scholarly journals The Application of the Prussian Blue Stain to Previously Stained Films of Blood and Bone Marrow

Blood ◽  
1955 ◽  
Vol 10 (2) ◽  
pp. 160-166 ◽  
Author(s):  
R. DOROTHY SUNDBERG ◽  
HARRIETTE BROMAN

Abstract A simple method for staining non-hemoglobin iron in erythrocytes, normoblasts, macrophages, and other cells containing particulate iron in new or old films of cellular fluids or imprints of tissues and organs is presented. This method consists in using the prussian blue reagent as a type of counterstain; no separate decolorization is necessary. The preparations obtained resemble the original preparations except that iron stands out as a vivid blue-green material. The method is particularly useful in studying conditions accompanied by varying degrees of iron excess or hemosiderosis of the marrow. The stainable iron is all virtually the same color. The diffuse blue-green color of the cytoplasm of macrophages might be attributed to the more soluble form of iron, ferritin. Stainable iron is visible in normoblasts and erythrocytes as well as in macrophages in sections subjected to the prussian blue reaction. A prussian blue method using formalin fixation on fresh films of marrow7 has also been shown to be useful in the demonstration of particulate iron in previously stained films of marrow and blood. The formalin fixation appears to bring about a higher percentage of siderocytes.

1931 ◽  
Vol 53 (6) ◽  
pp. 919-927 ◽  
Author(s):  
Valy Menkin ◽  
Miriam F. Menkin

Repeated daily intravenous injections of ferric chloride solution are followed by an accumulation of iron in tuberculous areas of lungs. The iron accumulates in the caseous areas of tubercles and is demonstrable by the Prussian blue reaction. Quantitative determinations corroborate these results and show that the iron content of lung tissue in tuberculous animals injected with ferric chloride exceeds that in normal animals injected with this salt, as well as that in non-injected tuberculous animals.


2012 ◽  
Vol 23 (2) ◽  
pp. 174-179 ◽  
Author(s):  
Nicoleta Matei ◽  
Simona Dobrinas ◽  
Gabriel Lucian Radu

AbstractThe objective of the present work was to adapt the Prussian Blue reaction for the determination of ascorbic acid. The procedure was successfully applied for the determination of ascorbic acid in red and white grapes (Vitis vinifera L.) just previous ingathering. In the present work was used the red and white grapes from Murfatlar vineyard: Mamaia, Cabernet Sauvignon, Merlot, Pinot Noir, Chardonnay, Sauvignon, Muscat Ottonel and Riesling Italian. The results were situated in the range of 0.67 - 1.79 mg vitamin C/100g product for red grapes and respectively 0.50 - 1.49 mg vitamin C/100g for white grapes.


2020 ◽  
Author(s):  
D.S. Baranovskii ◽  
B.G. Akhmedov ◽  
O.A. Krasilnikova ◽  
A.G. Demchenko ◽  
M.E. Krasheninnikov ◽  
...  

AbstractBackgroundThe use of tissue-engineered bone autografts is a promising approach for bone defects restoration. The isolation of cells and their seeding on bone autograft is usually carried out in a laboratory, requiring significant time and two separate surgical interventions. Intraoperative creation of tissue-engineered bone autograft can represent a perspective solution. The aim of this study is to investigate the possibility of creation of tissue-engineered bone autograft by intraoperative enrichment of bone tissue with bone marrow-derived mononuclear cells (BM-MNCs) isolated simultaneously.MethodsRed bone marrow and autologous bone tissue (bone fragments and bone chips) of the donor were harvested intraoperatively. BM-MNCs were isolated, and bone fragments were enriched with BM-MNCs intraoperatively. Assessment of the adhesion and proliferation of BM-MNCs on bone fragments was carried out by fluorescence microscopy and histological examination. MTT assay was used to compare metabolic activity of BM-MNCs and wBMA cells seeded on bone chips.ResultsAutologous bone fragments were colonized with autologous BM-MNCs isolated simultaneously in the O.R. with further adhesion and active growth of cells. When seeded on bone chips, metabolic activity of BM-MNCs was statistically significantly higher compared to wBMA cells (p-value=0.0272) on day 14. There was no difference in metabolic activity of BM-MNCs and wBMA cells cultured in nutrient medium without bone chips.ConclusionTechnically simple method of intraoperative enrichment of autologous bone fragments with BM-MNCs isolated simultaneously allowed to create tissue-engineered bone autograft in the O.R. The safety and effectiveness of intraoperatively enriched autografts should be investigated further.


