Inherited glycosylphosphatidylinositol defects cause the rare Emm-negative blood phenotype and developmental disorders

Blood ◽  
2021 ◽  
Author(s):  
Romain Duval ◽  
Gaël Nicolas ◽  
Alexandra Willemetz ◽  
Yoshiko Murakami ◽  
Mahmoud Mikdar ◽  
...  

Glycosylphosphatidylinositol (GPI) is a glycolipid that anchors more than 150 proteins to the cell surface. Pathogenic variants in several genes that participate in GPI biosynthesis cause inherited GPI deficiency (IGD) disorders. Here, we reported that homozygous null alleles of PIGG, a gene involved in GPI modification, are responsible for the rare Emm-negative blood phenotype. Using a panel of K562 cells defective in both the GPI-transamidase and GPI remodeling pathways, we demonstrate that the Emm antigen, whose molecular basis has remained unknown for decades, is carried only by free GPI and that its epitope is composed of the second and third ethanolamine of the GPI backbone. Importantly, we show that the decrease in Emm expression in several IGD patients is indicative of GPI defects. Overall, our findings establish Emm as a novel blood group system and have important implications for understanding the biological function of human free GPI.

Blood ◽  
1994 ◽  
Vol 84 (4) ◽  
pp. 1276-1282 ◽  
Author(s):  
DM Lublin ◽  
G Mallinson ◽  
J Poole ◽  
ME Reid ◽  
ES Thompson ◽  
...  

Abstract The human erythrocyte blood group system Cromer consists of high- incidence and low-incidence antigens that reside on decay-accelerating factor (DAF; CD55), a glycosyl-phosphatidylinositol-anchored membrane protein that regulates complement activation on cell surfaces. In the Cromer phenotypes Dr(a-) and Inab there is reduced or absent expression of DAF, respectively. This study investigated the molecular basis of the reduced DAF expression by polymerase chain reaction amplification of genomic DNA and RNA/cDNA obtained from Epstein-Barr virus- transformed lymphoblastoid cell lines. Sequence analysis of the Inab propositus showed a single nucleotide substitution in exon 2 of the DAF gene and at the corresponding position in the cDNA, G314-->A resulting in Trp53-->Stop. This truncation near the amino terminus explains the complete absence of surface DAF in the Inab phenotype. A similar analysis was performed for two Dr(a-) individuals, including KZ, who was previously reported to be Inab phenotype but is now shown by immunochemical and serologic methods to be Dr(a-) phenotype. A single nucleotide change was found in exon 5 of the DAF gene, C649-->T resulting in Ser165-->Leu, which we had previously shown to lead to loss of the Dra epitope. However, two species of cDNA were found, one encoding full-length DAF with the single amino acid change and the more abundant species having a 44-nucleotide deletion. The 44 nucleotide deletion includes the single polymorphic site, which creates a cryptic branch point in the Dr(a-) allele that leads to use of a downstream cryptic acceptor splice site. This shifts the reading frame and leads to a premature stop codon that precludes membrane anchoring. Thus, the single point mutation in the Dr(a-) phenotype results in a novel use of alternative splicing and provides a molecular explanation for both the antigenicity and the reduced DAF expression seen in this phenotype.


Transfusion ◽  
2003 ◽  
Vol 35 (10) ◽  
pp. 822-825 ◽  
Author(s):  
S. Lee ◽  
X. Wu ◽  
M. Reid ◽  
C. Redman

Vox Sanguinis ◽  
2011 ◽  
Vol 102 (2) ◽  
pp. 167-170 ◽  
Author(s):  
C. H. Hipsky ◽  
K. Hue-Roye ◽  
C. Lomas-Francis ◽  
C.-H. Huang ◽  
M. E. Reid

Blood ◽  
1994 ◽  
Vol 84 (4) ◽  
pp. 1276-1282 ◽  
Author(s):  
DM Lublin ◽  
G Mallinson ◽  
J Poole ◽  
ME Reid ◽  
ES Thompson ◽  
...  

