Loss of Heterozygosity in Childhood Acute Lymphoblastic Leukaemia Detected by Genome-Wide Microarray Single Nucleotide Polymorphism Analysis.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1088-1088
Author(s):  
Andrew G. Hall ◽  
Lisa C. Bloodworth ◽  
Linda A. Hogarth ◽  
Nick P. Bown ◽  
Julie A. Irving

Abstract Loss of heterozygosity (LOH) is detectable in many forms of malignancy, including leukaemia, using techniques such as microsatellite analysis and comparative genomic hybridisation. However, these techniques are laborious and require the use of relatively large amounts of DNA if the whole genome is to be examined. Here we describe the use of oligonucleotide microarrays to characterise single nucleotide polymorphisms (SNPs) in lymphoblasts isolated from children with acute lymphoblastic leukaemia for the pan-genomic mapping of LOH with a resolution of 100–200kb. Results were compared with DNA obtained during remission and on relapse. Abnormalities were seen in 8 of 10 cases. The two cases with no abnormalities and one case which showed identical changes affecting whole chromosomes at relapse and presentation remain in remission 1–9 years following retreatment. The 7 cases which showed LOH not affecting entire chromosomes died following relapse, suggesting that partial LOH may be associated with a poor prognosis. In 4 cases LOH was only detectable at relapse suggesting that progressive LOH may be a cause of disease progression and/or drug resistance. This was supported by detailed analysis of one case in which LOH involving the glucocorticoid receptor (GR) was associated with mutation of the remaining allele. In cell line models the loss of a functional GR is associated with profound resistance to steroids. The most frequent abnormality detected in this series involved chromosome 9p. In each of the four cases where this was observed LOH included the INK4 locus. In three of the four cases INK4 loss was only observed at relapse (see figure), suggesting that this abnormality may be commonly associated with treatment failure, supporting previous reports that 9p abnormailities are associated with a poor prognosis. One case was reported as showing monosomy 20 as the sole cytogenetic aberration but LOH analysis identified 9p LOH and loss of 20q, with retention of heterozygocity for 20p. These findings strongly implicate unbalanced translocation der(9)t(9;20),-20 as described by Clark et al (Leukaemia, 2000, 14:241). Our observations demonstrate that SNP array analysis is a powerful new tool for the analysis of allelic imbalance and unbalanced translocations in leukaemic blasts.

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1348-1348
Author(s):  
Maria-Jose Carnicer ◽  
Frederik W van Delft ◽  
Lyndal Kearney ◽  
Mel Greaves

Abstract Abstract 1348 Philadelphia-positive (Ph+) acute lymphoblastic leukaemia (ALL), characterised by the BCR-ABL1 fusion gene, occurs in approximately 30% of adult and 5% of childhood ALL and is associated with a poor prognosis. It is considered a single clinical entity with identifiable and recurrent copy number alterations (CNA); notably deletions of the lymphoid transcriptional regulator IKAROS (encoded by IKZF1), PAX5, and CDKN2A/B that are presumed to cooperate with BCR–ABL 1 in lymphoid leukaemogenesis. In particular, IKZF1 deletions are present in 80% of BCR-ABL1 positive ALL cases, and have been implicated as an independent indicator of poor prognosis in childhood ALL. Our previous studies of twin pairs either concordant or discordant for BCR-ABL1+ ALL indicate that the fusion gene is a first hit that occurs prenatally. However, the order and sequence of acquisition of CNA is unknown. We recently reported a complex sub-clonal genetic architecture for leukaemic blasts and leukaemia-propagating (‘stem’) cells in childhood ETV6-RUNX1-positive ALL (Anderson et al., Nature 469: 356–361, 2011). In the present study, we aimed to determine whether similar sub-clonal genetic diversity occurs in BCR-ABL1+ ALL. We carried out five colour FISH to diagnostic blast cells from eight BCR-ABL1 positive cases with differentially-labelled probes for BCR, ABL1, IKZF1, CDKN2A and PAX5. In a subset of cases we also performed Affymetrix single nucleotide polymorphism (SNP 6.0) arrays to determine the specific boundaries of deletions. Four out of the eight cases screened had concurrent IKZF1, PAX5 and CDKN2A deletions. In one case the order of acquisition of these deletions was uninformative, with 97% of cells exhibiting a single FISH pattern (BCR-ABL1+ with monoallelic deletions of all three genes). In the second case, a linear clonal progression was observed with IKZF1 deleted first, PAX5 second and CDKN2A third. In the two remaining cases a branching sub-clonal pattern was observed. In one of these monoallelic IKZF1, CDKN2A and PAX5 deletions all arose independently in different sub-clones; i.e. IKZF1 was deleted first in one subclone, CDKN2A first in another and PAX5 first in a third sub-clone. In the final case we also studied matched diagnosis and relapse samples. Here, SNP array analysis revealed different deletions in all three genes at diagnosis and relapse. Genomic fusion breakpoint analysis revealed an identical BCR-ABL1 genomic sequence at diagnosis and relapse, confirming the same clonal origin of leukaemia. The different deletion boundaries in IKZF1, PAX5 and CDKN2A permitted us to design specific FISH probes to distinguish between ‘diagnostic’ and ‘relapse’ deletions and to track their evolution. The predominant clone at relapse was not a direct evolutionary product of any of the major clones found at diagnosis. The dominant sub-clone at diagnosis was BCR-ABL1+, with a large 9p deletion (encompassing PAX5 and CDKN2A) and a focal CDKN2A deletion, all sub-clonal to a focal IKZF1 deletion. At relapse, the dominant sub-clone had acquired a different IKZF1 deletion, which was sub-clonal to two different (focal, biallelic) deletions of CDKN2A and a different monoallelic PAX5 deletion. The large 9p deletion was not present at relapse. These results indicate the existence of a pre-leukaemic BCR-ABL1 fusion gene positive clone that has given rise to at least two sub-clones, each with different IKZF1, PAX5 and CDKN2A deletions, that have evolved independently. These data indicate that the sub-clonal architecture in this poor prognosis subtype of ALL is genetically diverse, and that key ‘driver’ CNA can arise independently and in no preferential order. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 183-183 ◽  
Author(s):  
K.-John Cheung ◽  
Adele Telenius ◽  
Betty Lai ◽  
Nathalie Johnson ◽  
Thomas Relander ◽  
...  

