Whole Blood Thromboelastogram Assays Demonstrate Prolonged Factor VIIIa Potency for Recombinant Disulfide Bond-Stabilized Factor VIII Variants.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2976-2976
Author(s):  
Klaus-Peter Radtke ◽  
Dean Chamberlain ◽  
John H. Griffin ◽  
Andrew J. Gale

Abstract Following proteolytic activation of factor VIII (FVIII) by thrombin, the FVIIIa A2 domain, A3 domain and light chain (A3-C1-C2 domains) form a non-covalent hetero-trimer. Because spontaneous A2 subunit dissociation causes loss of FVIIIa activity, we previously made two mutants each with two new Cys to form a disulfide bond linking residues 662 (A2) and 1828 (A3) (FVIIIC662-C1828) or residues 664 (A2) and 1826 (A3) (FVIIIC664-C1826). Following thrombin activation, each FVIIIa mutant was stabile compared to wild type (wt) B-domain-deleted (BDD) FVIII. Previous SDS-PAGE data showed that the A2 domain was disulfide linked to the light chain. To show that this is true for undenatured FVIIIa, here we used surface plasmon resonance (SPR) to monitor A2 dissociation from thrombin-activated wild type and variant FVIII species that were bound to the sensor surface via a monoclonal antibody. Following passage of thrombin over sensor-bound FVIII, only wt FVIII showed a characteristic decrease of SPR reflecting A2 subunit dissociation and thrombin-treated FVIIIC662-C1828 and FVIIIC664-C1826 showed only minor decreases in SPR. Thus, SPR data directly demonstrate that engineered inter-domain disulfide bridges between the A2 and A3 domains prevent A2 domain dissociation from FVIIIa. In contrast to simple plasma coagulation assays of FVIIIa, rotational thromboelastogram (RoTEG) assays of whole blood provide multiple parameters reflecting clot formation, clot quality, and clot dissolution. RoTEG assays using fresh severe hemophilia A whole blood that was reconstituted with either wt FVIII, or FVIIIC662-C1828 or FVIIIC664-C1826 were performed to test the hypothesis that the disulfide-stabilized FVIIIa mutants would show improved potency for thrombin generation. After recalcification of hemophilia A blood with added FVIII, we measured the clotting time (CT), the rate of clot-formation, the clot-firmness time (CFT), defined as the time required to reach a specified clot firmness, and the clot firmness at 5 min (CF-A5), defined as the clot firmness at 5 min after the observed CT. Samples reconstituted with disulfide-bridge-stabilized FVIII mutants or wt-FVIII had comparable CTs at similar concentrations. However, in comparison to wild type BDD-FVIII, comparable rates of clot-formation, CFTs and CF-A5 were observed for up to 10-fold lower concentrations of each disulfide-bridge-stabilized FVIII mutant. The differences between wt and FVIII mutants were especially pronounced at very low FVIII concentrations whereas at FVIII concentrations >0.01 U/mL the differences were less apparent. Because clot formation occurs early relative to overall thrombin generation which is better reflected by CFT and CF-A5 values, we interpret these data to indicate that the disulfide-stabilized FVIIIa variants provide sustained thrombin generation in whole blood compared to wt FVIII and speculate that these FVIII variants may prove superior to wt FVIII for stabilizing a hemostatic plug by providing sustained thrombin generation capacity.

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3798-3798
Author(s):  
Lilley Leong ◽  
Irina N. Chernysh ◽  
Yifan Xu ◽  
Cornell Mallari ◽  
Billy Wong ◽  
...  

