Heparin acts synergistically with interleukin-11 to induce STAT3 activation and in vitro osteoclast formation

Blood ◽  
2002 ◽  
Vol 100 (7) ◽  
pp. 2530-2536 ◽  
Author(s):  
Kimberly J. Walton ◽  
Joanne M. Duncan ◽  
Paula Deschamps ◽  
Stephen G. Shaughnessy

We have previously demonstrated that long-term heparin treatment causes cancellous bone loss in rats due in part to an increase in the number of osteoclasts lining the trabecular bone surface. In the present study, we investigated this phenomenon by examining the ability of heparin to synergistically enhance interleukin-11 (IL-11)–induced osteoclast formation. Treatment of murine calvaria and bone marrow cells with IL-11 was found to induce the formation of tartrate-resistant acid phosphatase-positive (TRAP+) multinucleated cells (MNCs) in a dose-dependent fashion. No effect was seen when cocultures were treated with heparin alone. However, when cocultures were treated with both IL-11 and heparin, IL-11's ability to induce TRAP+ MNC formation was enhanced 6-fold. In an attempt to resolve the mechanism responsible for this effect, we examined the ability of heparin to influence IL-11 signaling using murine calvaria cells. Heparin was found to enhance both IL-11–induced STAT3-DNA complex formation and transactivation without altering either STAT3 (signal transducer and activator of transcription-3) tyrosine or serine phosphorylation. Heparin was also found to enhance IL-11's ability to induce the expression of both receptor activator of nuclear factor–κB ligand (RANKL) and glycoprotein (gp) 130. When taken together, these findings suggest a plausible mechanism by which heparin may cause increased osteoclastogenesis and therefore bone loss when administered long-term.

2021 ◽  
Vol 22 (5) ◽  
pp. 2303
Author(s):  
Liang Li ◽  
Ming Yang ◽  
Saroj Kumar Shrestha ◽  
Hyoungsu Kim ◽  
William H. Gerwick ◽  
...  

Osteoclasts, bone-specified multinucleated cells produced by monocyte/macrophage, are involved in numerous bone destructive diseases such as arthritis, osteoporosis, and inflammation-induced bone loss. The osteoclast differentiation mechanism suggests a possible strategy to treat bone diseases. In this regard, we recently examined the in vivo impact of kalkitoxin (KT), a marine product obtained from the marine cyanobacterium Moorena producens (previously Lyngbya majuscula), on the macrophage colony-stimulating factor (M-CSF) and on the receptor activator of nuclear factor κB ligand (RANKL)-stimulated in vitro osteoclastogenesis and inflammation-mediated bone loss. We have now examined the molecular mechanism of KT in greater detail. KT decreased RANKL-induced bone marrow-derived macrophages (BMMs) tartrate-resistant acid phosphatase (TRAP)-multinucleated cells at a late stage. Likewise, KT suppressed RANKL-induced pit area and actin ring formation in BMM cells. Additionally, KT inhibited several RANKL-induced genes such as cathepsin K, matrix metalloproteinase (MMP-9), TRAP, and dendritic cell-specific transmembrane protein (DC-STAMP). In line with these results, RANKL stimulated both genes and protein expression of c-Fos and nuclear factor of activated T cells (NFATc1), and this was also suppressed by KT. Moreover, KT markedly decreased RANKL-induced p-ERK1/2 and p-JNK pathways at different time points. As a result, KT prevented inflammatory bone loss in mice, such as bone mineral density (BMD) and osteoclast differentiation markers. These experiments demonstrated that KT markedly inhibited osteoclast formation and inflammatory bone loss through NFATc1 and mitogen-activated protein kinase (MAPK) signaling pathways. Therefore, KT may have potential as a treatment for destructive bone diseases.