1996 ◽  
Vol 43 (3) ◽  
pp. 497-501
Author(s):  
A Kasza ◽  
R Korpula-Mastalerz ◽  
S Rose-John ◽  
A Dubin

The horse leucocyte elastase inhibitor (HLEI), present in neutrophils, monocytes and bone marrow cells, is apparently a cytoplasmic protein which is not released from cells even in response to stimulation with lipopolysaccharide, phorbol ester, tumour necrosis factor alpha, interleukin-1 or elastin degradation products. Although no expression of the inhibitor was detected in neutrophils, both monocytes and bone marrow cells were efficient in its synthesis. Using a new expression vector pREST5d, recombinant inhibitor was produced in a large quantity in a soluble form, with a yield of 88 mg per 10 litres of E. coli culture. A two-step purification procedure, consisting of ion-exchange chromatography and gel filtration, yielded 36 mg of the recombinant inhibitor of a purity higher than 95%, as judged by SDS/PAGE. The recombinant protein had physicochemical and kinetic properties indistinguishable from those of the natural one, including irreversible elastase inhibition with an association rate constant kass > 10(7) M-1s-1. Both proteins were eliminated from rat circulation at the same ratio, and within the first 20 min 70% of the protein was removed. Such a short half-life in the circulation suggests that local delivery of HLEI directly to lungs in the form of aerosol could be a more efficient therapeutic approach than its intravenous injection.


1985 ◽  
Vol 33 (12) ◽  
pp. 1183-1189 ◽  
Author(s):  
P J Thurlow ◽  
L Kerrigan ◽  
R A Harris ◽  
I F McKenzie

In order to study the antigenic phenotype of different hemopoietic cells, we used a series of monoclonal antibodies to investigate normal bone marrow in a standard immunofluorescence assay. The antibodies detected the following antigens: HLA-ABC, beta 2-microglobulin (beta 2m), HLA-DR (Ia), a lymphocyte subset and specific antigen (T and B) HuLy-m2, m3, T lymphocyte antigen (HuLy-m1), lymphocyte T200 antigen (HuLy-m4), a viral-associated antigen (HuLy-m5), and platelet-specific glycoproteins IIb-IIIa (HuPl-m1). The following results were obtained: (a) normoblasts were weakly HLA-ABC+, beta 2m+ and Ia-; all other lymphocyte and platelet antigens were not detected. (b) Myeloid cells at all stages of differentiation (promyelocytes, myelocytes, metamyelocytes, and neutrophils) were HLA-ABC+; beta 2m+; HuLy-m1-, m2-, m3+/- (20%), m4+, m5+/- (20%); HuPl-m1-; in addition, promyelocytes and myelocytes were Ia+ but neutrophils and metamyelocytes were Ia-. (c) Lymphocytes were HLA-ABC+, beta 2m+, Ia+/- (20-30%), HuLy-m1+/- (40-50%), m2+/- (60-70%), m3+, m4+, m5+; Pl-m1-. (d) Platelets and megakaryocytes were HLA-ABC+; beta 2m+; Ia-; HuLy-m1+-, m2-, m3-, m4-, m5-, HuPl-m1+, and the putative "megakaryocyte precursors" were HuPl-m1+, Ia-, HuLy-m1-. The different cell types in bone marrow could readily be distinguished, particularly cells of the myeloid series (Ia and HuLy-m4, m5), lymphocytes (Ia and HuLy-m1, m2, m3), and platelets and their precursor cells (HuPl-m1). This simple method of defining cellular phenotypes in bone marrow has demonstrated the practicality of using monoclonal antibodies to identify marrow cells and should be of diagnostic value.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Xiaolei Huang ◽  
Yang Xue ◽  
Jinliang Wu ◽  
Qing Zhan ◽  
Jiangmin Zhao

