Evidence of Host Immune Recognition of Allogeneic Mesenchymal Stem Cells.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1287-1287
Author(s):  
Kirsten J. Beggs ◽  
Elisabeth H. Javazon ◽  
Jessica C. Tebbets ◽  
Alan W. Flake

Abstract The immunologic properties of Mesenchymal Stem Cells (MSCs) are of therapeutic interest. Previous work shows MSCs do not elicit an alloreactive T cell response in vitro due to suppressive mechanisms. These results suggested that allogeneic MSCs could be used in vivo without inducing an immune response. We further explored this hypothesis using a well-characterized population of Adult Murine Mesenchymal Stem Cells (AmMSCs). These AmMSC are free of hematopoietic contamination and have the following immunologic phenotype: Class I +, Class II-, CD40-, CD80+, and CD86−. Upon treatment with interferon gamma, upregulation of Class I, Class II, CD80, and CD86 was observed. T cell proliferation assays were performed using CFDA SE tracking dye and T cell subsets were analyzed using dual color flow cytometry. The AmMSCs were capable of suppressing CD4+ and CD8+ T cell proliferation in response to alloantigen or polyclonal mitogen, independent of MHC matching, when cultured in direct contact with the T cells. Intracellular cytokine staining of CD4+ and CD8+ T cells revealed that interferon gamma and IL-10 production increased in co-cultures with AmMSC. This suggested that AmMSC are recognized by T cells, but are suppressing proliferation due to other mechanisms in vitro. In order to determine if donor AmMSCs are detected by an immunocompetent host in vivo, we conducted the following study. C57/B6 mice received an intraperitoneal injection of either one million C57/B6 GFP AmMSC (congenic, n=5), one million Balb/c AmMSC (allogeneic, n=5) , or 5 million Balb/c splenocytes (allogeneic control, n=5) at time point zero, and then were given an additional injection of the same cells at 4 weeks. Mice were bled at 0,2,4,5, and 6 weeks after the first injection. Serum was collected and assayed for alloantibody production. Alloantibody results revealed IgG and IgM responses against donor alloantigen at titers of greater than 1:100 in all 5 animals injected with Balb/c MSC. This was significantly increased over titers observed in the 5 mice injected with congenic C57/B6 GFP AmMSC, and similar to the titers seen in mice injected with allogeneic splenocytes. At six weeks post injection animals were sacrificed and a mixed lymphocyte reaction (MLR) was performed using host splenocytes as responders and irradiated donor splenocytes as stimulators. Splenocytes were stained using CFDA SE tracking dye and stained for CD4+ and CD8+ positive T cells. Proliferation of CD4+ and CD8+ T cells was measured using dual color flow cytometry. No increase in proliferation compared to a naïve MLR was noted in the animals injected with the congenic C57/B6 GFP AmMSCs. However all animals injected with allogeneic AmMSCs or allogeneic splenocytes showed increased CD4+ and CD8+ proliferation. It has been suggested primarily based on their in vitro properties, that MSCs may evade the immune response or induce tolerance after allogeneic transplantation. Our results document immune recognition of AmMSCs in vitro and in vivo. While we observed suppression of T-cell proliferation in vitro, our results after in vivo administration support a specific allogeneic immunization response equivalent to that induced by allogeneic splenocytes. These results argue against the theory that allogeneic MSCs may induce tolerance after transplantation, or that they can escape immune surveillance.

