The E3 Ubiquitin Ligase TRIM36, a Transcriptional Target of Tob, Is Expressed in Anergic T Cells and Mediates Unresponsiveness through Proteolysis of Signaling Proteins PLC- γ1 and PKC-𝛉.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 113-113
Author(s):  
Dimitrios Tzachanis ◽  
Alla Berezovskaya ◽  
Esther M. Lafuente ◽  
Lequn Li ◽  
Gordon J. Freeman ◽  
...  

Abstract Ligation of the T cell receptor (TCR) and costimulatory receptors leads to cytokine secretion and clonal expansion, whereas ligation of TCR alone leads to anergy. We have previously determined that anergic cells express Tob, a member of the novel APRO gene family, which inhibits T cell activation. The precise molecular mechanisms via which Tob mediates its effects in T cells are not fully understood. Tob functions as transcriptional coactivator and enhances DNA binding of Smads. Therefore, Tob may regulate de novo mRNA synthesis or gene transcription. To identify genes that are induced by Tob, Jurkat T cells that lack endogenous Tob, were transfected with Tob cDNA or empty vector and differential gene expression was determined by suppression subtractive hybridization. TRIM36 was one of the genes induced by Tob. TRIM36 is a RING finger E3 ubiquitin ligase. It belongs to a recently identified tripartite motif (TRIM) gene family which also includes Pyrin/Marenosrtin, MID1, MUL, PML, RFP and TIF1, proteins implicated in familial human diseases and cancer. E3 proteins confer substrate specificity to the ubiquitin system. Previous studies have shown that the trancriptional profile of anergic cells includes the E3 ubiquitin ligases Cbl-b, GRAIL and Itch. Therefore, the finding that Tob, a transcriptional regulator expressed in anergic cells, induces expression of TRIM36 E3 ubiquitin ligase is very intriguing. Northern blot analysis confirmed that TRIM36 mRNA was selectively upregulated in anergic T cells. To determine the role of TRIM36 on IL-2 gene transcription, Jurkat T cells were transfected with full-length TRIM36 cDNA along with the IL-2 promoter/enhancer cDNA (2kb) linked to the luciferase gene. TRIM36 inhibited CD3+CD28-mediated IL-2 transcription by 90%. Interestingly, when cells were stimulated with PMA+Ionomycin, which bypass the TCR proximal signals, IL-2 transcription was almost unaffected. These results prompted us to search for candidate ubiquitination substrates among signaling molecules that have a critical role on TCR-mediated T cell activation and IL-2 transcription. Previous studies have shown that among T cell signaling molecules, TCRζ, ZAP70, PLC-γ1 and PKC-𝛉 undergo ubiquitin-targeted degradation. For this reason, we investigated whether any of these proteins might be substrates for TRIM36-mediated ubiquitination. V5-tagged TRIM36 or empty vector was expressed in Jurkat T cells followed by stimulation with anti-CD3+anti-CD28 mAbs in the presence of ubiquitin aldehyde that prevents substrate deubiquitination. Immunoblot with antibodies specific for TCR ζ, ZAP70, PLC-γ1 and PKC-𝛉 showed that expression of PLC-γ1 and PKC-𝛉 was selectively reduced in the presence of TRIM36. Immunoprecipitation with V5 mAb followed by immunoblot with substrate-specific antibodies revealed that PLC- γ1 and PKC-𝛉 coprecipitated with TRIM36. Immunoblot with ubiquitin-specific antibody revealed that PLC-γ1 and PKC- 𝛉 were substrates for ubiquitination by TRIM36. Our results show that at least one molecular mechanism via which Tob mediates its inhibitory effect on T cell activation involves the induction of TRIM36 ubiquitin ligase, which mediates degradation of two key signaling proteins, PLC- γ1 and PKC-𝛉. Moreover, these results suggest that TRIM36 may represent a novel target of molecular intervention for induction of transplantation tolerance.

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Ming-Fang Zhao ◽  
Xiu-Juan Qu ◽  
Jing-Lei Qu ◽  
You-Hong Jiang ◽  
Ye Zhang ◽  
...  

