scholarly journals The Prenyl Group Contributes to Activities of Phytoestrogen 8-Prenynaringenin in Enhancing Bone Formation and Inhibiting Bone Resorption In Vitro

Endocrinology ◽  
2013 ◽  
Vol 154 (3) ◽  
pp. 1202-1214 ◽  
Author(s):  
Lei-Guo Ming ◽  
Xiang Lv ◽  
Xiao-Ni Ma ◽  
Bao-Feng Ge ◽  
Ping Zhen ◽  
...  

Abstract Previous studies have found that 8-prenylflavonoids have a higher osteogenic activity than do flavonoids, which suggested that the 8-prenyl group may play an active role in bone-protective properties. To address this hypothesis, activities of 8-prenylnaringenin (PNG) and naringenin (NG) in osteoblast and osteoclast differentiation and function were compared in vitro. PNG was found to have a stronger ability than NG to improve osteoblast differentiation and osteogenic function in cultured rat calvarial osteoblasts, as demonstrated by levels of alkaline phosphatase activity, osteocalcin, calcium deposition, and the number and area of mineralized bone nodules, as well as mRNA expression of osteogenesis-related genes Bmp-2, OSX, and Runx-2. In addition, although expression of osteoclastogenic inducer receptor activator of nuclear factor kappa-B ligand (RANKL) was not affected, that of osteoclastogenesis inhibitor osteoprotegerin (OPG) and consequently the OPG/RANKL ratio were increased, more potently by PNG than NG. PNG was also found to have a higher potency than NG in inhibiting the osteoclast formation in rabbit bone marrow cells and their resorptive activity, as revealed by lower numbers of osteoclasts formed, lower numbers and areas of bone resorption pits, and lower mRNA expression levels of tartrate-resistant acid phosphatase and cathepsin K. Furthermore, PNG induced apoptosis of mature osteoclasts at a higher degree and at an earlier time than did NG. These results indicate that the 8-prenyl group plays an important role and contributes to the higher bone-protective activity of PNG in comparison with NG.

Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 1982
Author(s):  
Wataru Ariyoshi ◽  
Shiika Hara ◽  
Ayaka Koga ◽  
Yoshie Nagai-Yoshioka ◽  
Ryota Yamasaki

Although the anti-tumor and anti-infective properties of β-glucans have been well-discussed, their role in bone metabolism has not been reviewed so far. This review discusses the biological effects of β-glucans on bone metabolisms, especially on bone-resorbing osteoclasts, which are differentiated from hematopoietic precursors. Multiple immunoreceptors that can recognize β-glucans were reported to be expressed in osteoclast precursors. Coordinated co-stimulatory signals mediated by these immunoreceptors are important for the regulation of osteoclastogenesis and bone remodeling. Curdlan from the bacterium Alcaligenes faecalis negatively regulates osteoclast differentiation in vitro by affecting both the osteoclast precursors and osteoclast-supporting cells. We also showed that laminarin, lichenan, and glucan from baker’s yeast, as well as β-1,3-glucan from Euglema gracilisas, inhibit the osteoclast formation in bone marrow cells. Consistent with these findings, systemic and local administration of β-glucan derived from Aureobasidium pullulans and Saccharomyces cerevisiae suppressed bone resorption in vivo. However, zymosan derived from S. cerevisiae stimulated the bone resorption activity and is widely used to induce arthritis in animal models. Additional research concerning the relationship between the molecular structure of β-glucan and its effect on osteoclastic bone resorption will be beneficial for the development of novel treatment strategies for bone-related diseases.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 629-629 ◽  
Author(s):  
Suzanne Lentzsch ◽  
Gulsum Anderson ◽  
Noriyoshi Kurihara ◽  
Tadashi Honjo ◽  
Judith Anderson ◽  
...  