2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Yingying Su ◽  
Yi Gu ◽  
Ruiqing Wu ◽  
Hao Wang

Mesenchymal stem cells (MSCs) treatment has emerged as a promising approach for treating Sjögren’s syndrome (SS). Impaired immunoregulatory activities of bone marrow mesenchymal stem cells (BMMSCs) are found in both SS patients and animal models, and the underlying mechanism is poorly understood. Increased expression of BMP6 is reported to be related to SS. The aim herein was to determine the effects of BMP6 on BMMSCs function. BMMSCs were isolated from SS patients and NOD mice and showed a high level of BMP6 expression. The effects of BMP6 on BMMSCs function were investigated using in vitro BMMSCs differentiation and in vitro and in vivo T cell proliferation and polarization assays. BMP6 increased osteogenic differentiation of BMMSCs and inhibited the immunomodulatory properties of BMMSCs. BMP6 enhanced T cell proliferation and Th1/Th17 differentiation in a T cell-BMMSC coculture system. Mechanistically, BMP6 downregulated PGE2 and upregulated IFN-gamma via Id1 (inhibitor of DNA-binding protein 1). Neutralizing BMP6 and knockdown of Id1 could restore the BMMSCs immunosuppressive function both in vitro and in vivo. The present results suggest a novel role of Id1 in BMP-mediated MSCs function, which may contribute to a better understanding of the mechanism of action of MSCs in treating autoimmune diseases.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Ewa Kuca-Warnawin ◽  
Magdalena Plebańczyk ◽  
Krzysztof Bonek ◽  
Ewa Kontny

Background. In ankylosing spondylitis (AS), accompanied by chronic inflammation, T cell expansion plays a pathogenic role; the immunoregulatory properties of bone marrow-derived mesenchymal stem cells (BM-MSCs) are impaired, while functional characteristics of their adipose tissue-derived counterparts are (ASCs) unknown. Methods. We evaluated the antiproliferative activity of AS/ASCs, obtained from 20 patients, towards allogeneic and autologous T lymphocytes, using ASCs from healthy donors (HD/ASCs) as the reference cell lines. The PHA-activated peripheral blood mononuclear cells (PBMCs) were cocultured in cell-cell contact and transwell conditions with untreated or TNF + IFNγ- (TI-) licensed ASCs, then analyzed by flow cytometry to identify proliferating and nonproliferating CD4+ and CD8+ T cells. The concentrations of kynurenines, prostaglandin E2 (PGE2), and IL-10 were measured in culture supernatants. Results. In an allogeneic system, HD/ASCs and AS/ASCs similarly decreased the proliferation of CD4+ and CD8+ T cells and acted mainly via soluble factors. The concentrations of kynurenines and PGE2 inversely correlated with T cell proliferation, and selective inhibitors of these factors synthesis significantly restored T cell response. AS/ASCs exerted a similar antiproliferative impact also on autologous T cells. Conclusion. We report for the first time that despite chronic in vivo exposure to inflammatory conditions, AS/ASCs retain the normal capability to restrain expansion of allogeneic and autologous CD4+ and CD8+ T cells, act primarily via kynurenines and PGE2, and thus may have potential therapeutic value. Some distinctions between the antiproliferative effects of AS/ASCs and HD/ASCs suggest in vivo licensing of AS/ASCs.


Blood ◽  
2006 ◽  
Vol 109 (1) ◽  
pp. 228-234 ◽  
Author(s):  
Kazuya Sato ◽  
Katsutoshi Ozaki ◽  
Iekuni Oh ◽  
Akiko Meguro ◽  
Keiko Hatanaka ◽  
...  

Abstract The molecular mechanisms by which mesenchymal stem cells (MSCs) suppress T-cell proliferation are poorly understood, and whether a soluble factor plays a major role remains controversial. Here we demonstrate that the T-cell–receptor complex is not a target for the suppression, suggesting that downstream signals mediate the suppression. We found that Stat5 phosphorylation in T cells is suppressed in the presence of MSCs and that nitric oxide (NO) is involved in the suppression of Stat5 phosphorylation and T-cell proliferation. The induction of inducible NO synthase (NOS) was readily detected in MSCs but not T cells, and a specific inhibitor of NOS reversed the suppression of Stat5 phosphorylation and T-cell proliferation. This production of NO in the presence of MSCs was mediated by CD4 or CD8 T cells but not by CD19 B cells. Furthermore, inhibitors of prostaglandin synthase or NOS restored the proliferation of T cells, whereas an inhibitor of indoleamine 2,3-dioxygenase and a transforming growth factor–β–neutralizing antibody had no effect. Finally, MSCs from inducible NOS−/− mice had a reduced ability to suppress T-cell proliferation. Taken together, these results suggest that NO produced by MSCs is one of the major mediators of T-cell suppression by MSCs.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2424-2424
Author(s):  
Yiming Huang ◽  
Larry D Bozulic ◽  
Thomas Miller ◽  
Hong Xu ◽  
Yujie Wen ◽  
...  