Abstract Patients with severe factor VIII (FVIII) deficiency (hemophilia A [HemA]) develop neutralizing antibodies (inhibitors) against FVIII in up to ~30% of cases. For HemA patients with inhibitors, activated recombinant factor VII (rFVIIa) is a treatment option. High levels of rFVIIa are required for treating HemA patients with inhibitors to induce direct activation of factor X on the surface of activated platelets via a tissue factor (TF)-independent mechanism (Hoffman M, Monroe DM. Thromb Res. 2010;125(suppl 1):S16-S18). To assess how rFVIIa-mediated clot formation in HemA patients with inhibitors may differ from unaffected individuals, we compared the effect of rFVIIa on HemA versus control (or HemA supplemented with 100% FVIII) clot formation in human and/or mouse systems. By TF-induced thrombin generation assay, increasing rFVIIa from 5 nM to 100 nM did not appreciably alter the kinetics or extent of thrombin generation compared with the same human HemA plasma containing 100% FVIII. Confocal microscopy of human HemA plasma clots generated with 75 nM rFVIIa and TF showed few branching fibrin fibers and an open fibrin meshwork. In contrast, TF-induced coagulation of the same HemA plasma containing 100% FVIII formed fibrin clots with numerous branches, interconnecting to form a dense meshwork. To confirm that these findings reflect rFVIIa-mediated clot formation in vivo, we assessed the intrinsic coagulation of mouse HemA whole blood collected without anticoagulant and spiked with rFVIIa. Intrinsic coagulation with rFVIIa was assessed by T2 magnetic resonance (T2MR), a technique capable of monitoring the separation of whole blood into serum, loose-clot, and tight-clot compartments during coagulation (Skewis et al. Clin Chem. 2014;60:1174-1182; Cines et al. Blood. 2014;123:1596-1603). By T2MR, rFVIIa induced the separation of HemA whole blood into the serum and clot compartments, indicating that the reduced fibrin generation with rFVIIa did not interfere with whole blood coagulation. Furthermore, saphenous vein puncture of HemA mice treated with rFVIIa showed a dose-dependent decrease in clot times. Scanning electron microscopy of the clots extracted from these HemA mice indicated markedly different composition than clots extracted from wild-type mice. In wild-type clots, fibrin and polyhedral erythrocytes formed a large proportion of the total structures. In contrast, clots from rFVIIa-treated HemA mice consisted primarily of platelets and erythrocytes with forms intermediate between discoid and polyhedral but, surprisingly, low fibrin content. Taken together, these data suggest that rFVIIa-mediated clot formation may require greater activated platelet involvement, which would be consistent with the TF-independent mechanism of action proposed for rFVIIa in HemA. Finally, the compositional difference between clots from wild-type versus HemA mice dosed with rFVIIa suggest that evaluating HemA therapies for their ability to form more physiologic clots could be an approach to improve treatment options for patients with HemA. Disclosures Leong: Bayer: Employment. Xu:Bayer: Employment. Mallari:Bayer: Employment. Wong:Bayer: Employment. Sim:Bayer: Employment. Cuker:Stago: Consultancy; Genzyme: Consultancy; Amgen: Consultancy; Biogen-Idec: Consultancy, Research Funding; T2 Biosystems: Research Funding. Marturano:T2 Biosystems: Employment. Lowery:T2 Biosystems: Employment. Kauser:Bayer: Employment. Weisel:Bayer: Research Funding.


2014 ◽  
Vol 70 (4) ◽  
pp. 1005-1014 ◽  
Author(s):  
Beatriz G. Guimarães ◽  
Djemel Hamdane ◽  
Christophe Lechauve ◽  
Michael C. Marden ◽  
Béatrice Golinelli-Pimpaneau

Neuroglobin plays an important function in the supply of oxygen in nervous tissues. In human neuroglobin, a cysteine at position 46 in the loop connecting the C and D helices of the globin fold is presumed to form an intramolecular disulfide bond with Cys55. Rupture of this disulfide bridge stabilizes bi-histidyl haem hexacoordination, causing an overall decrease in the affinity for oxygen. Here, the first X-ray structure of wild-type human neuroglobin is reported at 1.74 Å resolution. This structure provides a direct observation of two distinct conformations of the CD region containing the intramolecular disulfide link and highlights internal cavities that could be involved in ligand migration and/or are necessary to enable the conformational transition between the low and high oxygen-affinity states following S—S bond formation.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2139-2139 ◽  
Author(s):  
Meera B. Chitlur ◽  
Indira Warrier ◽  
Madhvi Rajpurkar ◽  
Wendy Hollon ◽  
Lolita Llanto ◽  
...  