Abstract CC-4047 (Actimid) is an immunomodulatory analog of thalidomide that has stronger anti-myeloma and anti-angiogenic activity than thalidomide, but its effects on human osteoclast lineage are unknown. Early osteoclast progenitors are of hematopoietic origin and progressively differentiate into mature bone resorbing multinucleated osteoclasts. We investigated the effects of CC-4047 and thalidomide on human osteoclastogenesis, using in vitro receptor activator of NFκ-B ligand/M-CSF stimulated culture system of bone marrow cells. Three weeks of treatment of primary bone marrow cultures with 100 μM CC-4047 decreased osteoclast formation accompanied by complete inhibition of bone resorption. Interestingly, osteoclast formation was also inhibited when cultures were treated with CC-4047 only for the first week (90% inhibition). In contrast, inhibitory effect was greatly diminished when the drug was given for only the last week (25% inhibition), indicating that inhibition of osteoclast formation is an early event. The inhibitory effect of CC-4047 on osteoclastogenesis was not induced by cell death, but by a shift of lineage commitment to granulocyte-CFU at the expense of GM-CFU that are osteoclast progenitors. Further studies revealed that this shift is mediated through down regulation of the transcription factor PU.1, which is critical for early osteoclast formation. In contrast to CC-4047, thalidomide was a significantly less potent inhibitor of osteoclast formation and bone resorption. These results provide the first evidence that CC-4047 blocks osteoclast differentiation at the early phase of osteoclastogenesis. Therefore, CC-4047 might be a valuable drug targeting both the tumor and osteoclastic activity in patients with multiple myeloma and potentially other diseases associated with the development of osteolytic lesions.


2021 ◽  
Author(s):  
Tomohiro Takagi ◽  
Hirofumi Inoue ◽  
Shungo Fujii ◽  
Nobuyuki Takahashi ◽  
Mariko Uehara

Abstract Objective: Erucin (ERN), an isothiocyanate, is derived from the vegetable arugula. Although ERN has antitumor and antioxidant activity, the effect of ERN on osteoclast and osteoblast differentiation is not well documented. In this study, we evaluated the effects of ERN on osteoclast and osteoblast differentiation in vitro. Results: ERN significantly reduced the formation of 1α,25(OH)2D3-induced tartrate-resistant acid phosphatase (TRAP)-positive cells at non-cytotoxic concentrations. Furthermore, ERN downregulated the mRNA expression of osteoclast-associated genes, such as nuclear factor of activated T cells cytoplasmic-1, TRAP, and cathepsin K. In addition, ERN suppressed dendritic cell specific transmembrane protein (DC-STAMP), which encodes cell-cell fusion. However, ERN did not affect mineralization by osteoblasts. Thus, our data suggest that ERN may attenuate osteoclastic bone resorption by inhibiting multinucleation of mononuclear pre-osteoclasts and by suppressing mRNA expression of DC-STAMP in bone marrow cells without influencing mineralization by osteoblasts.


2020 ◽  
Vol 21 (3) ◽  
pp. 1130 ◽  
Author(s):  
Fumitoshi Ohori ◽  
Hideki Kitaura ◽  
Saika Ogawa ◽  
Wei-Ren Shen ◽  
Jiawei Qi ◽  
...  

Interleukin (IL)-33 is a member of the IL-1 family, which acts as an alarmin. Several studies suggested that IL-33 inhibited osteoclastogenesis and bone resorption. Tumor necrosis factor-α (TNF-α) is considered a direct inducer of osteoclastogenesis. However, there has been no report regarding the effect of IL-33 on TNF-α-induced osteoclastogenesis and bone resorption. The objective of this study is to investigate the role of IL-33 on TNF-α-induced osteoclastogenesis and bone resorption. In an in vitro analysis of osteoclastogenesis, osteoclast precursors, which were derived from bone marrow cells, were treated with or without IL-33 in the presence of TNF-α. Tartrate-resistant acid phosphatase (TRAP) staining solution was used to assess osteoclast formation. In an in vivo analysis of mouse calvariae, TNF-α with or without IL-33 was subcutaneously administrated into the supracalvarial region of mice daily for 5 days. Histological sections were stained for TRAP, and osteoclast numbers were determined. Using micro-CT reconstruction images, the ratio of bone destruction area on the calvariae was evaluated. The number of TRAP-positive cells induced by TNF-α was significantly decreased with IL-33 in vitro and in vivo. Bone resorption was also reduced. IL-33 inhibited IκB phosphorylation and NF-κB nuclear translocation. These results suggest that IL-33 inhibited TNF-α-induced osteoclastogenesis and bone resorption.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Liming Xue ◽  
Lei Jiao ◽  
Yin Wang ◽  
Yan Nie ◽  
Ting Han ◽  
...  

