scholarly journals PAG-Associated FynT Regulates Calcium Signaling and Promotes Anergy in T Lymphocytes

2007 ◽  
Vol 27 (5) ◽  
pp. 1960-1973 ◽  
Author(s):  
Dominique Davidson ◽  
Burkhart Schraven ◽  
André Veillette

ABSTRACT Phosphoprotein associated with glycolipid-enriched membranes (PAG), also named Csk-binding protein (Cbp), is a transmembrane adaptor associated with lipid rafts. It is phosphorylated on multiple tyrosines located in the cytoplasmic domain. One tyrosine, tyrosine 314 (Y314) in the mouse, interacts with Csk, a protein tyrosine kinase that negatively regulates Src kinases. This interaction enables PAG to inhibit T-cell antigen receptor (TCR)-mediated T-cell activation. PAG also associates with the Src-related kinase FynT. Genetic studies indicated that FynT was required for PAG tyrosine phosphorylation and binding of PAG to Csk in T cells. Herein, we investigated the function and regulation of PAG-associated FynT. Our data showed that PAG was constitutively associated with FynT in unstimulated T cells and that this association was rapidly lost in response to TCR stimulation. Dissociation of the PAG-FynT complex preceded PAG dephosphorylation and PAG-Csk dissociation after TCR engagement. Interestingly, in anergic T cells, the association of PAG with FynT, but not Csk, was increased. Analyses of PAG mutants provided evidence that PAG interacted with FynT by way of tyrosines other than Y314. Enforced expression of a PAG variant interacting with FynT, but not Csk, caused a selective enhancement of TCR-triggered calcium fluxes in normal T cells. Furthermore, it promoted T-cell anergy. Both effects were absent in mice lacking FynT, implying that the effects were mediated by PAG-associated FynT. Hence, besides enabling PAG tyrosine phosphorylation and the PAG-Csk interaction, PAG-associated FynT can stimulate calcium signals and favor T-cell anergy. These data improve our comprehension of the function of PAG in T cells. They also further implicate FynT in T-cell anergy.

1993 ◽  
Vol 177 (4) ◽  
pp. 1221-1226 ◽  
Author(s):  
M J Rapoport ◽  
A H Lazarus ◽  
A Jaramillo ◽  
E Speck ◽  
T L Delovitch

Thymic T cell anergy, as manifested by thymocyte proliferative unresponsiveness to antigens expressed in the thymic environment, is commonly believed to mediate the acquisition of immunological self-tolerance. However, we previously found that thymic T cell anergy may lead to the breakdown of tolerance and predispose to autoimmunity in nonobese diabetic (NOD) mice. Here, we show that NOD thymic T cell anergy, as revealed by proliferative unresponsiveness in vitro after stimulation through the T cell receptor (TCR), is associated with defective TCR-mediated signal transduction along the PKC/p21ras/p42mapk pathway of T cell activation. PKC activity is reduced in NOD thymocytes. Activation of p21ras is deficient in quiescent and stimulated NOD T cells, and this is correlated with a significant reduction in the tyrosine phosphorylation of p42mapk, a serine/threonine kinase active downstream of p21ras. Treatment of NOD T cells with a phorbol ester not only enhances their p21ras activity and p42mapk tyrosine phosphorylation but also restores their proliferative responsiveness. Since p42mapk activity is required for progression through to S phase of the cell cycle, our data suggest that reduced tyrosine phosphorylation of p42mapk in stimulated NOD T cells may abrogate its activity and elicit the proliferative unresponsiveness of these cells.