Abstract The thromboelastograph produces a continuous profile of the rheological changes that occur during the process of coagulation using whole blood. This information can be transformed into a dynamic velocity profile of the changes in blood elasticity occurring during clotting. We used the TEG® hemostasis analyzer in patients with hemophilia A or B with and without inhibitors and other coagulation factor deficiencies (OFD), to study the thromboelastographic profiles in these patients. Materials and Methods: 62 children (6 months-19 years old) were enrolled according to IRB regulations. 29 children had severe hemophilia A (SHA), 4 moderate hemophilia A or B (Mod.H), 2 severe factor VII deficiency, 1 combined factor V and VIII deficiency, 1 VWD (type II B), 1 severe factor V deficiency, 1 Severe PAI deficiency, 19 normal controls (NC), and 4 SHA with inhibitors (SHA+I). All patients were studied 72 hours after the last dose of factor. Citrated whole blood was activated using recombinant human tissue factor (Innovin, Dade Behring Inc®) and recalcified using 0.2M CaCl2. In patients with central lines with heparin, a heparinase cup was used. The TEG® was run for ≥ 90 min. CBC with differential was obtained on all subjects. Results: There was no significant difference in the CBC parameters among patients. Analysis of the TEG data revealed the following: Table 1 TEG Parameters (mean values) SHA (n=29) Mod.H (n=4) SHA+I (n=4) OFD (n=6) Control(n=19) MTG:Max rate of thrombin generation; TMG: Time to MTG; R: Reaction Time; K: Time to reach an amplitude of 20mm; MA: Max. Amplitude MTG(mm*100/sec) 8.7 9.6 1.3 9 17 TMG(min) 27.5 16.6 62.7 17.5 8.9 R(min) 22 14 56 15 7 K(min) 7 4 41 4 2 Max.Amplitude, MA (mm) 59 56 12 58 62 The rate of thrombin generation as visualized by plotting the 1st derivative of the TEG course, in patients with SHA without inhibitors, showed that they could be divided into 2 groups based on MTG (</>9). When analysed the 2 groups showed the following characteristics (5 representative curves from each group are shown): Figure Figure Table 2 TEG Parameters (Mean values) MTG < 9 (n=16) MTG > 9 (n=13) p value TMA: Time to MA; MTG(mm*100/sec) 5.5 12.6 <0.001 TMG (min) 33 20 0.009 R(min) 26 16 0.004 K(min) 9 3.4 0.03 MA(mm) 56.1 62.3 0.01 TMA(min) 60 38 0.006 13/29 children with SHA had target joints and 69%of patients with target joints had a MTG<9. Conclusions: SHA patients have variable bleeding tendencies as seen by the variation in MTG. A lower MTG is associated with a higher incidence of target joints. This may provide a clue as to which patients may have the greatest benefit from primary prophylaxis. Patients with OFD have a TEG® profile similar to Mod.H patients. SHA+I have poor thrombin generation as seen by a significantly longer TMG and R time (p <0.05), compared to all subjects. The TEG may provide valuable clues to the severity of bleeding tendencies in patients with factor deficiencies. In additional observations (not shown), it appears that the TEG may be used to monitor the response to treatment with factor concentrates and tailor treatment with rFVIIa.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2266-2266
Author(s):  
Randolph B Lyde ◽  
Li Zhai ◽  
Karen Vo ◽  
Danuta Jadwiga Jarocha ◽  
Spencer Sullivan ◽  
...  