Abstract Abstract 2424 Poster Board II-401 We previously reported that CD8+TCR- facilitating cells (FC) induce the generation of chimeric regulatory T cells (Treg) in vivo. Transplantation of a mixture of CD8+/TCR- FC and hematopoietic stem cells (HSC) into ablated recipients results in chimerism and tolerance. Treg harvested from the spleen of chimeras (chimeric Treg) potently increase long-term donor chimerism in secondary NOD recipient mice. Here, we evaluated whether chimeric Treg enhance engraftment of hematopoietic stem cells (HSC) in an antigen-specific manner. To prepare mixed chimeras (B6 → NOD), NOD recipients were conditioned with 950 cGy TBI and transplanted with 10,000 B6 HSC and 1,000 NOD HSC plus 45,000 CD8+TCR- B6 FC. At 5 weeks, CD8-CD4+CD25bright chimeric Treg were sorted from spleens of the mixed chimeras (B6 → NOD). 100,000 chimeric Treg were then mixed with 10,000 B6 HSC (donor-specific) + 10,000 B10.BR HSC (third-party) and transplanted into conditioned NOD recipients in competitive repopulation assays. NOD mice given HSC plus nonchimeric naïve B6 Treg or HSC alone served as controls. Two of the four animals that received HSC alone engrafted and exhibited an average of 6.7% donor B6 chimerism at 30 days, 11.2% at 60 days, and 10.6% at 90 days. Three of five animals given HSC plus naïve B6 Treg engrafted with 21.3% donor B6 chimerism at 30 days, 28.8% at 60 days, and 28.9% at 90 days. In contrast, eight of nine recipients of HSC + chimeric Treg engrafted. These animals exhibited a significantly higher level of donor B6 chimerism, ranging from 56.3% at 30 days, 75.4% at 60 days to 85% at 90 days (P = 0.034). None of the recipients engrafted with the MHC-disparate third-party B10.BR HSC. We then assessed the suppressive function of chimeric Tregin vitro by using MLR suppressor cell assays. CD8-/CD4+/CD25bright Treg were sorted from chimeric spleens 5 wks to 12 wks after HSC + FC transplantation. As shown in the Figure 1, Treg from naïve B6 mice resulted in 1.9 fold; 1.3 fold and 1.1 fold inhibition of proliferation at 1:1, 1:0.25, 1:0.125 responder/Treg ratios (n = 3). In contrast, chimeric Treg potently suppressed T cell proliferation by 10.5 fold; 3.2 fold; and 1.7 fold at responder/Treg ratios of 1:1, 1:0.25, 1:0.125 (n = 4). Chimeric Treg significantly suppressed T cell proliferation at responder/Treg ratios of 1:1 and 1:0.25 compared with naïve B6 Treg (P < 0.05). NOD responder splenocytes remained hypoproliferative in response to B6 stimulator and chimeric Treg compared with stimulator plus B6 Treg, suggesting that chimeric Treg are significantly more potent than naïve B6 Treg in suppressing effector T cell proliferation in vitro. These data show that chimeric Treg enhance donor B6 HSC engraftment but not third-party B10.BR HSC, demonstrating that chimeric Treg function in vivo in an antigen-specific fashion. These data also show that the mechanism of FC function in vivo is associated with the establishment of an antigen-specific regulatory feedback loop. Figure 1 Figure 1. Disclosures: Bozulic: Regenerex: Employment. Ildstad:Regenerex: Equity Ownership.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 4698-4698
Author(s):  
Myoung Woo Lee ◽  
Dae Seong Kim ◽  
Hye Jin Kim ◽  
Meong Hi Son ◽  
Soo Hyun Lee ◽  
...  