2001 ◽  
Vol 356 (1409) ◽  
pp. 625-637 ◽  
Author(s):  
Robert Lechler ◽  
Jian-Guo Chai ◽  
Federica Marelli-Berg ◽  
Giovanna Lombardi

The discovery that T–cell recognition of antigen can have distinct outcomes has advanced understanding of peripheral T–cell tolerance, and opened up new possibilities in immunotherapy. Anergy is one such outcome, and results from partial T–cell activation. This can arise either due to subtle alteration of the antigen, leading to a lower–affinity cognate interaction, or due to a lack of adequate co–stimulation. The signalling defects in anergic T cells are partially defined, and suggest that T–cell receptor (TCR) proximal, as well as downstream defects negatively regulate the anergic T cell's ability to be activated. Most importantly, the use of TCR–transgenic mice has provided compelling evidence that anergy is an in vivo phenomenon, and not merely an in vitro artefact. These findings raise the question as to whether anergic T cells have any biological function. Studies in rodents and in man suggest that anergic T cells acquire regulatory properties; the regulatory effects of anergic T cells require cell to cell contact, and appear to be mediated by inhibition of antigen–presenting cell immunogenicity. Close similarities exist between anergic T cells, and the recently defined CD4 + CD25 + population of spontaneously arising regulatory cells that serve to inhibit autoimmunity in mice. Taken together, these findings suggest that a spectrum of regulatory T cells exists. At one end of the spectrum are cells, such as anergic and CD4 + CD25 + T cells, which regulate via cell–to–cell contact. At the other end of the spectrum are cells which secrete antiinflammatory cytokines such as interleukin 10 and transforming growth factor–β. The challenge is to devise strategies that reliably induce T–cell anergy in vivo , as a means of inhibiting immunity to allo– and autoantigens.


2001 ◽  
Vol 356 (2) ◽  
pp. 461-471 ◽  
Author(s):  
Pedro E. PAZ ◽  
Soujuan WANG ◽  
Holly CLARKE ◽  
Xaiobin LU ◽  
David STOKOE ◽  
...  

T-cell-receptor (TCR)-mediated LAT (linker for activation of T cells) phosphorylation is critical for the membrane recruitment of signalling complexes required for T-cell activation. Although tyrosine phosphorylation of LAT is required for recruitment and activation of signalling proteins, the molecular mechanism associated with this event is unclear. In the present study we reconstituted the LAT signalling pathway by demonstrating that a direct tyrosine phosphorylation of LAT with activated protein-tyrosine kinase Zap70 is necessary and sufficient for the association and activation of signalling proteins. Zap-70 efficiently phosphorylates LAT on tyrosine residues at positions 226, 191, 171, 132 and 127. By substituting these tyrosine residues in LAT with phenylalanine and by utilizing phosphorylated peptides derived from these sites, we mapped the tyrosine residues in LAT required for the direct interaction and activation of Vav, p85/p110α and phospholipase Cγ1 (PLCγ1). Our results indicate that Tyr226 and Tyr191 are required for Vav binding, whereas Tyr171 and Tyr132 are necessary for association and activation of phosphoinositide 3-kinase activity and PLCγ1 respectively. Furthermore, by expression of LAT mutants in LAT-deficient T cells, we demonstrate that Tyr191 and Tyr171 are required for T-cell activation and Tyr132 is required for the activation of PLCγ1 and Ras signalling pathways.


1996 ◽  
Vol 184 (1) ◽  
pp. 19-29 ◽  
Author(s):  
H Groux ◽  
M Bigler ◽  
J E de Vries ◽  
M G Roncarolo

Human CD4+ T cells, activated by allogeneic monocytes in a primary mixed lymphocyte reaction in the presence of exogenous interleukin (IL) 10, specifically failed to proliferate after restimulation with the same alloantigens. A comparable state of T cell unresponsiveness could be induced by activation of CD4+ T cells by cross-linked anti-CD3 monoclonal antibodies (mAbs) in the presence of exogenous IL-10. The anergic T cells failed to produce IL-2, IL-5, IL-10, interferon gamma, tumor necrosis factor alpha, and granulocyte/macrophage colony-stimulating factor. The IL-10-induced anergic state was long-lasting. T cell anergy could not be reversed after restimulation of the cells with anti-CD3 and anti-CD28 mAbs, although CD3 and CD28 expression was normal. In addition, restimulation of anergized T cells with anti-CD3 mAbs induced normal Ca2+ fluxes and resulted in increased CD3, CD28, and class II major histocompatibility complex expression, indicating that calcineurin-mediated signaling occurs in these anergic cells. However, the expression of the IL-2 receptor alpha chain was not upregulated, which may account for the failure of exogenous IL-2 to reverse the anergic state. Interestingly, anergic T cells and their nonanergic counterparts showed comparable levels of proliferation and cytokine production after activation with phorbol myristate acetate and Ca2+ ionophore, indicating that a direct activation of a protein kinase C-dependent pathway can overcome the tolerizing effect of IL-10. Taken together, these data demonstrate that IL-10 induces T cell anergy and therefore may play an important role in the induction and maintenance of antigen-specific T cell tolerance.