Abstract We and others have shown that FVIII expressed ectopically in platelets (pFVIII) is stored in α-granules, released at sites of vascular injury and restores hemostasis in FVIIInull mice, even in the presence of neutralizing antibodies to FVIII. These studies support the concept that unlike therapeutic interventions that correct plasma FVIII, pFVIII may be a useful therapy in hemophilia A with intractable inhibitors and significant bleeds. We have also demonstrated this approach has several limitations that may make pFVIII gene therapy bone marrow transplantation (BMT) strategies problematic: 1) pFVIII is not equivalent to plasma FVIII and its efficacy in joint and intracranial bleeds has yet to be shown, especially in the presence of inhibitors, and 2) pFVIII expressed during megakaryopoiesis can cause injury to the Mks, potentially exacerbating post-BMT thrombocytopenia. We propose an alternative strategy: interval prophylactic infusions of FVIII-containing platelets generated from patient-specific iMks expressing either human B-domain-deleted (BDD) FVIII or variants of this FVIII that have greater stability and longer half-lives; making them especially efficacious as pFVIII as we previously demonstrated. iPSCs are a renewable source of cells that can be pre-screened prior to clinical usage for lines that express optimal levels of pFVIII and also release optimal numbers of platelets after differentiation into iMks. Such iPSCs were transfected with a self-inactivating lentivirus containing cDNA for one of three FVIII variants: wildtype BDD FVIII (WT FVIII), R1645H PACE/furin cleavage site FVIII (FVIIIR1645H), and amino acid 1645 to 1648 deletion FVIII (FVIIIΔ). FVIIIR1645H and FVIIIΔ show greater stability and consequently greater specific activity with no increase in injuring Mks. All FVIII variants were expressed using the MK-specific Cxcl4 promoter and were shown to be effective in several bleeding models in FVIIInull mice. Differentiated and transduced iMKs were analyzed for RNA and protein expression. All of the FVIII variant iMKs expressed at least forty-fold higher levels of mRNA compared to the non-transduced control (n=6) and protein was expressed at >550 pg/106 CD42b+ iMKs (n=6). Transduced MKs released FVIII into the supernatant when activated by thrombin showing the pFVIII was likely stored in α-granules. Annexin staining was the same between FVIII-expressing iMKs and control iMks suggesting that the level of pFVIII did not cause the iMks to become apoptotic. To test the ability of FVIII-expressing iMKs to correct the coagulopathy in hemophilia A, 5x105 iMKs were added to FVIIInull murine whole blood and evaluated for clot formation using rotational thromboelastometry (ROTEM). Each FVIII variant showed a decrease in clotting time, clot formation time, and an increase in maximum clot firmness when compared to the non-transduced control (n=4). These data show that iMKs expressing FVIII variants can improve hemostasis in a whole blood clotting assay. Our next goal is to generate sufficient platelets from these iMKs to test for correction of the bleeding diathesis in immunodeficient FVIIInull mice and to determine their efficacy in improving hemostasis in a number of clinically relevant hemostatic models. Disclosures Arruda: Pfizer: Consultancy, Patents & Royalties, Research Funding; Spark Therapeutics: Patents & Royalties. Camire:Pfizer: Consultancy, Patents & Royalties, Research Funding; NovoNordisk: Research Funding; Spark Therapeutics: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2001 ◽  
Vol 97 (3) ◽  
pp. 685-691 ◽  
Author(s):  
Steven W. Pipe ◽  
Evgueni L. Saenko ◽  
Angela N. Eickhorst ◽  
Geoffrey Kemball-Cook ◽  
Randal J. Kaufman