Abstract Background: The initial genetic event in ∼85% of follicular lymphomas (FL), the most common B-cell lymphoma in North America, is the t(14;18)(q32;q21) resulting in over-expression of the anti-apoptotic protein Bcl-2. The secondary events associated with disease progression are not well understood. Alterations affecting the p arm of chromosome 1 are evident by standard karyotype analysis in ∼20% of FL. We have further examined the relationship between 1p deletion and FL using high resolution genomic analyses. Methods: The prevalence of 1p alterations was investigated in 139 cases of indolent and transformed FL using whole genome tiling path BAC array Comparative Genomic Hybridization (array CGH). Array-based single nucleotide polymorphism analysis was performed on a subset of cases using Affymetrix 500K SNP arrays. Results: Array CGH identified a minimum region of deletion spanning ∼0.5MB within 1p36.32 in 51 cases (37%). In 38 cases (27%) this loss was exhibited in the transformed sample but not the pre-transformation sample. The majority of cases displayed heterozygous deletion, while two cases showed homozygous deletion. The mechanisms of loss included simple deletions, unbalanced translocations with various partner chromosomes and eleven cases with an unbalanced t(1;1)(p36;q12). The Affymetrix 500 SNP array analyses showed copy neutral loss of heterozygosity or acquired uniparental disomy (aUPD) in three of ten cases that were negative for loss by aCGH. Contained within the 1p36.32 minimally deleted region are only a few candidate genes including tumor necrosis factor receptor superfamily 14 (TNFRS14), which has been implicated in growth inhibition of HT-29 human colon adenocarcinoma cells and induction of Fas-mediated apoptosis in non-Hodgkin’s lymphoma. Conclusions: Our data indicate that loss of heterozygosity at 1p36.32 through deletion or aUPD constitutes the most common secondary cytogenetic event in FL. LOH at 1p36 may represent an important step in the progression of indolent to transformed FL. Further studies have been initiated to investigate other possible gene inactivation events such as methylation and mutation.


2021 ◽  
Vol 66 (2) ◽  
pp. 253-262
Author(s):  
E. S. Kotova ◽  
O. A. Gavrilina ◽  
A. B. Sudarikov

Introduction. Among main curative substances in acute lymphoblastic leukaemia/lymphoma (ALL/LBL) is 6-mercaptopurine (6-MP). However, the severity of adverse reactions (ADRs) to this drug varies considerably among patients, which is sometimes conditioned by individual single nucleotide polymorphisms in key 6-MP metabolism enzyme genes.Aim — a literature review on the role of TPMT and NUDT15 gene variants in 6-MP metabolism in ALL/LBL.Main findings. The TPMT and NUDT15 genes encode enzymes mediating key steps of the 6-MP metabolism. The metabolites determine the 6-MP therapeutic and toxic properties, with ADRs emerging when their concentrations alter. A number of TPMT and NUDT15 single nucleotide polymorphisms are associated with varied activities of the encoded enzymes, and their allelic combinations condition functional and non-functional phenotypes. Non-functional variant carriers more likely develop toxicity on 6-MP treatment compared to functional phenotypes. Non-functional TPMT/NUDT15 carriers should have the 6-MP dosage reduced to minimise emerging ADRs.


2017 ◽  
Vol 51 (4) ◽  
pp. 455-462 ◽  
Author(s):  
Barbara Faganel Kotnik ◽  
Janez Jazbec ◽  
Petra Bohanec Grabar ◽  
Cristina Rodriguez-Antona ◽  
Vita Dolzan

Abstract Background We investigated the clinical relevance of SLC 19A1 genetic variability for high dose methotrexate (HD-MTX) related toxicities in children and adolescents with acute lymphoblastic leukaemia (ALL) and non Hodgkin malignant lymphoma (NHML). Patients and methods Eighty-eight children and adolescents with ALL/NHML were investigated for the influence of SLC 19A1 single nucleotide polymorphisms (SNPs) and haplotypes on HD-MTX induced toxicities. Results Patients with rs2838958 TT genotype had higher probability for mucositis development as compared to carriers of at least one rs2838958 C allele (OR 0.226 (0.071–0.725), p < 0.009). Haplotype TGTTCCG (H4) statistically significantly reduced the risk for the occurrence of adverse events during treatment with HD-MTX (OR 0.143 (0.023–0.852), p = 0.030). Conclusions SLC 19A1 SNP and haplotype analysis could provide additional information in a personalized HD-MTX therapy for children with ALL/NHML in order to achieve better treatment outcome. However further studies are needed to validate the results.


Oncotarget ◽  
2017 ◽  
Vol 8 (45) ◽  
pp. 80039-80049 ◽  
Author(s):  
Xiaonian Zhu ◽  
Wei Liu ◽  
Xiaoqiang Qiu ◽  
Zhigang Wang ◽  
Chao Tan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document