2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Matthias Kästle ◽  
Camilla Merten ◽  
Roland Hartig ◽  
Thilo Kaehne ◽  
Ardiyanto Liaunardy-Jopeace ◽  
...  

Abstract Background Upon engagement of the T-cell receptor (TCR), the Src-family protein tyrosine kinase p56Lck phosphorylates components of the TCR (e.g. the TCRζ chains), thereby initiating T-cell activation. The enzymatic activity of Lck is primarily regulated via reversible and dynamic phosphorylation of two tyrosine residues, Y394 and Y505. Lck possesses an additional highly conserved tyrosine Y192, located within the SH2 domain, whose role in T-cell activation is not fully understood. Methods Knock-in mice expressing a phospho-mimetic (Y192E) form of Lck were generated. Cellular and biochemical characterization was performed to elucidate the function of Y192 in primary T cells. HEK 293T and Jurkat T cells were used for in vitro studies. Results Co-immunoprecipitation studies and biochemical analyses using T cells from LckY192E knock-in mice revealed a diminished binding of LckY192E to CD45 and a concomitant hyperphosphorylation of Y505, thus corroborating previous data obtained in Jurkat T cells. Surprisingly however, in vitro kinase assays showed that LckY192E possesses a normal enzymatic activity in human and murine T cells. FLIM/FRET measurements employing an LckY192E biosensor further indicated that the steady state conformation of the LckY192E mutant is similar to Lckwt. These data suggest that Y192 might regulate Lck functions also independently from the Lck/CD45-association. Indeed, when LckY192E was expressed in CD45−/−/Csk−/− non-T cells (HEK 293T cells), phosphorylation of Y505 was similar to Lckwt, but LckY192E still failed to optimally phosphorylate and activate the Lck downstream substrate ZAP70. Furthermore, LckY19E was recruited less to CD3 after TCR stimulation. Conclusions Taken together, phosphorylation of Y192 regulates Lck functions in T cells at least twofold, by preventing Lck association to CD45 and by modulating ligand-induced recruitment of Lck to the TCR. Major findings Our data change the current view on the function of Y192 and suggest that Y192 also regulates Lck activity in a manner independent of Y505 phosphorylation.


2004 ◽  
Vol 384 (3) ◽  
pp. 469-476 ◽  
Author(s):  
Souad RAHMOUNI ◽  
Einar Martin AANDAHL ◽  
Btissam NAYJIB ◽  
Mustapha ZEDDOU ◽  
Sandra GIANNINI ◽  
...  

MAIDS (murine AIDS) is caused by infection with the murine leukaemia retrovirus RadLV-Rs and is characterized by a severe immunodeficiency and T-cell anergy combined with a lymphoproliferative disease affecting both B- and T-cells. Hyperactivation of the cAMP-protein kinase A pathway is involved in the T-cell dysfunction of MAIDS and HIV by inhibiting T-cell activation through the T-cell receptor. In the present study, we show that MAIDS involves a strong and selective up-regulation of cyclo-oxygenase type 2 in the CD11b+ subpopulation of T- and B-cells of the lymph nodes, leading to increased levels of PGE2 (prostaglandin E2). PGE2 activates the cAMP pathway through G-protein-coupled receptors. Treatment with cyclo-oxygenase type 2 inhibitors reduces the level of PGE2 and thereby reverses the T-cell anergy, restores the T-cell immune function and ameliorates the lymphoproliferative disease.


