded to investigate the in vivo efficacy of the CAR T cells. We injected NOD/SCID/IL2RG-null (NSG) mice with 1 x 106 THP-1 cells, a CLL-1 positive cell line. We confirmed engraftment by bioluminescent imaging (BLI) after 7 days and then injected 4 x 106 UTD, CLL-1 CART-A or CLL-1 CART-B. Surprisingly, only one of the CAR constructs, CLL-1 CART-A, showed significant activity in vivo, although both CARs had shown comparable activity in vitro. CLL-1 CART-A treated mice had delayed tumor progression and significantly increased length of survival (85 days vs. 63 days, p = 0.0021) compared to mice injected with UTD (Figure 1C and D). While CLL-1 CART-B treated mice also exhibited slower tumor growth and a trend towards better survival (72 days vs. 63 days, p=0.0547) this was not statistically significant. Post-mortem analysis showed that human T cells that continued to express CAR were present in the tumor, bone marrow and spleen of mice treated with CLL-1 CART-A only, while the UTD and CLL-1 CART-B treated mice showed tumor in all organs and no T cells. In summary, we show that CLL-1 CAR T cells can selectively eliminate CLL-1 positive target cells in vitro and in vivo, albeit with different degrees of efficacy modulated by the scFv. Studies are ongoing to investigate the mechanism behind the differential activity of these CAR constructs and to increase the long-term antitumor efficacy. Our results demonstrate that targeting CLL-1 using CAR T cell therapy holds promise for the treatment of AML. Disclosures Cooper: WUGEN: Consultancy, Equity Ownership.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1383-1383 ◽  
Author(s):  
Tongyuan Xue ◽  
Marissa Del Real ◽  
Emanuela Marcucci ◽  
Candida Toribio ◽  
Sonia Maryam Setayesh ◽  
...  

Acute myeloid leukemia (AML) is the most common acute leukemia in adults. The cure rate for primary AML patients is only 35% and decreases with age. Novel and effective immunotherapies for patients with relapsed and/or refractory (r/r) AML remain an urgent unmet need. CD33 is an attractive immunotherapeutic target for myeloid malignancies given its expression on more than 85% of AML patient samples. We therefore set out to design and test CD33 chimeric antigen receptor (CD33CAR) T cells preclinically as a single agent and in combinational therapy. To assess antileukemic responses of CD33CAR T cells in vitro and in vivo, we enriched CD4/CD8 T cells from peripheral blood mononuclear cells (PBMCs) and genetically modified them to express a second-generation CD33CAR. CD33CAR T cells exhibited potent antigen dependent CD107a degranulation, IFN-γ production and killing activities against AML cells in vitro. Using a NOD-SCID-IL2Rgnull (NSG) xenograft model engrafted with MOLM-14-ffluc, a CD33 expressing AML cell line transduced with lentivirus carrying firefly luciferase (ffluc) and enhanced green fluorescent protein (eGFP), 3 million CD33CAR or mock T cells were introduced intravenously. CD33 CAR T cell-treated group displayed 98.2% leukemic regression 4 days post CAR T infusion, and 99.6% reduction on day 31. Bioluminescent imaging (BLI) and Kaplan-Meier analysis demonstrated that CD33CAR T cells significantly decreased leukemic burden and prolonged overall survival compared to mock T cells in vivo. Decitabine, a DNA hypomethylating agent (HMA), is a main therapeutic agent for treating AML. We observed HMA treatment led to increased CD33 expression on MOLM-14 cells in vitro. We hypothesized that decitabine can potentiate CD33CAR T cell-mediated AML killing by increasing CD33 expression. MOLM-14 cells were treated with either decitabine alone, CD33CAR T cells alone, or sequential treatment using various concentrations of decitabine or DMSO followed by CD33CAR or mock T cells in an E:T ratio of 1:100. We determined the target specific killing activities in each group using flow cytometric based analysis 48 and 96 hours later. The decitabine followed by CD33CAR T cells treatment reproducibly resulted in the most robust antileukemic activity with 80.6% MOLM-14 cells killed. In comparison, CD33CAR T cells or decitabine monotherapy resulted in 11.5% and 50.9% killing, respectively. In vivo testing of the combinational effects of decitabine and CD33CAR T cells are underway and will be updated at the meeting. Finally, checkpoint blockade targeting programmed death-1 (PD-1)/programmed death-ligand 1 (PD-L1) has shown survival benefits, particularly in combination with HMA, for patients with r/r AML (Daver et al. 2019). We observed elevated PD-L1 expression on residual AML blasts that survived the treatment with decitabine in combination with CD33CAR T cells. Therefore, we hypothesized that blockade of PD-1/PD-L1 interaction might further improve the antileukemic effect of CD33CAR T cells against AML cells post antigen induction by decitabine. MOLM-14 cells were treated with decitabine for 2 days and CD33CAR T cells were added in an E:T ratio of 1:75. Anti-PD-1 or IgG4 antibody was added to the culture at various concentrations. The most robust CD33 specific killing was seen in the culture with anti-PD-1 antibody added. Further characterization are underway and will be presented. Taken together, our preclinical findings have demonstrated the potency of the CD33CAR T cell therapy and ways to optimize its efficacy. Our results support clinical translation of CD33CAR T cells for patients with AML. Disclosures Budde: F. Hoffmann-La Roche Ltd: Consultancy.


