Use of Engineered Autologous BOEC for Gene Therapy of Canine Hemophilia A.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1281-1281
Author(s):  
Robert P. Hebbel ◽  
Liming Milbauer ◽  
Mark Roney ◽  
David Lillicrap ◽  
Jan Voorberg ◽  
...  

Abstract Hemophilia A is an attractive candidate disease for corrective gene therapy because relatively small amounts of the missing protein, FVIIII, have a significant biological effect. We previously described a novel approach: intravenous administration of ex vivo expanded BOEC (blood outgrowth endothelial cells) engineered to express FVIII. Robust therapeutic results were obtained using NOD/SCID mice and human BOEC stably transfected to express human FVIII (Blood99:457, 2002). We are now conducting scale-up studies in the canine hemophilia A model. Based on the previous mouse data, we estimated that 400 million cells would be required to achieve a therapeutic effect in the dog. First, two normal dogs were infused with autologous unmanipulated BOEC, which revealed removal from the circulation via single-pass kinetics. Then, BOEC cultures were obtained from three hemophilia A dogs, and an onco-retroviral vector (MIRG/cFVIII) was used to obtain transduced BOEC producing B-domainless canine FVIII. Then, for each treatment, autologous engineered BOEC were given IV to the original donor dogs, with dose divided over 3 daily infusions, and whole blood clotting time (WBCT, in minutes) was followed. Dog Date # cells infused pre Rx WBCT effect on WBCT D28 12/04 274x106 >60 nadir 36 at day 14, Still 39 at day 185 D28 6/05 386x106 39 nadir 24.5 at day 23, now at 30 at day 44, being followed E64 7/04 220x106 >60 nadir 34.5 at day 3, >60 min by day 38 E64 12/04 274x106 >60 still 37.5 at day 189 E64 6/05 185x106 37.5 nadir 34.5 at day 2, at 36 on day 32, being followed H17 6/05 272x106 >60 nadir 29 at day 44, being followed WBCT (nl = 8-12 min) needs to be <20 min to reflect >0.1% FVIII activity; but the observed WBCT are clearly improved compared to baseline. One dog (E64) was treated for a mouth bleeds on d37 in cycle 2, and d36 in cycle 3. One animal (E64) developed hypotension and tachypnea during one of the infusions (probably because cells were not kept sufficiently in suspension) but recovered. Four of the infusions were associated with mild transient thrombocytopenia. Based on these initial scale-up experiments, it appears that use of engineered BOEC for gene therapy is an approach worthy of continued study, as cell doses can be increased and other improvements in the method are readily envisioned. It has a number of advantages, including use of autologous carrier cells with which any expression vector can be paired, ex vivo exposure to vector rather than in vivo, use of BOEC expansion in culture to simultaneously achieve vector expansion, and the ability to chose a clone of engineered cells having a single, known (and studied) insertion site.

Blood ◽  
2011 ◽  
Vol 117 (3) ◽  
pp. 798-807 ◽  
Author(s):  
Natalie J. Ward ◽  
Suzanne M. K. Buckley ◽  
Simon N. Waddington ◽  
Thierry VandenDriessche ◽  
Marinee K. L. Chuah ◽  
...  

Abstract Gene therapy for hemophilia A would be facilitated by development of smaller expression cassettes encoding factor VIII (FVIII), which demonstrate improved biosynthesis and/or enhanced biologic properties. B domain deleted (BDD) FVIII retains full procoagulant function and is expressed at higher levels than wild-type FVIII. However, a partial BDD FVIII, leaving an N-terminal 226 amino acid stretch (N6), increases in vitro secretion of FVIII tenfold compared with BDD-FVIII. In this study, we tested various BDD constructs in the context of either wild-type or codon-optimized cDNA sequences expressed under control of the strong, ubiquitous Spleen Focus Forming Virus promoter within a self-inactivating HIV-based lentiviral vector. Transduced 293T cells in vitro demonstrated detectable FVIII activity. Hemophilic mice treated with lentiviral vectors showed expression of FVIII activity and phenotypic correction sustained over 250 days. Importantly, codon-optimized constructs achieved an unprecedented 29- to 44-fold increase in expression, yielding more than 200% normal human FVIII levels. Addition of B domain sequences to BDD-FVIII did not significantly increase in vivo expression. These significant findings demonstrate that shorter FVIII constructs that can be more easily accommodated in viral vectors can result in increased therapeutic efficacy and may deliver effective gene therapy for hemophilia A.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2329-2329
Author(s):  
Qizhen Shi ◽  
Jocelyn A. Schroeder ◽  
David A. Wilcox ◽  
Robert R. Montgomery ◽  
Yingyu Chen