Blood ◽  
1993 ◽  
Vol 82 (5) ◽  
pp. 1428-1435 ◽  
Author(s):  
DC Keller ◽  
XX Du ◽  
EF Srour ◽  
R Hoffman ◽  
DA Williams

Abstract Interleukin-11 (IL-11) is a bone marrow (BM) stromal-derived growth factor that has been shown to stimulate murine myeloid and lymphoid cells both in vitro and in vivo and to inhibit adipogenesis in a murine fibroblast cell line. We have studied the effects of IL-11 on highly purified human BM stem and progenitor cells and on human long-term marrow cultures (LTMC). Adipocyte differentiation is an integral component of murine and human LTMC. IL-11 stimulates myeloid growth as a single cytokine when added to highly enriched CD34+, HLA-DR+ bone marrow cells. IL-11 stimulated no growth in the more primitive CD34+, HLA-DR- population even in the presence of additional cytokines. IL-11 addition to human LTMC resulted in the expansion of myeloid and mixed, but not erythroid, progenitor populations. IL-11 dramatically increased the adherent cell populations, including both stromal cells and macrophages. Treated cultures also showed marked inhibition of fat accumulation in the adherent cells due in part to a block in the differentiation of preadipocytes to adipocytes, as shown by RNA analysis using adipocyte-specific markers. These data show that IL-11 stimulates a more differentiated, although multipotential, progenitor cell in human BM and that LTMC provide a useful model for studying the effects of this cytokine in the context of the hematopoietic microenvironment.


2005 ◽  
Vol 201 (10) ◽  
pp. 1677-1687 ◽  
Author(s):  
Maria Grazia Ruocco ◽  
Shin Maeda ◽  
Jin Mo Park ◽  
Toby Lawrence ◽  
Li-Chung Hsu ◽  
...  

Transcription factor, nuclear factor κB (NF-κB), is required for osteoclast formation in vivo and mice lacking both of the NF-κB p50 and p52 proteins are osteopetrotic. Here we address the relative roles of the two catalytic subunits of the IκB kinase (IKK) complex that mediate NF-κB activation, IKKα and IKKβ, in osteoclast formation and inflammation-induced bone loss. Our findings point out the importance of the IKKβ subunit as a transducer of signals from receptor activator of NF-κB (RANK) to NF-κB. Although IKKα is required for RANK ligand-induced osteoclast formation in vitro, it is not needed in vivo. However, IKKβ is required for osteoclastogenesis in vitro and in vivo. IKKβ also protects osteoclasts and their progenitors from tumor necrosis factor α–induced apoptosis, and its loss in hematopoietic cells prevents inflammation-induced bone loss.


2021 ◽  
Author(s):  
Xiao Wang ◽  
Mizuho Kittaka ◽  
Yilin He ◽  
Yiwei Zhang ◽  
Yasuyoshi Ueki ◽  
...  

Osteoclasts are multinucleated cells that exclusively resorb bone matrix proteins and minerals on the bone surface. They differentiate from monocyte/macrophage-lineage cells in the presence of osteoclastogenic cytokines such as the receptor activator of nuclear factor-κB ligand (RANKL) and are stained positive for tartrate-resistant acid phosphatase (TRAP). In vitro, osteoclast formation assays are commonly used to assess the capacity of osteoclast precursor cells for differentiating into osteoclasts wherein the number of TRAP-positive multinucleated cells are counted as osteoclasts. Osteoclasts are manually identified on cell culture dishes by human eyes, which is a labor-intensive process. Moreover, the manual procedure is not objective and result in lack of reproducibility. To accelerate the process and reduce the workload for counting the number of osteoclasts, we developed OC_Finder, a fully automated system for identifying osteoclasts in microscopic images. OC_Finder consists of segmentation and classification steps. OC_Finder detected osteoclasts differentiated from wild-type and Sh3bp2KI/+ precursor cells at a 99.4% accuracy for segmentation and at a 98.1% accuracy for classification. The number of osteoclasts classified by OC_Finder was at the same accuracy level with manual counting by a human expert. Together, successful development of OC_Finder suggests that deep learning is a useful tool to perform prompt and accurate unbiased classification and detection of specific cell types in microscopic images.


2021 ◽  
Author(s):  
Tomohiro Takagi ◽  
Hirofumi Inoue ◽  
Shungo Fujii ◽  
Nobuyuki Takahashi ◽  
Mariko Uehara

Abstract Objective: Erucin (ERN), an isothiocyanate, is derived from the vegetable arugula. Although ERN has antitumor and antioxidant activity, the effect of ERN on osteoclast and osteoblast differentiation is not well documented. In this study, we evaluated the effects of ERN on osteoclast and osteoblast differentiation in vitro. Results: ERN significantly reduced the formation of 1α,25(OH)2D3-induced tartrate-resistant acid phosphatase (TRAP)-positive cells at non-cytotoxic concentrations. Furthermore, ERN downregulated the mRNA expression of osteoclast-associated genes, such as nuclear factor of activated T cells cytoplasmic-1, TRAP, and cathepsin K. In addition, ERN suppressed dendritic cell specific transmembrane protein (DC-STAMP), which encodes cell-cell fusion. However, ERN did not affect mineralization by osteoblasts. Thus, our data suggest that ERN may attenuate osteoclastic bone resorption by inhibiting multinucleation of mononuclear pre-osteoclasts and by suppressing mRNA expression of DC-STAMP in bone marrow cells without influencing mineralization by osteoblasts.