Er-Xian decoction (EXD), a traditional Chinese medicine, has been reported to have a protective effect against bone loss in ovariectomized osteoporotic rats, and the inclusion of icariin (I), curculigoside (C), and berberine (B) in EXD displays inhibitory effects on osteoclastic bone resorption. In the present paper, we investigated the interaction and effects of I, C, B, and their combination on bone resorption activityin vitroon osteoclasts derived from rat bone marrow cells. ICB synergistically decreased the formation of bone resorption pits, the number of multinucleated osteoclasts, and the activity of tartrate-resistant acid phosphatase (TRAP) and showed antagonistic or additive effects on cathepsin K activity in the coculture system of osteoblasts and bone marrow cells in the presence of 1, 25-dihydroxyvitamin D3and dexamethasone. The combination of ICB also enhanced the inhibitory effects on the formation of F-actin ring, a cytoskeleton structure of osteoclasts induced from bone marrow cells with macrophage colony stimulation factor (M-CSF) and receptor activator of NF-κB ligand (RANKL). In addition, ICB synergistically improved the ratio of protein expression of osteoprotegerin (OPG) and RANKL in osteoblasts and interfered with the mitogen-activated protein kinases (MAPKs) pathway in osteoclast. These results clearly show that I, C, B, and their combination in EXD exert effects of mutual reinforcement. However, IBC does not show an intensified adverse effect in the ovariectomized murine model, as revealed by change in body and uterine weight, confirming the safety of EXD. These observations are in agreement with the rationality of the formula used in this paper.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1835-1835
Author(s):  
Chirag Acharya ◽  
Mike Y Zhong ◽  
Yolanda Calle ◽  
Stephen Schey ◽  
Michelle Chen ◽  
...  

Abstract Abstract 1835 Blocking CRM1 by novel selective inhibitors of nuclear export (SINE: KPT-185, KPT-251, KPT-276, and KPT-330) induced potent MM cell apoptosis in vitro and in vivo (Abstract #46829). In addition, these compounds inhibited NFkB p65 DNA-binding activity in MM cells. Here, we investigated whether SINEs have effects on bone and whether this is mediated only through anti-MM activity, or additional effects directly on osteoclasts (OC) are in play. We asked whether SINEs could prevent RANKL/M-CSF-induced osteoclastogenesis via blockade of NFkB activation. Mature OC (TRAP+ multinucleated cell) were derived from the CD138-negative cell fraction from MM patient samples (n=4) stimulated with RANKL/M-CSF for 3 weeks, in the presence or absence of KPT-185. KPT-185 significantly blocked formation of TRAP+ multinucleated OC in a dose-dependent manner, further confirmed by reduction of the selective osteoclastic marker TRAP5b in cell culture supernatant. NFkB p65 activity was induced in nuclear extracts of CD14+ OC precursor cells following RANKL stimulation for 30 min. Importantly, KPT-185 and KPT-330 blocked such induction in a dose-dependent manner. When KPT-185 was added 2 weeks following OC differentiation by RANKL/M-CSF, the effects of KPT-185 on osteoclast culture were not as prominent as when drug was added from the onset. Immunofluorescence staining to examine the actin cytoskeleton in OC cultures performed on glass cover slips further confirmed that actin belt formation in mature OCs is required for bone resorption activity. In the presence of KPT-185 or KPT-330, such critical structure was significantly decreased, consistent with diminished mature OC number and reduced TRAP5b. Pit formation assays on dentine slices clearly showed that KPT-185 and KPT-330, as low as 10 nM, inhibited % erosion area when compared with control group (p<0.005). In RANKL-activated preosteoclasts, both compounds further blocked expression levels of NFATC1, the key osteoclast differentiation transcription factor, as well as fusion-related (Atp6v0d2 and DC-STAMP) and adhesion (integrin αv and integrin β3) molecules. We also assessed the effect of SINE on osteogenesis derived from mesenchymal stem cells of normal healthy donors (n=3). Neither KPT-276 nor KPT-330 blocked calcium deposition, an indicator of bone formation in in vitro culture. Moreover, KPT-185 did not alter INA6 MM cell-inhibited calcium deposition of osteoblasts. Thus, SINEs specifically blocked osteoclast formation and bone resorption activity without significantly impacting osteogenesis. This is the first study to demonstrate a novel role of CRM1 regulating osteoclast formation at least in part by blocking NFkB activity triggered in osteoclast precursor cells by RANKL stimulation. Decreased NFkB p65 activity essential for osteoclast differentiation and fusion was associated with suppressed bone resorption. The potent MM cytotoxicity and prolonged host survival (p=0.0004) demonstrated in our disseminated SCID mouse model of human MM (Abstract#46829), coupled with these bone effects, provide the framework for clinical trials targeting CRM1 with SINEs to simultaneously inhibit both tumor progression and bone destruction in MM. Disclosures: Ghobrial: Millennium pharmaceuticals Inc.: Membership on an entity's Board of Directors or advisory committees; Onyx: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees. Landesman:Karyopharm Therapeutics Inc: Employment. Shacham:Karyopharm Therapeutics: Employment. Kauffman:Karyopharm Therapeutics Inc: Employment. Anderson:Celgene, Millennium, BMS, Onyx: Membership on an entity's Board of Directors or advisory committees; Acetylon, Oncopep: Scientific Founder, Scientific Founder Other.


