scholarly journals Characterizing the Metabolic Determinants of Thromboinflammation in Myeloproliferative Neoplasms

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 4596-4596
Author(s):  
Orlando Esparza ◽  
Brandon McMahon ◽  
Giovanny Hernandez ◽  
Travis Nemkov ◽  
Angelo D'Alessandro ◽  
...  

Abstract BACKGROUND: Myeloproliferative neoplasms (MPNs) are a group of clonal hematopoietic disorders characterized by an overproduction of terminally differentiated myeloid elements. Venous and arterial thrombotic events represent the leading causes of morbidity and mortality in patients with JAK2 positive MPNs (essential thrombocythemia [ET] and polycythemia vera [PV]) in chronic phase. Platelet hyperreactivity is a hallmark finding of MPNs but the biological mechanisms remain to be elucidated. We have previously identified that platelets from patients with PV and ET exhibit dysmorphic mitochondria, however, the detailed bioenergetic and metabolomic implications of such alterations in mitochondrial mass and morphology remain to be investigated. Here in, we aim to identify the metabolic determinants that underpin thromboinflammation in patients with JAK2 positive MPNs in chronic phase. METHODS: Platelets from sex and age-matched healthy control subjects and individuals with either JAK2 positive PV or ET were isolated and washed following standard protocols. Platelet activation by flow cytometry was determined at baseline conditions. Platelet activated fibrinogen binding site (αIIbβIII), P-selectin, and phosphatidylserine (PS) surface marker expression (as measured by mean fluorescence intensity [MFI]) was determined with PAC-1 and P-selectin antibodies and lactadherin, respectively. The bioenergetic profile of washed platelets was determined by the 24-well format Seahorse extracellular flux analyzer. Metabolomic profile was developed with the Vanquish UHPLC system coupled online to a Q Exactive mass spectrometer. Statistical analyses were performed using the unpaired 2-tailed Student t test (GraphPad Software v9.1.2). Data expressed as mean plus or minus standard error of the mean (SEM). Significance was determined at p < 0.05. RESULTS: Platelets from patients with MPNs had higher surface marker expression of PS under resting conditions. A trend of higher surface marker expression of αIIbβIII and P-selectin was seen (Figure 1). The platelet bioenergetic profile in individuals with MPN demonstrated decreased basal respiration (p = 0.0008), ATP-linked respiration (p = 0.001), and basal extracellular acidification rate (ECAR) (p = 0.09) (Figure 2). Liquid chromatography-mass spectrometry-based metabolomics revealed elevated pentose phosphate pathway metabolites (pentose phosphates and 6-Phospho-D-gluconate), and diminished adenosine diphosphate (ADP) and adenosine triphosphate (ATP) pools (Figure 3). CONCLUSION: The findings from this study suggest that platelets from patients with JAK2 positive PV and ET have a procoagulant phenotype given the increased expression of PS, an anionic phospholipid known to facilitate the generation of thrombin. The decreased basal respiration, ATP-linked respiration, basal ECAR (a surrogate marker of glycolysis), and energy pools (ADP and ATP) in platelets from MPN patients suggest a hypometabolic phenotype. Additionally, it appears there is preferential shunting of glucose into the pentose phosphate pathway. Such metabolic switch in conjunction with the hypometabolic state of platelets in MPN, could potentially represent a compensatory mechanism of platelets against oxidative stress. The bioenergetic dysregulation of platelets in MPNs may precipitate a cascade of events that leads to the loss of plasma membrane integrity (increased PS exposure) therefore increasing its procoagulant potential. Higher amounts of platelet PS could underly the elevated incidence of thrombosis observed in patients with JAK2 positive ET and PV. Further studies are underway to identify the inciting factor(s) that lead to the platelet bioenergetic failure and elevated PS exposure seen in patients with MPNs. These investigations will provide significant mechanistic insight for identifying therapies aimed at preventing thrombotic events in patients with MPNs. Figure 1 Figure 1. Disclosures Nemkov: Omix Thecnologies: Other: Co-founder. D'Alessandro: Omix Thecnologies: Other: Co-founder; Rubius Therapeutics: Consultancy; Forma Therapeutics: Membership on an entity's Board of Directors or advisory committees.

PLoS ONE ◽  
2013 ◽  
Vol 8 (12) ◽  
pp. e82403 ◽  
Author(s):  
Annica Pontén ◽  
Stuart Walsh ◽  
Daniela Malan ◽  
Xiaojie Xian ◽  
Susanne Schéele ◽  
...  

2019 ◽  
Vol 26 (2) ◽  
pp. 84-96
Author(s):  
María Isabel Mendoza-Cabrera ◽  
Rosa-Elena Navarro-Hernández ◽  
Anne Santerre ◽  
Pablo Cesar Ortiz-Lazareno ◽  
Ana Laura Pereira-Suárez ◽  
...  

In pregnancy, maternal monocytes and macrophages acquire a specific phenotype that enables them to maintain immune tolerance and facilitate hormone–immune cell interactions, which are necessary for gestational progression. The aim of this study was to determine the effect of pregnancy hormone mixtures of the first and third trimesters on both resting and activated monocytes and macrophages. Pregnancy hormone levels (cortisol, estradiol, progesterone, and prolactin) were quantified at the first and third trimesters. The average of the levels obtained was used to prepare two mixtures of synthetic hormones: low and high. These mixtures were then used to stimulate THP-1 monocytes and macrophages, resting or activated with LPS. Cytokine production in the culture supernatants and surface marker expression (CD14, CD86, and CD163) were evaluated by ELISA and flow cytometry, respectively. We found that the hormones modulated the pro-inflammatory response of THP-1 cells, LPS-activated monocytes, and macrophages, inducing high levels of IL-10 and low levels of IL-8, IL-1-β, and IL-6. All hormone stimulation increased the CD163 receptor in both resting and LPS-activated monocytes and macrophages in a dose-independent manner, unlike CD14 and CD86. Pregnancy hormones promote the expression of the markers associated with the M2-like phenotype, modulating their pro-inflammatory response. This phenotype regulation by hormones could be a determinant in pregnancy.


Sign in / Sign up

Export Citation Format

Share Document