Abstract Abstract 4698 Background: It is important to overcome the limitations such as graft rejection and graft versus host disease (GvHD) in allogeneic hematopoietic stem cell transplantation. Mesenchymal stem cells (MSCs), which evoke only minimal immune reactivity, may have anti-inflammatory and immunomodulatory effects. Purpose: In this study, we aimed to identify the immunomodulatory properties of human MSCs and to elucidate the possible mechanism of their properties for clinical treatment of allogeneic conflicts using MSCs. Materials & Methods: We conducted a comparative analysis about the immunomodulatory properties of MSCs derived from adult human tissues, including bone marrow (BM), adipose tissues (AT), umbilical cord blood (CB), and cord Wharton's jelly (WJ), in vitro and in vivo models. Results: AT-MSCs, CB-MSCs, and WJ-MSCs effectively suppressed phytohemagglutinin (PHA)-induced T-cell proliferation as effectively as did BM-MSCs. Levels of interferon (IFN)-g secreted from activated T-cells increased over time, but these levels were significantly reduced when cocultured with each type of MSCs. In addition, expression of indoleamine 2,3-dioxygenase (IDO) increased in MSCs treated with IFN-γ via JAK/STAT1 signaling pathways. Treatment with anti-IFN-g antibodies, JAK1/2 inhibitor or STAT1 siRNA restored PHA-induced T-cell proliferation. Use of an antagonist, 1-methyl-L-tryptophan, also restored PHA-induced T-cell proliferation, suggesting that IDO contributes to IFN-g-induced immunosuppression in MSCs. Moreover, infusion of IFN-g-treated MSCs decreased symptoms for human peripheral blood-derived mononuclear cells-induced GvHD in NOD/SCID mice, which resulted in an increase of survival rate of in vivo GvHD model. Conclusion: These data indicate that IFN-γ produced by activated T-cells is correlated with induction of IDO expression in MSCs by IFN-γ receptor/JAK/STAT1 pathway, which resulted in suppression of T-cell proliferation. Our findings suggest that MSCs derived from BM, AT, CB, or WJ could be used for clinical treatment of allogeneic conflicts. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4484-4484 ◽  
Author(s):  
Antonio Pierini ◽  
Lucrezia Colonna ◽  
Maite Alvarez ◽  
Dominik Schneidawind ◽  
Byung-Su Kim ◽  
...  