2015 ◽  
Vol 75 (6) ◽  
pp. 1203-1210 ◽  
Author(s):  
Neng-Yu Lin ◽  
Chih-Wei Chen ◽  
Rosebeth Kagwiria ◽  
Ruifang Liang ◽  
Christian Beyer ◽  
...  

ObjectivesAutophagy has recently been shown to regulate osteoclast activity and osteoclast differentiation. Here, we aim to investigate the impact of autophagy inhibition as a potential therapeutic approach for the treatment of osteoporosis in preclinical models.MethodsSystemic bone loss was induced in mice by glucocorticoids and by ovariectomy (OVX). Autophagy was targeted by conditional inactivation of autophagy-related gene 7 (Atg7) and by treatment with chloroquine (CQ). Bone density was evaluated by microCT. The role of autophagy on osteoclastogenesis was analysed by osteoclastogenesis and bone resorption assays. The quantification of receptor activator of nuclear factor κ B ligand and osteoprotegerin proteins in cocultures was performed using ELISA whereas that of osteoclast and osteoblast differentiation markers was by qPCR.ResultsSelective deletion of Atg7 in monocytes from Atg7fl/fl_x_LysM-Cre mice mitigated glucocorticoid-induced and OVX-induced osteoclast differentiation and bone loss compared with Atg7fl/fl littermates. Pharmacological inhibition of autophagy by treatment with CQ suppressed glucocorticoid-induced osteoclastogenesis and protected mice from bone loss. Similarly, inactivation of autophagy shielded mice from OVX-induced bone loss. Inhibition of autophagy led to decreased osteoclast differentiation with lower expression of osteoclast markers such as NFATc1, tartrate-resistant acid phosphatase, OSCAR and cathepsin K and attenuated bone resorption in vitro. In contrast, osteoblast differentiation was not affected by inhibition of autophagy.ConclusionsPharmacological or genetic inactivation of autophagy ameliorated glucocorticoid-induced and OVX-induced bone loss by inhibiting osteoclastogenesis. These findings may have direct translational implications for the treatment of osteoporosis, since inhibitors of autophagy such as CQ are already in clinical use.


2001 ◽  
Vol 204 (3) ◽  
pp. 443-455
Author(s):  
C. Faucheux ◽  
S. Nesbitt ◽  
M. Horton ◽  
J. Price