The human erythrocyte blood group system Cromer consists of high- incidence and low-incidence antigens that reside on decay-accelerating factor (DAF; CD55), a glycosyl-phosphatidylinositol-anchored membrane protein that regulates complement activation on cell surfaces. In the Cromer phenotypes Dr(a-) and Inab there is reduced or absent expression of DAF, respectively. This study investigated the molecular basis of the reduced DAF expression by polymerase chain reaction amplification of genomic DNA and RNA/cDNA obtained from Epstein-Barr virus- transformed lymphoblastoid cell lines. Sequence analysis of the Inab propositus showed a single nucleotide substitution in exon 2 of the DAF gene and at the corresponding position in the cDNA, G314-->A resulting in Trp53-->Stop. This truncation near the amino terminus explains the complete absence of surface DAF in the Inab phenotype. A similar analysis was performed for two Dr(a-) individuals, including KZ, who was previously reported to be Inab phenotype but is now shown by immunochemical and serologic methods to be Dr(a-) phenotype. A single nucleotide change was found in exon 5 of the DAF gene, C649-->T resulting in Ser165-->Leu, which we had previously shown to lead to loss of the Dra epitope. However, two species of cDNA were found, one encoding full-length DAF with the single amino acid change and the more abundant species having a 44-nucleotide deletion. The 44 nucleotide deletion includes the single polymorphic site, which creates a cryptic branch point in the Dr(a-) allele that leads to use of a downstream cryptic acceptor splice site. This shifts the reading frame and leads to a premature stop codon that precludes membrane anchoring. Thus, the single point mutation in the Dr(a-) phenotype results in a novel use of alternative splicing and provides a molecular explanation for both the antigenicity and the reduced DAF expression seen in this phenotype.


Blood ◽  
1999 ◽  
Vol 94 (1) ◽  
pp. 310-318 ◽  
Author(s):  
Karina Yazdanbakhsh ◽  
Soohee Lee ◽  
Qian Yu ◽  
Marion E. Reid

Blood group polymorphisms have been used as tools to study the architecture of the red blood cell (RBC) membrane. Some blood group variants have reduced antigen expression at the cell surface. Understanding the underlying mechanism for this reduced expression can potentially provide structural information and help to elucidate protein trafficking pathways of membrane proteins. The Kp(a+) phenotype is a variant in the Kell blood group system that is associated with a single amino acid substitution (R281W) in the Kell glycoprotein and serologically associated with a weakened expression of other Kell system antigens by an unknown mechanism. We found by immunoblotting of RBCs that the weakening of Kell antigens in this variant is due to a reduced amount of total Kell glycoprotein at the cell surface rather than to the inaccessibility of the antigens to Kell antibodies. Using a heterologous expression system, we demonstrate that the Kpa mutation causes retention of most of the Kell glycoprotein in a pre-Golgi compartment due to differential processing, thereby suggesting aberrant transport of the Kell protein to the cell surface. Furthermore, we demonstrated that single nucleotide substitutions into the coding region of the common KEL allele, as predicted by the molecular genotyping studies, was sufficient to encode three clinically significant low incidence antigens. We found that two low incidence antigens can be expressed on a single Kell protein, thus showing that the historical failure to detect such a variant is not due to structural constraints in the Kell protein. These studies demonstrate the power of studying the molecular mechanisms of blood group variants for elucidating the intracellular transport pathways of membrane proteins and the requirements for cell surface expression.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1117-1117
Author(s):  
Christine Halter Hipsky ◽  
Christine Lomas-Francis ◽  
Kim Hue-Roye ◽  
Cheng-Han Huang ◽  
Marion Reid

Abstract Abstract 1117 Background: Over 40 years ago, the investigation of a case of fatal HDN in the third child of Madame Nou, a native of Ivory Coast, revealed that Madame Nou's RBCs had an unusual phenotype in the Rh blood group system denoted DIVa(C)-/DIVa(C)-. Initially, her RBCs were shown to express a partial D, a weak form of C, and Goa (RH30) [Salmon, et al., Rev Franc Transf 1969;12:239]. Later her RBCs were shown to also express RH33, Riv (RH45), and FPTT (RH50) [Bizot, et al., Transfusion 1988;28:342; Delehanty, et al., Transfusion 1983;23:410, abstract]. R0Har and CeVA phenotypes are encoded by hybrid RHCE-D(5)-CE alleles (respectively, c+ and C+) and the RBCs express RH33 and FPTT antigens but not Goa or Riv [Noizat-Pirenne, et al. Transfusion 2002;42:627]. RHD*DIVa.2 encodes a partial D and the Goa antigen and frequently travels with RHCE*ce(1025T) (RHCE*ceTI) (Vege, et al., Transfusion 2007;47:159A). The purpose of this study was to determine the molecular basis associated with the rare DIVa(C)- complex. Material and Methods: Blood samples were obtained from three donors previously identified as having the DIVa(C)- haplotype. Molecular analyses were performed by standard methods and included AS-PCR, PCR-RFLP, genomic sequencing of specific exons, and cloning and direct sequencing of cDNA. Results: At the RHD locus all donors were heterozygous for RHD and RHD*DIVa.2 and at the RHCE locus all had a compound hybrid allele, which contains exons 2 and 3 from RHD*DIVa.2 (based on RHD*186G/T, RHD*410C/T, RHD*455A/C), and exon 5 from RHD. The altered RHCE is presumed to be in cis to RHD*DIVa.2. In all three probands RHCE*48 in exon 1 is G/C; presumably the G belonging to the in trans RHCE and the nt48C to the hybrid allele, and this assumption favors exon 1 of the hybrid being from RHCE. Thus, the RHCE allele is likely RHCE*CE-DIVa.2(2,3)-CE-D(5)-CE. The in trans allele in Proband 1 is RH*cE, in Proband 2 it is RHCE*ce 254C, 733G, and in Proband 3 it is RHCE*ce. Conclusions: The compound hybrid provides an explanation for the expression of the four low prevalence antigens on RBCs with the DIVa(C)- phenotype. RHD*DIVa.2 encodes the Goa antigen. The flanking of RHD exon 5 by RHCE exons in the compound hybrid likely results in RH33 and FPTT antigen expression because R0Har and CeVA RBCs express these two antigens. It is possible that the junction of RHD exon 3 to RHCE exon 4 is involved in the expression of Riv. The weak C expression could be a consequence of exons 2 and 3 from RHD*DIVa.2 in the compound hybrid because exon 2 of the wild type RHD is identical in sequence to exon 2 of RHCE*C. The three probands in our study had RHCE nt1025C/C (wild type) and thus, are not RHCE*ce(1025T). This is the first report of RHD*DIVa.2 being involved in a hybrid gene at the RHCE locus. Such a hybrid is not unprecedented in that RHD*DIIIa is involved in the RHD*DIIIa-CE(4-7)-D hybrid [(C)ceS type 1 in the r’S haplotype] As only one example of anti-Riv has been described, our findings provide a tool by which to predict the expression of Riv. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
1998 ◽  
Vol 92 (12) ◽  
pp. 4836-4843
Author(s):  
P. Jarolim ◽  
H.L. Rubin ◽  
D. Zakova ◽  
J. Storry ◽  
M.E. Reid