Adoptive transfer of CD4+CD25+FoxP3+ regulatory T cells (Tregs) prevents graft versus host disease (GvHD) in several animal models and following allogeneic hematopoietic cell transplantation (HCT) in clinical trials. In these models donor derived Tregs have been mainly used as they share the same major histocompatibility complex (MHC) with conventional CD4+ and CD8+ T cells (Tcons) that are primarily responsible for GvHD onset and persistence. Third-party derived Tregs are a promising alternative tool for cellular therapy as they can be prepared in advance, screened for pathogens and activity and banked. In this study we explored MHC disparities between Tregs and Tcons in HCT to evaluate the impact of these different cell populations in GvHD prevention and survival after transplant. Methods and Results We evaluated the ability of highly purified Treg to suppress proliferation of C57BL/6 (H-2b) Tcons following exposure to irradiated splenocytes from BALB/C (H-2d) mice in vitro in a mixed lymphocyte reaction (MLR). Either donor derived C57BL/6 (H-2b) or third party FVB (H-2q) Tregs suppressed Tcon proliferation at the Treg/Tcon ratios of 1:2 and 1:4. The same Treg population effectively suppressed different MHC derived Tcons where BALB/C (H-2d) or FVB (H-2q, third-party) Tcons were incubated with irradiated splenocytes from C57BL/6 (H-2b) mice and were effectively suppressed with BALB/C (H-2d) Tregs. In the MLR, third-party Tregs present the same activation molecule expression patterns as MHC matched Tregs: CTLA4 and LAG3 expression is enhanced after stimulation with interleukin-2 (IL-2) and anti-CD3/CD28 beads, while MHC class II molecule expression is increased after 3-4 days of culture with Tcons and irradiated splenocytes. Furthermore third-party and MHC matched Tregs express the same levels of interleukin-10 (IL-10). We translated these results to in vivo studies in animal models. In these studies T cell depleted bone marrow (TCD BM) from C57BL/6 (H-2b) mice was injected into lethally irradiated (total body irradiation, 8 Gy) BALB/C (H-2d) recipient mice. 2 days later GvHD was induced by injecting luc+ donor derived Tcons (1x106/mouse). Using this model GvHD was evaluated following the adoptive transfer of freshly isolated CD4+CD25+FoxP3+ Tregs derived from BALB/C (H-2d, host type), C57BL/6 (H-2b, donor type), FVB (H-2q, third-party) or BALB/B (H-2b, minor mismatched with the donor, major mismatched with the host) mice at the different Treg/Tcon ratios of 1:1, 1:2 and 1:4. As expected, donor Tregs exerted the strongest dose dependent GvHD protection (p = 0.028), while host Tregs did not improve mouse survival (p = 0.58). Third-party and minor mismatched with the donor Tregs improved mouse survival (third-party and minor mismatched with the donor respectively, p = 0.028 and p = 0.17) but mice had worse GvHD score profiles (both p< 0.001) and could not recover their weight as well as mice treated with donor Tregs (both p< 0.001). In vivoTcon bioluminescent imaging confirmed these results showing a reduced Tcon proliferation in mice treated with donor, third-party and minor mismatched with the donor Tregs, the first exerting the strongest effect (after 6 weeks of observation, p< 0.001). Conclusions Our studies indicate that MHC disparities between Tregs and Tcons do not represent an insurmountable barrier for Treg function. In vitro and in vivo data strongly suggest that Tregs can suppress Tcon proliferation without requiring MHC matching. In vivo GvHD prevention efficiency was affected by MHC disparities with donor derived Treg being the most effective, however, third party Treg also resulted in GvHD attenuation. These studies indicate that both donor and third party Treg could be effective in clinical application raising the possibility of screening and banking Treg for use. Further, these studies highlight the need for activation of the Treg on host tissues to effectively suppress conventional T cell proliferation and GvHD induction. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Author(s):  
◽  
Aras Toker

<p>Glatiramer acetate (GA) is approved for the treatment of relapsing-remitting multiple sclerosis (MS), and can suppress experimental autoimmune encephalomyelitis (EAE), a murine model of human MS. GA treatment is associated with the induction of anti-inflammatory TH2 responses and with the antigen specific expansion of regulatory T cells that counteract or inhibit pathogenic events in MS and EAE. These T cell mediated mechanisms of protection are considered to be a result of modulation of antigen presenting cells (APCs) by GA, rather than direct effects on T cells. However, it is unknown if GA preferentially targets a specific APC subset or can act through multiple APCs in vivo. In addition, GA-modulated innate cells may also exhibit direct antigen non-specific suppression of autoreactive cells. One objective of this study was to identify the in vivo target cell population of GA and to assess the potential of the target cells to antigen non-specifically suppress immune responses. Fluorophor-labelled GA bound to monocytes after intravenous injections, suggesting that monocytes may be the primary target of GA in vivo. In addition, intravenous GA treatment enhanced the intrinsic ability of monocytes to suppress T cell proliferation, both in vitro and in vivo. The findings of this study therefore suggest that GA-induced monocytes may contribute to GA therapy through direct mechanisms of antigen non-specific T cell immunosuppression. A further objective of this work was to investigate the potential of an in vivo drug targeting approach. This approach was hypothesised to increase the uptake of GA by the target cells and substantially improve GA treatment through antigen specific mechanisms such as induction of TH2 or regulatory T cells. Targeting antigens to professional APCs with an anti-MHC class II antibody resulted in significantly enhanced T cell proliferation in vitro. However, no EAE suppression occurred when GA was targeted to MHC class II in vivo. In addition, targeting GA specifically to monocytes also failed to suppress EAE. These findings suggest that GA treatment may selectively modulate monocytes to enhance their ability to inhibit autoreactive T cells, which could be part of the mechanism by which GA ameliorates MS. Targeting GA to a specific cell type may not be a powerful approach to improve treatment, because increased proliferation of GA specific T cells is not sufficient for disease suppression, and conjugation to antibodies may functionally reduce GA to a mere antigen devoid of immunomodulatory capacity.</p>