Deer antlers are a rare example of mammalian epimorphic regeneration. Each year, the antlers re-grow by a modified endochondral ossification process that involves extensive remodelling of cartilage by osteoclasts. This study identified regenerating antler cartilage as a site of osteoclastogenesis in vivo. An in vitro model was then developed to study antler osteoclast differentiation. Cultured as a high-density micromass, cells from non-mineralised cartilage supported the differentiation of large numbers of osteoclast-like multinucleated cells (MNCs) in the absence of factors normally required for osteoclastogenesis. After 48 h of culture, tartrate-resistant acid phosphatase (TRAP)-positive mononuclear cells (osteoclast precursors) were visible, and by day 14 a large number of TRAP-positive MNCs had formed (783+/−200 per well, mean +/− s.e.m., N=4). Reverse transcriptase/polymerase chain reaction (RT-PCR) showed that receptor activator of NF κ B ligand (RANKL) and macrophage colony stimulating factor (M-CSF) mRNAs were expressed in micromass cultures. Antler MNCs have the phenotype of osteoclasts from mammalian bone; they expressed TRAP, vitronectin and calcitonin receptors and, when cultured on dentine, formed F-actin rings and large resorption pits. When cultured on glass, antler MNCs appeared to digest the matrix of the micromass and endocytose type I collagen. Matrix metalloproteinase-9 (MMP-9) may play a role in the resorption of this non-mineralised matrix since it is highly expressed in 100 % of MNCs. In contrast, cathepsin K, another enzyme expressed in osteoclasts from bone, is only highly expressed in resorbing MNCs cultured on dentine. This study identifies the deer antler as a valuable model that can be used to study the differentiation and function of osteoclasts in adult regenerating mineralised tissues.


1999 ◽  
Vol 112 (21) ◽  
pp. 3657-3666 ◽  
Author(s):  
T. Laitala-Leinonen ◽  
C. Lowik ◽  
S. Papapoulos ◽  
H.K. Vaananen

The role of proton transport and production in osteoclast differentiation was studied in vitro by inhibiting the transcription/translation of carbonic anhydrase II (CA II) and vacuolar H(+)-ATPase (V-ATPase) by antisense RNA molecules. Antisense RNAs targeted against CA II, or the 16 kDa or 60 kDa subunit of V-ATPase were used to block the expression of the specific proteins. A significant decrease in bone resorption rate and TRAP-positive osteoclast number was seen in rat bone marrow cultures and fetal mouse metacarpal cultures after antisense treatment. Intravacuolar acidification in rat bone marrow cells was also significantly decreased after antisense treatment. The CA II antisense RNA increased the number of TRAP-positive mononuclear cells, suggesting inhibition of osteoclast precursor fusion. Antisense molecules decreased the number of monocytes and macrophages, but increased the number of granulocytes in marrow cultures. GM-CSF, IL-3 and IL-6 were used to stimulate haematopoietic stem cell differentiation. The 16 kDa V-ATPase antisense RNA abolished the stimulatory effect of GM-CSF, IL-3 and IL-6 on TRAP-positive osteoclast formation, but did not affect the formation of monocytes and macrophages after IL-3 treatment, or the formation of granulocytes after IL-6 treatment. These results suggest that CA II and V-ATPase are needed, not only for the actual resorption, but also for osteoclast formation in vitro.


Planta Medica ◽  
2019 ◽  
Vol 85 (09/10) ◽  
pp. 766-773 ◽  
Author(s):  
Pansoo Kim ◽  
Yeon-Ju Nam ◽  
Woo Jung Kim ◽  
Jin Kyu Kim ◽  
Gyeongbeen Lee ◽  
...  

AbstractOsteoporosis is a clinical condition characterized by low bone strength that leads to an increased risk of fracture. Strategies for the treatment of osteoporosis involve inhibition of bone resorption by osteoclasts and an increase of bone formation by osteoblasts. Here, we identified the extract derived from the stem part of Edgeworthia papyrifera that enhanced differentiation of MC3T3-E1 cells to osteoblast-like cells and inhibited osteoclast differentiation of RAW 264.7 cells in vitro. In support of our observation, rutin and daphnoretin, which were previously reported to inhibit osteoclast differentiation, were identified in E. papyrifera extract. In an animal model of osteoporosis, the ovariectomy-induced increases in bone resorption biomarkers such as pyridinoline and tartrate-resistant acid phosphatase were significantly reduced by E. papyrifera extract administration at 25.6 and 48.1%, respectively. Furthermore, the ovariectomy-induced bone loss in animal models of osteoporosis was significantly prevented by the administration of E. papyrifera in our study. Taking these observations into account, we suggest that E. papyrifera is an interesting candidate for further exploration as an anti-osteoporotic agent.


Sign in / Sign up

Export Citation Format

Share Document