Interleukin- (IL-) 2 is the major growth factor for T-cell activation and proliferation. IL-2 has multiple functions in the regulation of immunological processes. Although most studies focus on T-cell immunomodulation, T-cell activation by IL-2 is the foundation of priming the feedback loop. Here, we investigated the effect of MAPK/ERK and PI3K/Akt signaling pathways on IL-2-induced cell activation and the regulatory mechanisms of upstream ubiquitin ligase Cbl-b and c-Cbl. Morphological analysis of Jurkat T cells was performed by cytospin preparations with Wright-Giemsa stain. CD25 expression on Jurkat T cells was determined by flow cytometry. Changes in cell activation proteins such as p-ERK, ERK, p-Akt, Akt, and ubiquitin ligase Casitas B-cell Lymphoma (Cbl) proteins were analyzed by western blot. Following IL-2-induced activation of Jurkat T cells, p-ERK expression was upregulated, while there was no change in p-Akt, ERK, or Akt expression. Thus, the MAPK/ERK signaling pathway, but not PI3K/Akt, was involved in IL-2-induced T-cell activation. Either using PD98059 (a specific inhibitor for p-ERK) or depletion of ERK with small interfering RNA (siRNA) reduced the expression of CD25. This study also showed that ubiquitin ligase proteins Cbl-b and c-Cbl might be involved in IL-2-induced Jurkat T-cell activation by negatively regulating the MAPK/ERK signaling pathway.


2013 ◽  
Vol 191 (2) ◽  
pp. 632-639 ◽  
Author(s):  
Guilin Qiao ◽  
Yixia Zhao ◽  
Zhenping Li ◽  
Peter Q. Tang ◽  
Wallace Y. Langdon ◽  
...  

2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Matthias Kästle ◽  
Camilla Merten ◽  
Roland Hartig ◽  
Thilo Kaehne ◽  
Ardiyanto Liaunardy-Jopeace ◽  
...  

Abstract Background Upon engagement of the T-cell receptor (TCR), the Src-family protein tyrosine kinase p56Lck phosphorylates components of the TCR (e.g. the TCRζ chains), thereby initiating T-cell activation. The enzymatic activity of Lck is primarily regulated via reversible and dynamic phosphorylation of two tyrosine residues, Y394 and Y505. Lck possesses an additional highly conserved tyrosine Y192, located within the SH2 domain, whose role in T-cell activation is not fully understood. Methods Knock-in mice expressing a phospho-mimetic (Y192E) form of Lck were generated. Cellular and biochemical characterization was performed to elucidate the function of Y192 in primary T cells. HEK 293T and Jurkat T cells were used for in vitro studies. Results Co-immunoprecipitation studies and biochemical analyses using T cells from LckY192E knock-in mice revealed a diminished binding of LckY192E to CD45 and a concomitant hyperphosphorylation of Y505, thus corroborating previous data obtained in Jurkat T cells. Surprisingly however, in vitro kinase assays showed that LckY192E possesses a normal enzymatic activity in human and murine T cells. FLIM/FRET measurements employing an LckY192E biosensor further indicated that the steady state conformation of the LckY192E mutant is similar to Lckwt. These data suggest that Y192 might regulate Lck functions also independently from the Lck/CD45-association. Indeed, when LckY192E was expressed in CD45−/−/Csk−/− non-T cells (HEK 293T cells), phosphorylation of Y505 was similar to Lckwt, but LckY192E still failed to optimally phosphorylate and activate the Lck downstream substrate ZAP70. Furthermore, LckY19E was recruited less to CD3 after TCR stimulation. Conclusions Taken together, phosphorylation of Y192 regulates Lck functions in T cells at least twofold, by preventing Lck association to CD45 and by modulating ligand-induced recruitment of Lck to the TCR. Major findings Our data change the current view on the function of Y192 and suggest that Y192 also regulates Lck activity in a manner independent of Y505 phosphorylation.