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3633-3633
Author(s):  
Raine Tatara ◽  
Katsutoshi Ozaki ◽  
Lekuni Oh ◽  
Keiko Hatanaka ◽  
Akiko Meguro ◽  
...  

Abstract Abstract 3633 Poster Board III-569 Mesenchymal stem cells (MSCs) possess an immunomodulatory function and show promise as a cell therapy for graft-versus-host disease (GVHD). In a phase II study in Europe, injections of MSCs caused 60-70% overall response rate, with longer survival of complete responder. In contrast to its clinical efficacy, the molecular mechanism(s) underlying immunomodulation by MSCs has not been fully established. Prostaglandin E2 (PGE2), tumor growth factor-b1 (TGF-b1), and indoleamine-2,3-dioxygenase have been reported to mediate the immunomodulatory function of MSCs, and we reported evidence that nitric oxide is also a mediator (Blood 2007, 109, 228). Th17 is a recently recognized differentiation category, in which CD4 cells produce IL-17. It has been reported that Th17 is crucial for experimental autoimmune encephalomyelitis (a model of the human disease, multiple sclerosis) and is also thought to be important in other autoimmune diseases. Regulatory T cells (Treg) are another newly recognized differentiation category, in which CD4 T cells have high levels of Foxp3 expression and suppress T cell proliferation. It has been reported that Th17 and Treg can be induced by incubation with TGF-b1 and IL-6 or IL-21, and TGF-b1 and IL-2, respectively, and that these two differentiations are in a reciprocal relationship. Whereas the role of Th17 in GVHD is still controversial, Treg has been reported to suppress GVHD in a mouse model. To elucidate the molecular mechanism(s) of the immunomodulatory function of MSCs, we herein sought to identify the effects of MSCs on these relatively new differentiations. MSCs inhibit Th17 differentiation even in conditions in which growth is not completely inhibited. Interestingly, an inhibitor of prostaglandin production, indomethacin, and an inhibitor of indoleamine 2,3-dioxygenase, 1-methyltryptophan, partially restore Th17 differentiation, whereas inhibitors of nitric oxide synthase do not. These results suggest that PGE2 and depletion of tryptophan, but not nitric oxide, mediate inhibitory effects of MSCs on Th17. Additionally, we found that MSCs produced PGE2 when co-cultured with CD4 T cells in Th17 differentiation condition and PGE2 per se suppresses Th17 differentiation. Thus, our results suggest that MSCs block Th17 differentiation through PGE2 prodction. In contrast to Th17 differentiation, Treg differentiation was not significantly inhibited by MSCs. However, MSCs still inhibited proliferation of T cells under these conditions, and T cell proliferation was restored by the addition of indomethacin. These results suggest that MSCs inhibit proliferation but not Treg differentiation through PGE2 production. The mechanism by which PGE2 differentially regulates these differentiations is unknown and remains an area for further investigation. Disclosures: Ozawa: Alexion: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document