Blood ◽  
2015 ◽  
Vol 125 (22) ◽  
pp. 3466-3476 ◽  
Author(s):  
Rachel C. Lynn ◽  
Mathilde Poussin ◽  
Anna Kalota ◽  
Yang Feng ◽  
Philip S. Low ◽  
...  

Key PointsHuman FRβ-specific CAR T cells target AML in vitro and in vivo without toxicity against healthy bone marrow HSCs. Combination with ATRA-mediated receptor upregulation may augment FRβ-directed CAR therapy of AML.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 11-11 ◽  
Author(s):  
Quy Le ◽  
Sommer Castro ◽  
Thao T. Tang ◽  
Anisha Loeb ◽  
Amanda R. Leonti ◽  
...  

Background: Acute myeloid leukemia (AML) is one of the most highly refractory hematologic malignancies despite intensive combination chemotherapy and bone marrow stem cell transplantation. Lack of curative treatments is in large part due to our poor understanding of the disease biology and paucity of therapeutic targets. In an effort to identify actionable targets, we recently completed the largest genome, epigenome and transcriptome profiling of AML in nearly 3000 children and young adults. This discovery effort has led to the identification of a library of novel AML-restricted targets (high expression in AML, minimal-to-no expression in normal hematopoiesis) for therapeutic development. One such target was MSLN which encodes for mesothelin, a cell surface adhesion molecule that is highly expressed in 30-50% of AML cases in pediatric (Children Oncology Group) and adult (MD Anderson) cohorts and is entirely absent in normal bone marrow and peripheral blood CD34+ cells. MSLN expression in normal tissues is confined to mesothelial cells lining the pleura, pericardium, and peritoneum. Previous studies targeting MSLN in solid tumors have demonstrated clinical efficacy with minimal toxicities. Given that T cells genetically modified to express chimeric antigen receptors (CARs) are extremely effective at eradicating relapsed and refractory malignancy, we developed MSLN-directed CAR T cells for pre-clinical evaluation in AML. Methods: From primary patient samples, we verified MSLN expression by RT-PCR and confirmed mesothelin surface protein expression on leukemic blasts by flow-cytometry as well as detected soluble mesothelin in the plasma by ELISA. The VH and VL sequences from Amatuximab were used to create the scFv domain of the standard CAR (41-BB and CD3Zeta). For in vivo CAR T study, Nomo-1 cells, which express endogenous level of MSLN, and Kasumi-1 cells engineered to express MSLN with a lentivirus construct (Kasumi-1 MSLN+) were transplanted into NSG mice. Mock transduced MSLN-directed CAR T cells were infused 1 week (Nomo-1) and 2 weeks (Kasumi-1 MSLN+) following leukemic cell injection. Leukemic burden was measured by bioluminescence IVIS imaging weekly. For in vitro study, Nomo-1 cells were treated with GM6001 (50uM), a metalloprotease inhibitor, or DMSO control for 48 hr prior to evaluation of surface mesothelin by flow cytometry and soluble mesothelin in the culture supernatant by ELISA. Results: In vivo cytotoxicity of CAR T cells against Nomo-1 and Kasumi-1MSLN+ AML models demonstrated potent, target-dependent tumor killing. After 1- and 2-weeks post CAR T infusion, leukemic cells were eradicated in both Nomo-1 (p<0.0005, week 2, Figure 1A) and Kasumi-1 MSLN+ xenografts (p<0.005 at week 2, Figure 1B). Mesothelin undergoes shedding at the cell membrane as a result of ADAM17-mediated cleavage. Blocking ADAM17 activity with GM6001 in Nomo-1 cells led to increased cell surface mesothelin (Figure 1C) with a corresponding reduction in the shed form (Figure 1D), suggesting that GM6001 treatment stabilizes mesothelin on the cell surface. Furthermore, GM6001 treatment during co-culture of Nomo-1 and CAR T cells enhanced cytolytic activity of CAR T cells (Figure 1E). GM6001 treatment did not significantly impact cell viability of Nomo-1 cells in the absence of CAR T cells (data not shown). Conclusion: In this study, we demonstrate that mesothelin