Nutrients ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1392 ◽  
Author(s):  
Hye Jung Ihn ◽  
Ju Ang Kim ◽  
Soomin Lim ◽  
Sang-Hyeon Nam ◽  
So Hyeon Hwang ◽  
...  

There is growing interest in bioactive substances from marine organisms for their potential use against diverse human diseases. Osteoporosis is a skeletal disorder associated with bone loss primarily occurring through enhanced osteoclast differentiation and resorption. Recently, we reported the anti-osteoclastogenic activity of fermented Pacific oyster (Crassostrea gigas) extract (FO) in vitro. The present study focused on investigating the anti-osteoporotic efficacy of FO in bone loss prevention in an experimental animal model of osteoporosis and elucidating the mechanism underlying its effects. Oral administration of FO significantly decreased ovariectomy-induced osteoclast formation and prevented bone loss, with reduced serum levels of bone turnover biomarkers including osteocalcin and C-terminal telopeptide fragment of type I collagen C-terminus (CTX). FO significantly suppressed receptor activator of nuclear factor-κB ligand (RANKL)-induced differentiation of bone marrow-derived macrophages (BMMs) into osteoclasts and attenuated the induction of osteoclast-specific genes required for osteoclastogenesis and bone resorption. Furthermore, FO inhibited RANKL-mediated IκBα and p65 phosphorylation in BMMs. Taken together, these results demonstrate that FO effectively suppresses osteoclastogenesis in vivo and in vitro, and that FO can be considered as a potential therapeutic option for the treatment of osteoporosis and osteoclast-mediated skeletal diseases.


2020 ◽  
Vol 21 (3) ◽  
pp. 1130 ◽  
Author(s):  
Fumitoshi Ohori ◽  
Hideki Kitaura ◽  
Saika Ogawa ◽  
Wei-Ren Shen ◽  
Jiawei Qi ◽  
...  

Interleukin (IL)-33 is a member of the IL-1 family, which acts as an alarmin. Several studies suggested that IL-33 inhibited osteoclastogenesis and bone resorption. Tumor necrosis factor-α (TNF-α) is considered a direct inducer of osteoclastogenesis. However, there has been no report regarding the effect of IL-33 on TNF-α-induced osteoclastogenesis and bone resorption. The objective of this study is to investigate the role of IL-33 on TNF-α-induced osteoclastogenesis and bone resorption. In an in vitro analysis of osteoclastogenesis, osteoclast precursors, which were derived from bone marrow cells, were treated with or without IL-33 in the presence of TNF-α. Tartrate-resistant acid phosphatase (TRAP) staining solution was used to assess osteoclast formation. In an in vivo analysis of mouse calvariae, TNF-α with or without IL-33 was subcutaneously administrated into the supracalvarial region of mice daily for 5 days. Histological sections were stained for TRAP, and osteoclast numbers were determined. Using micro-CT reconstruction images, the ratio of bone destruction area on the calvariae was evaluated. The number of TRAP-positive cells induced by TNF-α was significantly decreased with IL-33 in vitro and in vivo. Bone resorption was also reduced. IL-33 inhibited IκB phosphorylation and NF-κB nuclear translocation. These results suggest that IL-33 inhibited TNF-α-induced osteoclastogenesis and bone resorption.