2003 ◽  
Vol 10 (1) ◽  
pp. 61-65 ◽  
Author(s):  
L. Frasca ◽  
C. Scottà ◽  
G. Lombardi ◽  
E. Piccolella

T cell suppression is a well established phenomenon, but the mechanisms involved are still a matter of debate. Mouse anergic T cells were shown to suppress responder T cell activation by inhibiting the antigen presenting function of DC. In the present work we studied the effects of co-culturing human anergic CD4+T cells with autologous dendritic cells (DC) at different stages of maturation. Either DC maturation or survival, depending on whether immature or mature DC where used as APC, was impaired in the presence of anergic cells. Indeed, MHC and costimulatory molecule up-regulation was inhibited in immature DC, whereas apoptotic phenomena were favored in mature DC and consequently in responder T cells. Defective ligation of CD40 by CD40L (CD154) was responsible for CD95-mediated and spontaneous apoptosis of DC as well as for a failure of their maturation process. These findings indicate that lack of activation of CD40 on DC by CD40L-defective anergic cells might be the primary event involved in T cell suppression and support the role of CD40 signaling in regulating both activation and survival of DC.


2013 ◽  
Vol 148 (2) ◽  
pp. 647-654 ◽  
Author(s):  
Xiao-Xing Fu ◽  
Li-Li Du ◽  
Ning Zhao ◽  
Qian Dong ◽  
Yu-Hua Liao ◽  
...  

2007 ◽  
Vol 27 (5) ◽  
pp. 1960-1973 ◽  
Author(s):  
Dominique Davidson ◽  
Burkhart Schraven ◽  
André Veillette

ABSTRACT Phosphoprotein associated with glycolipid-enriched membranes (PAG), also named Csk-binding protein (Cbp), is a transmembrane adaptor associated with lipid rafts. It is phosphorylated on multiple tyrosines located in the cytoplasmic domain. One tyrosine, tyrosine 314 (Y314) in the mouse, interacts with Csk, a protein tyrosine kinase that negatively regulates Src kinases. This interaction enables PAG to inhibit T-cell antigen receptor (TCR)-mediated T-cell activation. PAG also associates with the Src-related kinase FynT. Genetic studies indicated that FynT was required for PAG tyrosine phosphorylation and binding of PAG to Csk in T cells. Herein, we investigated the function and regulation of PAG-associated FynT. Our data showed that PAG was constitutively associated with FynT in unstimulated T cells and that this association was rapidly lost in response to TCR stimulation. Dissociation of the PAG-FynT complex preceded PAG dephosphorylation and PAG-Csk dissociation after TCR engagement. Interestingly, in anergic T cells, the association of PAG with FynT, but not Csk, was increased. Analyses of PAG mutants provided evidence that PAG interacted with FynT by way of tyrosines other than Y314. Enforced expression of a PAG variant interacting with FynT, but not Csk, caused a selective enhancement of TCR-triggered calcium fluxes in normal T cells. Furthermore, it promoted T-cell anergy. Both effects were absent in mice lacking FynT, implying that the effects were mediated by PAG-associated FynT. Hence, besides enabling PAG tyrosine phosphorylation and the PAG-Csk interaction, PAG-associated FynT can stimulate calcium signals and favor T-cell anergy. These data improve our comprehension of the function of PAG in T cells. They also further implicate FynT in T-cell anergy.


1992 ◽  
Vol 11 (11) ◽  
pp. 3875-3885 ◽  
Author(s):  
B. Mari ◽  
F. Checler ◽  
G. Ponzio ◽  
J.F. Peyron ◽  
S. Manie ◽  
...  

2001 ◽  
Vol 193 (11) ◽  
pp. 1269-1284 ◽  
Author(s):  
Henning Kirchgessner ◽  
Jes Dietrich ◽  
Jeanette Scherer ◽  
Pia Isomäki ◽  
Vladimir Korinek ◽  
...  

T cell receptor (TCR)-interacting molecule (TRIM) is a recently identified transmembrane adaptor protein, which is exclusively expressed in T cells. Here we demonstrate that in mature T cells, TRIM preferentially interacts with the TCR via the TCR-ζ chains and to a lesser extent via the CD3-ε/γ heterodimer. Transient or stable overexpression of TRIM in Jurkat T cells results in enhancement of TCR expression on the cell surface and elevated induction of Ca2+ mobilization after T cell activation. TRIM-mediated upregulation of TCR expression results from inhibition of spontaneous TCR internalization and stabilization of TCR complexes on the cell surface. Collectively, our data identify TRIM as a novel integral component of the TCR complex and suggest that one function of TRIM might be to modulate the strength of signals transduced through the TCR through regulation of TCR expression on the cell surface.


Sign in / Sign up

Export Citation Format

Share Document