is a viable therapeutic target and a potential diagnostic biomarker in AML. We show that MSLN CAR T cells were highly effective in eliminating MSLN-positive AML cells in vitro and in vivo. Shedding contributes to the loss of mesothelin antigen and provides a source of soluble mesothelin that may interfere with antibody-based therapies, including CAR T cells. Modulating MSLN shedding by inhibiting ADAM17-mediated cleavage resulted in stabilized mesothelin and improved CAR T cell functionality. This work warrants further evaluation of MSLN CAR T cells to be tested in clinical trials for AML and demonstrates that inhibiting MSLN shedding is a promising approach to improve CAR T efficacy. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 22-23
Author(s):  
Joseph Rimando ◽  
Michael P. Rettig ◽  
Matt Christopher ◽  
Julie K Ritchey ◽  
Miriam Y Kim ◽  
...  

Background: Allogeneic hematopoietic cell transplantation (allo-HCT) is the only curative therapy for patients with high-risk and refractory acute myeloid leukemia (AML). Unfortunately, up to 50 percent of patients relapse after allo-HCT.Recent research has shown that 30-50 percent of AML samples from patients relapsing after allo-HCT have downregulation of MHC class II (MHC-II) expression, which may promote immune effector evasion and disease relapse. These studies also report that interferon gamma (IFNγ) can restore MHC-II expression. IFNγ has never been systemically administered after allo-HCT and would likely cause significant and potentially life-threatening toxicities. Reinduction of MHC-II expression may lead to re-engagement of immune effectors, restoration of the graft-versus-malignancy effect, and disease control. We hypothesized that T cell immunotherapies targeting AML cells will lead to T cell activation, localized IFNγ release, and upregulation of MHC-II on AML cells. Methods: For in vitro experiments, THP1 cells (THP1s), which have intermediate MHC-II expression, or primary human AML samples with low MHC-II expression from a patient relapsing after allo-HCT (AML-low cells) were co-cultured with or without T-cell immunotherapy and with or without human MHC-mismatched CD3+ T cells. The following T-cell immunotherapies were tested: flotetuzumab (FLZ), an investigational CD123 x CD3 bispecific DART® molecule; a CD33 x CD3 bispecific molecule (Creative Biolabs, Shirley, NY); and CD123-directed chimeric antigen receptor (CAR) T cells. THP1 IFNγ receptor-1 (IFNγR1) knockout cell lines were generated using CRISPR-Cas9. MHC-II expression was measured by flow cytometry and IFNγ concentrations via Luminex immunoflourescence assay. In order to rescue THP1s from FLZ-induced death and allow for longitudinal evaluation, a transwell plate system was used, placing THP1s, human CD3+ T cells, and FLZ in the top well and THP1s in the bottom well. This allowed for diffusion of IFNγ but not human T cells to the bottom wells, permitting MHC-II upregulation while limiting death. The upper and lower wells were coincubated together for 24 hours prior to harvesting of the THP1s in the lower well for longitudinal studies and mixed-lymphocyte reactions. For in vivo experiments, NOD-scid IL2Rgammanull mice expressing human IL-3, GM-CSF, and SCF (NSG-S) were irradiated with 250 rads and injected with 10e6 primary AML-low cells per mouse. After 5.5 weeks, mice were divided into the following groups: 1) untreated control; 2) FLZ only (2mg/kg); 3) human mismatched T cells only (10e7 T cells per mouse); 4) FLZ and T cells. Results: In vitro co-culture of THP1 or AML-low cells with FLZ and T cells led to significantly increased MHC-II expression at 48 hours when compared with the control, FLZ only, and T cell only groups (Figure 1A-B). Co-culture of THP1s with the CD123 CAR-T cells led to similar results. Although co-incubation with a CD33 x CD3 bispecific led to a similar result, the MHC-II upregulation was not nearly as dramatic as that seen with CD123 