2003 ◽  
Vol 10 (1) ◽  
pp. 61-65 ◽  
Author(s):  
L. Frasca ◽  
C. Scottà ◽  
G. Lombardi ◽  
E. Piccolella

T cell suppression is a well established phenomenon, but the mechanisms involved are still a matter of debate. Mouse anergic T cells were shown to suppress responder T cell activation by inhibiting the antigen presenting function of DC. In the present work we studied the effects of co-culturing human anergic CD4+T cells with autologous dendritic cells (DC) at different stages of maturation. Either DC maturation or survival, depending on whether immature or mature DC where used as APC, was impaired in the presence of anergic cells. Indeed, MHC and costimulatory molecule up-regulation was inhibited in immature DC, whereas apoptotic phenomena were favored in mature DC and consequently in responder T cells. Defective ligation of CD40 by CD40L (CD154) was responsible for CD95-mediated and spontaneous apoptosis of DC as well as for a failure of their maturation process. These findings indicate that lack of activation of CD40 on DC by CD40L-defective anergic cells might be the primary event involved in T cell suppression and support the role of CD40 signaling in regulating both activation and survival of DC.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 191-191 ◽  
Author(s):  
Pranam Chatterjee ◽  
Nikolaos Patsoukis ◽  
Gordon J. Freeman ◽  
Vassiliki A. Boussiotis

Abstract Programmed death (PD)-1 plays a prominent role in the induction and maintenance of peripheral tolerance. The biochemical mechanisms via which PD-1 mediates its inhibitory function remain poorly understood. The cytoplamsic tail of PD-1 contains two structural motifs, an immunoreceptor tyrosine-based inhibitory motif (ITIM) and an immunoreceptor tyrosine-based switch motif (ITSM). It has been reported that SHP-2 tyrosine phosphatase constitutively interacts with PD-1 ITSM and is involved in PD-1-mediated inhibitory function. We sought to identify the nature of PD-1: SHP-2 interaction and to determine whether other TCR-proximal signaling molecules might interact with PD-1 cytoplasmic tail. SHP-2 has two SH2 domains (N-SH2 and C-SH2) and one PTP domain. To identify the region of SHP-2 that interacts with PD-1 we generated five different GST-fusion proteins in which GST was fused with either SHP-2 full length (FL), SHP-2-N-SH2, SHP-2-C-SH2, SHP-2-ΔN-SH2 (lacking the N-terminus SH2 domain) or SHP-2-PTP. Pull down assays with each GST-fusion protein using lysates from naive and activated primary human T cells revealed that PD-1 interacted with GST-SHP-2 fusion protein only after T cell activation along with simultaneous PD-1 ligation. This interaction was mediated selectively via the SH2 domains of SHP-2, indicating that PD-1 requires prior tyrosine phosphorylation in order to undergo interaction with SHP-2. To identify the mechanism of PD-1 tyrosine phosphorylation governing PD-1: SHP-2 interaction, we used COS cells to express PD-1 along with either empty vector, the TCR proximal tyrosine kinase Fyn, or a kinase inactive mutant of Fyn, followed by pull down with each SHP-2-GST fusion protein. No interaction between PD-1 and SHP-2-GST fusion proteins was detected in lysates from COS cells expressing empty vector or kinase inactive Fyn mutant. In contrast, in the presence of active Fyn, PD-1 underwent tyrosine phosphorylation and was able to interact with GST fusion proteins of SHP-2-FL, SHP-2-N-SH2, SHP-2-C-SH2 and SHP-2-ΔN-SH2 but not SHP-2-PTP, providing evidence that PD-1: SHP-2 interaction requires tyrosine phosphorylation of PD-1 by Src family kinases for subsequent SH2-mediated recruitment of SHP-2. To determine the structural and functional role of each individual tyrosine in the ITIM and the ITSM of PD-1 cytoplasmic tail in PD-1: SHP-2 interaction in vivo, we used Jurkat T cells to express cDNA of either PD-1 wild type, PD-1 with the ITIM tyrosine mutated to phenylalanine (PD-1.Y223F), PD-1 with the ITSM tyrosine mutated to phenylalanine (PD-1.Y248F) or PD-1 with both ITIM and ITSM tyrosines mutated to phenylalanine (PD-1.Y223F/Y248F). After activation, PD-1 wild type underwent tyrosine phosphorylation and developed a robust interaction with SHP-2. PD-1.Y223F retained the ability to undergo interaction with SHP-2 after activation, whereas PD-1.Y248F and PD-1.Y223F/Y248F were unable to interact with SHP-2. We examined whether the PD-1 cytopasmic phosphotyrosines might interact with other SH2 domain containing proteins with critical role in T cell activation. We determined that after T cell activation, PD-1 displayed interaction with ZAP-70 and with activated Lck as determined by PD-1 immunoprecipitation followed by immunoblot with antibodies specific for ZAP-70 and for the activation-specific phospho-LckY394. These interactions remained unaffected in T cells expressing PD-1.Y223F but were abrogated in T cells expressing PD-1.Y248F or PD-1.Y223F/Y248F indicating a mandatory role of phosphorylated ITSM but not ITIM for these associations. However, despite their distinct ability to mediate interactions of PD-1 with SHP-2, Lck and ZAP-70, both phosphorylated ITSM and ITIM had a mandatory role in the inhibitory effect of PD-1 on T cell activation. In T cells expressing either PD-1.Y223F or PD-1.Y248F, PD-1-mediated inhibition of IL-2 production was diminished by 50%, but was almost abrogated in T cells expressing the double mutant PD-1.Y223F/Y248F. Our results indicate that the cytoplasmic tail of PD-1 requires tyrosine phosphorylation in order to mediate phosphorylation-dependent interactions and inhibition on T cell activation. Although phosphorylation-dependent interactions of PD-1 with SHP-2, ZAP-70 and Lck involve Y248 in the ITSM, yet unidentified interactions of Y223 in the ITIM are mandatory for PD-1-mediated inhibitory function on T cell activation. Disclosures: Freeman: Boehringer-Ingelheim: Patents & Royalties; Bristol-Myers-Squibb/Medarex: Patents & Royalties; Roche/Genentech: Patents & Royalties; Merck: Patents & Royalties; EMD-Serrono: Patents & Royalties; Amplimmune: Patents & Royalties; CoStim Pharmaceuticals: Patents & Royalties; Costim Pharmaceuticals: Membership on an entity’s Board of Directors or advisory committees.