We aimed to identify a suitable method for long-term monitoring of the migration and proliferation of mesenchymal stromal cells in stroke models of rats using ferritin transgene expression by magnetic resonance imaging (MRI). Bone marrow mesenchymal stromal cells (BMSCs) were transduced with a lentivirus containing a shuttle plasmid (pCDH-CMV-MCS-EF1-copGFP) carrying the ferritin heavy chain 1 (Fth1) gene. Ferritin expression in stromal cells was evaluated with western blotting and immunofluorescent staining. The iron uptake of Fth1-BMSCs was measured with Prussian blue staining. Following surgical introduction of middle cerebral artery occlusion, Fth1-BMSCs and superparamagnetic iron oxide- (SPIO-) labeled BMSCs were injected through the internal jugular vein. The imaging and signal intensities were monitored by diffusion-weighted imaging (DWI), T2-weighted imaging (T2WI), and susceptibility-weighted imaging (SWI) in vitro and in vivo. Pathology was performed for comparison. We observed that the MRI signal intensity of SPIO-BMSCs gradually reduced over time. Fth1-BMSCs showed the same signal intensity between 10 and 60 days. SWI showed hypointense lesions in the SPIO-BMSC (traceable for 30 d) and Fth1-BMSC groups. T2WI was not sensitive enough to trace Fth1-BMSCs. After transplantation, Prussian blue-stained cells were observed around the infarction area and in the infarction center in both transplantation models. Fth1-BMSCs transplanted for treating focal cerebral infarction were safe, reliable, and traceable by MRI. Fth1 labeling was more stable and suitable than SPIO labeling for long-term tracking. SWI was more sensitive than T2W1 and suitable as the optimal MRI-tracking sequence.


Blood ◽  
1993 ◽  
Vol 82 (7) ◽  
pp. 2088-2095 ◽  
Author(s):  
RD Baynes ◽  
GK Reddy ◽  
YJ Shih ◽  
BS Skikne ◽  
JD Cook

Abstract The present investigation was undertaken to search for soluble forms of the erythropoietin receptor in human serum using polyclonal antibody against an amino terminal peptide sequence in the extracellular domain. This sequence was located adjacent to the amino terminus at residues 25- 38. When this antibody was used for Western blots of solubilized membranes from nucleated bone marrow cells, a protein consistent with native erythropoietin receptor was seen. Purified soluble ectodomain of the erythropoietin receptor displayed appropriate reactivity with this antibody. When sera from normal subjects and patients with a range of hematologic disorders were examined by Western blotting, a protein with a molecular mass of 34 Kd was detected in sera from patients with enhanced erythropoiesis including sickle cell anemia, thalassemia, and megaloblastic anemia. This protein was rarely detected in normal serum but appeared when normal subjects were treated with recombinant erythropoietin and disappeared after full treatment of patients with megaloblastic anemia due to vitamin B12 deficiency. The protein was not detected after myeloablation for bone marrow transplantation but appeared with marrow engraftment. Reactivity of this protein with the peptide antibody was competitively inhibited by the amino terminal peptide sequence. An additional 48 Kd protein was detected that showed minimal variation in intensity with differing degrees of erythropoietic activity. Detection of this protein could not be inhibited by the addition of synthetic peptide. Our findings indicate the presence of a soluble form of the erythropoietin receptor related to the extracellular domain that is highly correlated with enhanced erythropoiesis.


Blood ◽  
1953 ◽  
Vol 8 (7) ◽  
pp. 661-663 ◽  
Author(s):  
BERNARD STANLEY COHEN

Abstract 1. A simple method suitable for repeated bone marrow aspirations in the unanesthetized monkey has been described. 2. Data have been presented as to the myelogram of 25 normal Macacus rhesus monkeys.


Sign in / Sign up

Export Citation Format

Share Document