Abstract Thrombin-activated factor VIII (FVIIIa) is a heterotrimer with the A2 subunit (amino acid residues 373-740) in a weak ionic interaction with the A1 and A3-C1-C2 subunits. Dissociation of the A2 subunit correlates with inactivation of FVIIIa. Patients with hemophilia A have been described whose plasmas display a discrepancy between their FVIII activities, where the 1-stage activity assay displays greater activity than the 2-stage activity assay. The molecular basis for one of these mutations, ARG531HIS, is an increased rate of A2 subunit dissociation. Examination of a homology model of the A domains of FVIII predicted ARG531 to lie at the interface of the A1 and A2 subunits and stabilize their interaction. Indeed, patients with mutations either directly contacting ARG531 (ALA284GLU, ALA284PRO) or closely adjacent to the A1-A2 interface in the tightly packed hydrophobic core (SER289LEU) have the same phenotype of 1-stage/2-stage discrepancy. TheALA284GLU andSER289LEU mutations in FVIII were produced by transfection of COS-1 monkey cells. Compared to FVIII wild-type both mutants had reduced specific activity by 1-stage clotting activity and at least a 2-fold lower activity by 2-stage analysis (COAMATIC), similar to the reported clinical data. Analysis of immunoaffinity purified ALA284GLU andSER289LEU proteins in an optical biosensor demonstrated that A2 dissociation was 3-fold faster for both FVIIIa mutants compared to FVIIIa wild-type. Therefore, these mutations within the A1 subunit of FVIIIa introduce a similar destabilization of the FVIIIa heterotrimer compared to the ARG531HISmutation within the A2 subunit and support that these residues stabilize the A domain interface of FVIIIa.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 10-11
Author(s):  
Matthew W Bunce ◽  
Zheng Huang Devine ◽  
Madhu Chintala

Background: FXIa inhibition is a promising antithrombotic drug target. BMS-986177/JNJ-70033093 (BMS-177/JNJ-3093) is a novel small molecular inhibitor of FXIa currently in Phase II clinical trials with the potential for reduced bleeding risk as compared to the currently approved oral anticoagulantsHowever, reversal of anticoagulation may still be required in patients who have uncontrolled or life-threatening bleeding or need an urgent surgical procedure. Aim: To evaluate the ability of nonspecific reversal agents (NSRAs) FEIBA®, NovoSeven®, Kcentra®, Profilnine®, BeneFix®, Novoeight®, and Cyklokapron® to neutralize the anticoagulation of BMS-177/JNJ-3093 in the activated partial thromboplastin time (aPTT), thromboelastography (TEG) and thrombin generation assay (TGA) in vitro using human plasma or whole blood. Method: aPTT and TEG were performed in human plasma and whole blood, respectively, using standard assay procedures. TGA was performed in human plasma using diluted kaolin aPTT reagent (1:10,000). JNJ-3093 was evaluated at different concentrations (0.3 -10 µM) to cover the anticipated exposures in the Phase II clinical trials. The NSRAs were evaluated at the anticipated concentrations according to the dosing information in their respective labels. Results: BMS-177/JNJ-3093 produced concentration dependent increases in aPTT (up to 4.4x at 10 μM); prolongations of lag time in TEG (2.6X); prolongations of lag time (3X) as well as reductions in peak thrombin generation (70%) in TGA. FEIBA® effectively neutralized the anticoagulant effects of JNJ-3093 in aPTT, TEG and TGA. NovoSeven® neutralized the BMS-177/JNJ-3093-induced prolongations in aPTT, prolongations in lag time in TEG and TGA assays and partially restored the peak thrombin generation in TGA. In contrast, all other NSRAs tested had negligible effects or did not show neutralization of anticoagulation induced by BMS-177/JNJ-3093 in the referenced assays Conclusion: These results demonstrate that FEIBA® and NovoSeven® can effectively neutralize the anticoagulant effects of BMS-177/JNJ-3093 in vitro. A clinical study is required to determine if these agents can reverse the anticoagulant effects of BMS-177/JNJ-3093 in patients. Table Disclosures Bunce: Johnson & Johnson: Current Employment, Current equity holder in publicly-traded company. Huang Devine:Johnson & Johnson: Current Employment, Current equity holder in publicly-traded company. Chintala:Johnson & Johnson: Current Employment, Current equity holder in publicly-traded company. OffLabel Disclosure: FEIBA: hemophilia A and B patients with inhibitors for: control and prevention of bleeding episodes; use around the time of surgery; routine prophylaxis to prevent or reduce the frequency of bleeding episodes NovoSeven: Treatment of bleeding and prevention of bleeding for surgeries and procedures in adults and children with hemophilia A or B with inhibitors, congenital Factor VII (FVII) deficiency, and Glanzmanns thrombasthenia with a decreased or absent response to platelet transfusions; treatment of bleeding and prevention of bleeding for surgeries and procedures in adults with acquired hemophilia Kcentra: urgent reversal of acquired coagulation factor deficiency induced by vitamin K antagonist therapy in adult patients with need for urgent surgery/invasive procedure or acute major bleeding Profilnine: prevention and control of bleeding in patients with Factor IX deficiency due to hemophilia B BeneFix: control and prevention of bleeding episodes or peri-operative management in adult and pediatric patients with hemophilia B Novoeight: for use in adults and children with hemophilia A for control and prevention of bleeding, perioperative management, and routine prophylaxis to prevent or reduce the frequency of bleeding episodes Cyklokapron: patients with hemophilia for short-term use to reduce or prevent hemorrhage and reduce the need for replacement therapy during and following tooth extraction)