Blood ◽  
2001 ◽  
Vol 97 (12) ◽  
pp. 3851-3859 ◽  
Author(s):  
Sandeep Krishnan ◽  
Vishal G. Warke ◽  
Madhusoodana P. Nambiar ◽  
Henry K. Wong ◽  
George C. Tsokos ◽  
...  

Human effector T cells have been difficult to isolate and characterize due to their phenotypic and functional similarity to the memory subset. In this study, a biochemical approach was used to analyze human effector CD4 T cells generated in vitro by activation with anti-CD3 and autologous monocytes for 3 to 5 days. The resultant effector cells expressed the appropriate activation/differentiation markers and secreted high levels of interferon γ (IFN-γ) when restimulated. Biochemically, effector CD4 T cells exhibited increases in total intracellular tyrosine phosphorylation and effector-associated phosphorylated species. Paradoxically, these alterations in tyrosine phosphorylation were concomitant with greatly reduced expression of CD3ζ and CD3ε signaling subunits coincident with a reduction in surface T-cell receptor (TCR) expression. Because loss of CD3ζ has also been detected in T cells isolated ex vivo from individuals with cancer, chronic viral infection, and autoimmune diseases, the requirements and kinetics of CD3ζ down-regulation were examined. The loss of CD3ζ expression persisted throughout the course of effector T-cell differentiation, was reversible on removal from the activating stimulus, and was modulated by activation conditions. These biochemical changes occurred in effector T cells generated from naive or memory CD4 T-cell precursors and distinguished effector from memory T cells. The results suggest that human effector T-cell differentiation is accompanied by alterations in the TCR signal transduction and that loss of CD3ζ expression may be a feature of chronic T-cell activation and effector generation in vivo.


Sign in / Sign up

Export Citation Format

Share Document