targeting agents. Using a transwell system to rescue THP1s from FLZ-mediated toxicity, FLZ-induced MHC-II upregulation on THP1s peaked at 48-72 hours (similar kinetics to what is seen with IFNγ alone). These THP1s with upregulated MHC-II activated third-party donor mismatched human CD4+ T cells to a greater extent than untreated THP1s controls. Co-cultures of THP1s with CD4+ T cells and FLZ induced the secretion of very high concentrations of IFNγ, and blockade of IFNγ signaling through knockout of IFNγR1 led to abrogation of the effect (Figure 1C-D). Finally, in an in vivo model, NSG-S mice injected with AML-low samples and treated with FLZ and T cells showed significant upregulation of MHC-II expression on the AML cells. Single cell RNA-sequencing of AML cells purified from these mice is ongoing. Conclusions: Use of FLZ and other T-cell immunotherapies targeting AML antigens led to both direct AML killing as well as significant upregulation of MHC-II expression on AML cells both in vitro and in vivo. The effect appears to be mediated primarily by IFNγ. T-cell immunotherapies represent a promising treatment approach for AML patients relapsing after allo-HCT and may lead to enhanced immune recognition in the 30-50% of patients who relapse after allo-HCT. Based on these results, a clinical trial treating patients relapsing after allo-HCT with FLZ is planned. Disclosures Christopher: Boulder Bioscience: Patents & Royalties: IP around the use of interferon gamma to treat stem cell transplant. Kim:Tmunity: Patents & Royalties: methods for gene editing in hematopoietic stem cells to enhance the therapeutic efficacy of antigen-specific immunotherapy (Licensed by University of Pennsylvania); Neoimmune Tech: Patents & Royalties: use of long-acting IL-7 analogs to enhance CAR T cells (licensed by Washington University). Muth:MacroGenics, Inc.: Current Employment, Current equity holder in publicly-traded company. Davidson:MacroGenics: Current Employment. DiPersio:Magenta Therapeutics: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2020 ◽  
Vol 135 (10) ◽  
pp. 713-723 ◽  
Author(s):  
Xin He ◽  
Zijie Feng ◽  
Jian Ma ◽  
Sunbin Ling ◽  
Yan Cao ◽  
...  

Abstract Chimeric antigen receptor (CAR) T cells have radically improved the treatment of B cell–derived malignancies by targeting CD19. The success has not yet expanded to treat acute myeloid leukemia (AML). We developed a Sequentially Tumor-Selected Antibody and Antigen Retrieval (STAR) system to rapidly isolate multiple nanobodies (Nbs) that preferentially bind AML cells and empower CAR T cells with anti-AML efficacy. STAR-isolated Nb157 specifically bound CD13, which is highly expressed in AML cells, and CD13 CAR T cells potently eliminated AML in vitro and in vivo. CAR T cells bispecific for CD13 and TIM3, which are upregulated in AML leukemia stem cells, eradicated patient-derived AML, with much reduced toxicity to human bone marrow stem cells and peripheral myeloid cells in mouse models, highlighting a promising approach for developing effective AML CAR T cell therapy.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 4-5
Author(s):  
Elina Shrestha ◽  
Raymond Liang ◽  
Carina Sirochinsky ◽  
Ronen Ben Jehuda ◽  
Vladislav Sandler

FMS-like tyrosine kinase 3 (FLT3) is a class III transmembrane receptor tyrosine kinase involved in survival, proliferation, and differentiation of hematopoietic stem/progenitor cells. It is preferentially expressed on the leukemic cells of myeloid lineage including acute myeloid leukemia (AML) and is mutated in approximately one-third of patients with AML, resulting in constitutive signaling associated with poor disease prognosis. Although small molecule inhibitors targeting FLT3 have shown some success in clinical trials, they only work transiently while resistance develops in virtually all patients. The only proven curative treatment for the relapsed or refractory (R/R) AML is allogenic hematopoietic