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4662-4662
Author(s):  
Debnath Maji ◽  
Michael A Suster ◽  
Divyaswathi Citla Sridhar ◽  
Maria Alejandra Pereda ◽  
Janet Martin ◽  
...  

Introduction: Patients with Hemophilia A have considerable phenotypic heterogeneity with respect to clinical severity based on their baseline factor levels. As clinical bleeding risk is helpful to individualize factor replacement therapy in hemophilia patients, previous studies have utilized direct and indirect methods of thrombin generation to classify individual bleeding phenotypes, however, with variable results. An easy to use, point-of-care, global assay to assess bleed phenotype, can be a useful tool in the clinical setting to determine intensity of prophylaxis therapy for patients with hemophilia. We have previously introduced a novel, point-of-care (POC), dielectric microsensor, ClotChip, and demonstrated its sensitivity to factor replacement in patients with severe hemophilia A. We aim to further test the ability of ClotChip in assessment of a bleeding phenotype, as described by a bleeding score, in patients with hemophilia A. Methods: After IRB approval, 28 patients with hemophilia A of varying severity and well-characterized bleeding history, were enrolled in this study at the time of trough factor levels. The bleeding history was extracted from patient charts and included number of bleeds (joint and soft-tissue), annual factor usage in terms of units/kg, and number of target joints. These parameters were used to generate a bleeding score (range: 0 - 24), and patients were divided in to 2 categories with scores between 0 - 12 (n=14) and > 12 (n=14). Healthy volunteers (n=17) were accrued as controls. Whole blood samples were obtained by venipuncture into collection tubes containing 3.2% sodium citrate. Samples were then tested with the ClotChip within 2 hours of collection. ClotChip is based on the electrical technique of dielectric spectroscopy (DS) and features a low-cost (material cost < $1), small- sized (26mm × 9mm × 3mm), and disposable microfluidic biochip with miniscule sample volume (< 10 µL). The ClotChip readout was taken as the temporal variation in the real part of blood dielectric permittivity at 1 MHz. Our previous studies have shown that the ClotChip readout is sensitive to the global coagulation process and the time to reach a peak in permittivity (Tpeak) is a sensitive parameter to assess coagulation factor defects. Thrombin generation assay (TGA) using low tissue factor concentration was also performed on blood samples according to the manufacturer's direction. TGA was not available for 4 hemophilia and 2 control samples. Endogenous thrombin potential (ETP) parameter of TGA was used in this study to assess thrombin generation. Data are reported as mean ± standard deviation (SD). Analysis of variance (ANOVA) was used to test for statistical significance between groups with P < 0.05. Spearman's correlation test was used to derive correlation statistics. Results: ClotChip exhibited a mean Tpeak of 2186s ± 1560s for hemophilia patients in the group with higher bleeding scores (i.e. score >12), a mean Tpeak of 931s ± 496s for the group with lower bleeding scores (i.e. score <12) and a mean Tpeak of 441s ± 74s for the healthy group (Figure 1A). A significant difference in Tpeak was found between the group with higher bleeding scores compared to the group with lower bleeding scores (P = 0.002) as well as between higher bleeding scores and the healthy group (P < 0.0001). However, no significant difference in the TGA ETP parameter was detected between the groups with higher bleeding scores (mean ETP: 470 ± 814) and lower bleeding scores (mean ETP: 471 ± 897) (Figure 1B). ETP exhibited a statistical difference between the healthy group (mean ETP: 3462 ± 575) and both hemophilia groups (P < 0.0001). We also carried out studies to investigate the correlative power of the ClotChip Tpeak parameter to the TGA ETP parameter when including additional blood samples that were collected at various times during a hemophilia patient's prophylaxis regimen. The ClotChip Tpeak parameter exhibited strong negative correlation to the TGA ETP parameter (Spearman's rs= -0.73, P < 0.0001). Conclusions: Our studies suggest that a novel dielectric microsensor (ClotChip) could be useful in assessing bleeding phenotype in hemophilia A patients, allowing rapid assessment of hemostasis using a miniscule amount of whole blood (<10 µL) at the POC. Further studies are needed to determine if ClotChip data can be used to individualize prophylactic factor replacement regimens in hemophilia A patients. Disclosures Maji: XaTek, Inc: Patents & Royalties: 9,995,701. Suster:XaTek, Inc: Consultancy, Patents & Royalties: 9,995,701. Mohseni:XaTek, Inc: Consultancy, Patents & Royalties. Ahuja:XaTexk Inc.: Consultancy, Patents & Royalties, Research Funding; Rainbow Children's Foundation: Research Funding; Bayer: Consultancy; Biovertiv Sanofi: Consultancy; Genentech: Consultancy.