Blood ◽  
1993 ◽  
Vol 82 (5) ◽  
pp. 1428-1435 ◽  
Author(s):  
DC Keller ◽  
XX Du ◽  
EF Srour ◽  
R Hoffman ◽  
DA Williams

Interleukin-11 (IL-11) is a bone marrow (BM) stromal-derived growth factor that has been shown to stimulate murine myeloid and lymphoid cells both in vitro and in vivo and to inhibit adipogenesis in a murine fibroblast cell line. We have studied the effects of IL-11 on highly purified human BM stem and progenitor cells and on human long-term marrow cultures (LTMC). Adipocyte differentiation is an integral component of murine and human LTMC. IL-11 stimulates myeloid growth as a single cytokine when added to highly enriched CD34+, HLA-DR+ bone marrow cells. IL-11 stimulated no growth in the more primitive CD34+, HLA-DR- population even in the presence of additional cytokines. IL-11 addition to human LTMC resulted in the expansion of myeloid and mixed, but not erythroid, progenitor populations. IL-11 dramatically increased the adherent cell populations, including both stromal cells and macrophages. Treated cultures also showed marked inhibition of fat accumulation in the adherent cells due in part to a block in the differentiation of preadipocytes to adipocytes, as shown by RNA analysis using adipocyte-specific markers. These data show that IL-11 stimulates a more differentiated, although multipotential, progenitor cell in human BM and that LTMC provide a useful model for studying the effects of this cytokine in the context of the hematopoietic microenvironment.


2021 ◽  
Vol 12 ◽  
Author(s):  
Seon-A Jang ◽  
Youn-Hwan Hwang ◽  
Hyun Yang ◽  
Jin Ah Ryuk ◽  
Taesoo Kim ◽  
...  

Mentha arvensis L., is an aromatic herb that belongs to the Lamiaceae family and is widely used in medicinal applications, essential oil applications, and food flavoring. The extract of M. arvensis has been reported to exert sedative-hypnotic, anti-inflammatory, anti-fungal, and anti-bacterial effects. However, its effects on bone metabolism have not yet been studied. Here, we investigated the effects of the water extract of M. arvensis (WEMA) on osteoclast formation in vitro and bone loss in an ovariectomized mouse model. We found that WEMA inhibited osteoclast differentiation by directly acting on osteoclast precursor cells. WEMA inhibited receptor activator of nuclear factor-κB ligand (RANKL)-induced the expression of cellular oncogene fos (c-Fos) and nuclear factor of activated T cells c1 (NFATc1), crucial transcription factors for osteoclast differentiation, by suppressing RANKL-induced activation of early signaling pathways such as those of mitogen-activated protein kinases (MAPKs) and nuclear factor-κB (NF-κB). In addition, oral administration of WEMA suppressed ovariectomy-induced trabecular bone loss in mice. We additionally identified phytochemicals in WEMA that are known to have anti-osteoclastogenic or anti-osteoporotic properties. Collectively, these results suggest that WEMA is a promising herbal candidate that can be used to prevent or treat postmenopausal osteoporosis.


Endocrinology ◽  
2013 ◽  
Vol 154 (3) ◽  
pp. 1202-1214 ◽  
Author(s):  
Lei-Guo Ming ◽  
Xiang Lv ◽  
Xiao-Ni Ma ◽  
Bao-Feng Ge ◽  
Ping Zhen ◽  
...  

Abstract Previous studies have found that 8-prenylflavonoids have a higher osteogenic activity than do flavonoids, which suggested that the 8-prenyl group may play an active role in bone-protective properties. To address this hypothesis, activities of 8-prenylnaringenin (PNG) and naringenin (NG) in osteoblast and osteoclast differentiation and function were compared in vitro. PNG was found to have a stronger ability than NG to improve osteoblast differentiation and osteogenic function in cultured rat calvarial osteoblasts, as demonstrated by levels of alkaline phosphatase activity, osteocalcin, calcium deposition, and the number and area of mineralized bone nodules, as well as mRNA expression of osteogenesis-related genes Bmp-2, OSX, and Runx-2. In addition, although expression of osteoclastogenic inducer receptor activator of nuclear factor kappa-B ligand (RANKL) was not affected, that of osteoclastogenesis inhibitor osteoprotegerin (OPG) and consequently the OPG/RANKL ratio were increased, more potently by PNG than NG. PNG was also found to have a higher potency than NG in inhibiting the osteoclast formation in rabbit bone marrow cells and their resorptive activity, as revealed by lower numbers of osteoclasts formed, lower numbers and areas of bone resorption pits, and lower mRNA expression levels of tartrate-resistant acid phosphatase and cathepsin K. Furthermore, PNG induced apoptosis of mature osteoclasts at a higher degree and at an earlier time than did NG. These results indicate that the 8-prenyl group plays an important role and contributes to the higher bone-protective activity of PNG in comparison with NG.


Sign in / Sign up

Export Citation Format

Share Document