Recent studies have demonstrated that band 3 carries antigens of the Diego blood group system and have elucidated the molecular basis of several previously unassigned low incidence and high incidence antigens. Because the available serological data suggested that band 3 may carry additional low incidence blood group antigens, we screened band 3 genomic DNA encoding the membrane domain of band 3 for single-strand conformational polymorphisms. We found that the putative first ectoplasmic loop of band 3 carries blood group antigen ELO, 432 Arg→Trp; the third putative loop harbors antigens Vga (Van Vugt), 555 Tyr→His, BOW 561 Pro→Ser, Wu (Wulfsberg), 565 Gly→Ala, and Bpa (Bishop), 569 Asn→Lys; and the putative fourth ectoplasmic loop carries antigens Hga (Hughes), 656 Arg→Cys, and Moa (Moen), 656 Arg→His. We studied erythrocytes from carriers of five of these blood group antigens. We found similar levels of reticulocyte mRNA corresponding to the two band 3 gene alleles, normal content and glycosylation of band 3 in the red blood cell membrane, and normal band 3-mediated sulfate influx into red blood cells, suggesting that the mutations do not have major effect on band 3 structure and function. In addition to elucidating the molecular basis of seven low incidence blood group antigens, these results help to create a more accurate structural model of band 3.


2002 ◽  
Vol 277 (48) ◽  
pp. 45854-45859 ◽  
Author(s):  
Nathalie Roudier ◽  
Pierre Ripoche ◽  
Pierre Gane ◽  
Pierre Yves Le Pennec ◽  
Geoff Daniels ◽  
...  

Blood ◽  
1998 ◽  
Vol 92 (12) ◽  
pp. 4836-4843 ◽  
Author(s):  
P. Jarolim ◽  
H.L. Rubin ◽  
D. Zakova ◽  
J. Storry ◽  
M.E. Reid

Abstract Recent studies have demonstrated that band 3 carries antigens of the Diego blood group system and have elucidated the molecular basis of several previously unassigned low incidence and high incidence antigens. Because the available serological data suggested that band 3 may carry additional low incidence blood group antigens, we screened band 3 genomic DNA encoding the membrane domain of band 3 for single-strand conformational polymorphisms. We found that the putative first ectoplasmic loop of band 3 carries blood group antigen ELO, 432 Arg→Trp; the third putative loop harbors antigens Vga (Van Vugt), 555 Tyr→His, BOW 561 Pro→Ser, Wu (Wulfsberg), 565 Gly→Ala, and Bpa (Bishop), 569 Asn→Lys; and the putative fourth ectoplasmic loop carries antigens Hga (Hughes), 656 Arg→Cys, and Moa (Moen), 656 Arg→His. We studied erythrocytes from carriers of five of these blood group antigens. We found similar levels of reticulocyte mRNA corresponding to the two band 3 gene alleles, normal content and glycosylation of band 3 in the red blood cell membrane, and normal band 3-mediated sulfate influx into red blood cells, suggesting that the mutations do not have major effect on band 3 structure and function. In addition to elucidating the molecular basis of seven low incidence blood group antigens, these results help to create a more accurate structural model of band 3.


Sign in / Sign up

Export Citation Format

Share Document