1998 ◽  
Vol 79 (05) ◽  
pp. 943-948 ◽  
Author(s):  
W. C. Pieneman ◽  
P. Fay ◽  
E. Briët ◽  
P. H. Reitsma ◽  
R. M. Bertina

SummaryWe further characterised the abnormal factor VIII molecule (factor VIII Leiden) of a Crm+, mild hemophilia A patient with a factor VIII activity of 0.18 IU/ml and a factor VIII antigen of 0.95 IU/ml. Mutation analysis of the coding region, promoter and 3’ untranslated region of the factor VIII gene revealed the presence of a C to T substitution at codon 527. This nucleotide change predicts the replacement of an arginine to tryptophan in the A2 domain close to a suggested binding site for factor IXa. Since a previous study of this mutant factor VIII protein suggested that this protein had a reduced affinity for factor IXa, position 527 in the protein might be involved in the interaction with factor IXa.In this study we gathered evidence for our hypothesis that the Arg to Trp mutation at position 527 is the cause of the reduced activity of factor VIII Leiden. Replacement of the mutated A2 domain by wild type A2 domain partially corrected the defect.Factor VIII from normal and factor VIII Leiden plasma was concentrated by cryoprecipitation, activated with thrombin and incubated with excess wild type A2 domain. Competition with excess isolated human A2 domain resulted in a partial reconstitution of the factor VIIIa activity of thrombin treated factor VIII Leiden. This supports the hypothesis that the mutation in the A2 domain is the cause of the reduced factor VIII activity.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 4440-4440
Author(s):  
Marcus E. Carr ◽  
Erika J Martin ◽  
John Christian Barrett ◽  
Mindy Nolte ◽  
Janice Kuhn ◽  
...  