stem cell transplantation (HSCT) which requires highly toxic conditioning regimens often associated with fatal side effects. Thus, there still remains an urgent need for the development of safe yet effective new therapies for the treatment of AML. We developed a novel chimeric antigen receptor modified T (CAR-T) cell therapy targeting FLT3 to eliminate FLT3+ R/R AML leukemia via cytotoxic T lymphocytes (CTL)-mediated cytolysis. Since FLT3 is also expressed on hematopoietic stem cells (HSCs) as well as on early hematopoietic progenitors (HPs), we evaluated the conditioning efficacy of our anti-FLT3 CAR-T in addition to its anti-leukemic activity. We first discovered a novel mouse monoclonal antibody that binds to the extracellular domain of human FLT3 with high affinity (0.8 nM EC50 in FLT3+ leukemic cell line REH) while not competing with FLT3 ligand in order to achieve unobstructed and efficient binding to FLT3. We next generated humanized single-chain variable fragment (scFv) antibodies and characterized their binding affinities. The scFv clone that exhibited highest binding to FLT3 (3.42 nM EC50 in REH cells) was used to design a third generation CAR construct with CD28 and 4-1BB costimulatory and CD3ζ activation domains. T cells isolated from peripheral blood (PB) were transduced with a lentiviral vector encoding the FLT3-CAR. Transduced cells exhibited stable expression of CAR protein and expanded over 120-fold after 18 days in culture. We demonstrated high cytotoxicity of FLT3-CAR-T cells towards AML-derived cell lines in co-culture experiments, even at effector-to-target cells ratios as low as 1:10. In vivo functionality of FLT3-CART was determined by flow cytometry analysis of leukemia burden in the peripheral blood of mice engrafted with GFP+ MOLM-13 (FLT3+ AML cell line) and treated with two doses of 4x106 control or FLT3-CAR-T cells. Compared to control, the appearance of MOLM-13 cells in peripheral blood was significantly delayed in FLT3-CAR-T treated mice. AML progression in mice was also assessed by detection of physical symptoms such as cachexia and hind-leg paralysis in terminal stages. FLT3-CAR-T treatment extended the median survival to 47 days compared to 24 days in control. Moreover, to test if our CAR-T therapy can also efficiently eliminate FLT3+ HSCs and HPs, humanized mice generated by engrafting human cord blood CD34+ cells were injected with autologous control or FLT3-CAR-T cells. Analysis of bone marrow 18 days post treatment, showed that mice that received FLT3-CAR-T cells exhibited dramatically lower frequencies (by 57% in CD38+ and 86% in CD38-) of human CD34+ hematopoietic stem and progenitor cells than control mice, suggesting the potential of CAR-T therapy for HSCT conditioning. In conclusion, our CAR-T therapy shows robust cytolytic activity against FLT3+ cells, demonstrates high efficacy in eradicating FLT3+ R/R AML leukemia in vivo and enables bone marrow conditioning for potentially curative HSCTs by specifically targeting FLT3+ HSCs and early HPs. To prevent the potentially harmful side effects associated with CAR-T therapies, such as cytokine release syndrome and cytotoxicity towards newly transplanted HSCs post conditioning, we are currently testing FLT3-CAR-T cells equipped with inducible caspase9 or EGFRT expression based safety switch to specifically eliminate CAR-Ts by administering FDA-approved small molecules or biologics. Disclosures Shrestha: Hemogenyx Pharmaceuticals LLC: Current Employment. Liang:Hemogenyx Pharmaceuticals LLC: Current Employment. Sirochinsky:Hemogenyx Pharmaceuticals LLC: Current Employment. Ben Jehuda:Hemogenyx Pharmaceuticals LLC: Current Employment. Sandler:Hemogenyx Pharmaceuticals LLC: Current Employment, Current equity holder in publicly-traded company.


2018 ◽  
Vol 11 (1) ◽  
Author(s):  
Jinghua Wang ◽  
Siyu Chen ◽  
Wei Xiao ◽  
Wende Li ◽  
Liang Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document