Abstract Abstract 4440 It is known that some FVIII deficient patients who develop high titer FVIII inhibitors do not respond as expected to inhibitor bypassing agents. During an IRB approved study of laboratory monitoring of rFVIIa infusion in hemophilia patients, we had the opportunity to extensively study a patient who was known to respond poorly to standard dose (90 mg/kg) rFVIIa. We present here results from this patient included in this study and question whether it might be possible to predict poor response from in vitro measurements. Case history The patient is a 43 year old male with severe hemophilia A (FVIII<1%) and a high titer FVIII antibody (10.4 BU). In 2003, attempts were made to treat spontaneous joint bleeds with standard (90 mg/kg) dose rFVIIa. Responses were poor and the patient was switched to FEIBA (>6000 IU per infusion) to which he responded. He continues to bleed frequently with 7 documented bleeds requiring 21 infusions of FEIBA for treatment during the first six months of 2009. Methods This patient was one of 10 hemophiliacs participating in a clinical study of rFVIIa. Blood samples were drawn at baseline and at 0.5, 1, 2, 4 and 6 hours after a single dose of rFVIIa 90 mg/kg. Parameters measured included PT, PTT, fibrinogen level and whole blood assays (Hemodyne HAS, TEG®, and ROTEG®). Thrombin generation was measured in PPP and PRP by CAT. Plasma samples were analyzed for Prothrombin Fragment 1.2, FVII:C, FVII:Ag, FVIIa:ATIII and D-dimer. In addition, in this patient an in vitro spiking study of rFVIIa corresponding to doses of 90, 180 and 270 mg/kg was performed to determine the clotting parameters. Results At baseline, his PT was 9.6 seconds, PTT was 112 seconds, and fibrinogen was 238 mg/dl. Samples for TEG, HAS and ROTEG analysis all failed to clot when re-calcified and monitored for up to 60 minutes. Thirty minutes post infusion of rFVIIa, HAS parameters slightly improved (FOT=16 min, PCF 2.0 Kdyn) but quickly reverted to grossly abnormal at one hour. This is in marked contrast to the typical response of most patients in the study as demonstrated in (Fig.1). The R for TEG shortened to 14.4 min and CT for ROTEM decreased to 1094 sec after 30 minutes and remained measurable but grossly abnormal (30 min and 2000 sec) for the next six hours. MA (60 mm) and MCF (60 mm) normalized at 30 min and remained normal for the next six hours. Results of CAT were dependent on the sample type and clot triggering agent. Re-calcification in PRP resulted in shortening of T-lag to 21.5 minutes and a C-max of 15.8 nM both of which were grossly abnormal. T-lag for PRP clotted with 1pm TF was 9.9 min and shortened to 5 min post rFVIIa infusion. ETP when measurable was very low. For PPP clotted with 0.5 pM TF and 4mM phospholipid, the T-lag decreased from a baseline of 5 to <3 min post rFVIIa infusion and remained <3 for six hours. Baseline antigen and coagulant rFVIIa, D-Dimer and F1+2 levels were normal in the patient and the pattern of response did not differ from those seen with patients who had normal responses to rFVIIa. The pharmacokinetics of rFVIIa in this patient were determined, and were consistent with other study participants (Cltot: 66.3, mean= 50.8 ml/hr*kg). During the in vitro experiment, addition of rFVII produced HAS results equivalent to those seen 30 minutes after rFVIIa infusion (Table). Addition of concentrations equivalent to 180 and 270 mg/Kg doses produced additional correction. Conclusion We have analyzed the response to rFVIIa infusion using multiple clotting parameters in a patient with known poor clinical response to standard dose rFVIIa. The clotting lag times of whole blood assays including the HAS, TEG and ROTEG appear to be sensitive to varying degrees to the decreased response to rFVIIa. Thrombin generation was grossly abnormal in PRP but appeared relatively insensitive in PPP to the decreased rFVIIa effect. Spiking studies in the HAS correlated with results from infusion and also indicated that the patient might respond to higher dose rFVIIa. This possibility has not been clinically confirmed, but these results raise the possibility of identifying poor responders and perhaps helping to predict doses that might be effective. Disclosures: Ezban: NovoNordisk A/S: Employment. Hedner:NovoNordisk: Employment.


Sign in / Sign up

Export Citation Format

Share Document