Abstract Our previous studies have demonstrated that targeting FVIII expression to platelets (2bF8) by lentiviral (LV) gene delivery to hematopoietic stem cells (HSCs) corrects bleeding diathesis in hemophilia A mice with or without inhibitors. Although the bleeding diathesis is improved in transduced recipients, the transduction efficiency using our current 2bF8 LV, is only about 10%, resulting a median level of platelet-FVIII (Plt-F8) of 1.5 mU/108 platelets even thought a myeloablative conditioning regimen was employed. It has been shown in clinical trials that efficient stem cell gene transfer and myeloablation is not required when there is a powerful selective advantage to the genetically modified cells. We hypothesize that incorporating a drug-resistance gene into the 2bF8 LV construct will allow for in vivo selection of 2bF8 LV-transduced cells which will result in the increase of therapeutic levels of Plt-F8 for hemophilia A gene therapy and reduce the potential for genotoxicity. To address our hypothesis, we constructed a new lentiviral vector, pWPT-2bF8/MGMT, which harbors dual genes, the 2bF8 gene and a drug-resistance gene, the MGMTP140K cassette. To explore the feasibility of the MGMT-based in vivo selection system, HSCs from FVIIInull mice were transduced with 2bF8/MGMT LV at an MOI (multiplicity of infectious) of 1, which is 1/10 of the MOI used for our regular 2bF8 LV transduction, and transplanted into littermates pre-conditioned with a non-myeloablative regimen, 660 cGy total body irradiation (TBI). We chose a low MOI because one of the goals of using the MGMT selection system is to reduce the potential for genotoxicity. After bone marrow (BM) reconstitution, the recipients were treated with O6-benzylguanine (BG) followed by 1, 3-bis-2 chloroethyl-1-nitrosourea (BCNU) monthly for 3 or 4 times. As determined by a chromogenic assay on platelet lysates, functional Plt-F8 expression in recipients was only 0.22 ± 0.15 mU/108 platelets before the drug treatment, but remarkably increased to 4.33 ± 5.48 mU/108 platelets (n = 16) after BG/BCNU drug-selective treatments. The levels of Plt-F8 in the untreated transduced control group remained low over the study period. FVIII activity was not detected in the plasma in any of the recipients even with Plt-F8 as high as 22 mU/108 platelets. The average copy number of 2bF8/MGMT proviral DNA per cell was determined by quantitative real-time PCR. 2bF8 proviral DNA was barely detectable (0.01 ± 0.02 copies/cell) in recipients before drug-selective treatment, but it increased to 0.42 ± 0.15 copies/cell after BG/BCNU treatments, confirming that 2bF8/MGMT genetically modified cells were effectively enriched in vivo after drug-selective treatment. When the tail clip survival test was used to assess phenotypic correction of the FVIIInull coagulation defect, 15 of 16 treated animals survived the tail clip challenge; in contrast, none of the untransduced FVIIInull control mice survived. When ROTEM analysis was used to determine the whole blood clotting time (CT), the CT was shortened from 3043 ± 728 seconds (n = 7) to 931± 273 seconds (n = 6) (P < 0.0001) in treated transduced recipients when compared to FVIIInull mice. There was no significant difference between wild type (722 ± 270 seconds, n = 7) and treated recipients. To ensure sustained Plt-F8 expression in BG/BCNU treated transduced recipients, some primary recipients were sacrificed 9 months after transplantation and BM mononuclear cells were transplanted into secondary recipients. Platelet lysate FVIII activity assays showed that the levels of Plt-F8 in secondary recipients were similar to those in primary recipients, confirming that long-term repopulating HSCs were successfully genetically modified by 2bF8/MGMT LV. When a low intensity pre-conditioning regimen of 440 cGy TBI was used, the levels of Plt-F8 increased from 0.06 ± 0.12 mU/108 platelets to 1.86 ± 2.06 mU/108 platelets after BG/BCNU drug-selective treatment. It is notable that no anti-FVIII inhibitory antibodies were detected in the treated recipients even after rhFVIII challenge, indicating that immune tolerance was induced in the treated animals. In contrast, all FVIIInull mice under the same challenge developed various levels of inhibitors. Taken together, we have established a powerful in vivo selective system that allows us to enrich 2bF8 LV-transduced cells and to enhance platelet-FVIII expression for hemophilia A gene therapy. Disclosures: No relevant conflicts of interest to declare.


2004 ◽  
Vol 92 (08) ◽  
pp. 317-327 ◽  
Author(s):  
Dmitri Gnatenko ◽  
Yong Wu ◽  
Jolyon Jesty ◽  
Andrea Damon ◽  
Patrick Hearing ◽  
...  

SummaryWe have generated an E1a/E1b/E3-deleted adeno/adeno-associated (Ad/AAV) hybrid virus driven by a small nuclear RNA (pHU1-1) promoter for expression of a B domain-deleted (Thr761-Asn1639) factor VIII transgene (FVIIIΔ761-1639). Productive replication of Ad/AAV/FVIIIΔ761-1639 in AAV repexpressing cells resulted in generation of monomeric and dimeric mini-adenoviral (mAd) replicative forms that retained the AAV integration elements (mAd/FVIIIΔ761-1639). In vitro studies using Ad/AAV/FVIIIΔ761-1639 generated ∼2-logs greater FVIII activity than mAd/FVIIIΔ761-1639. To determine its capacity for in vivo excision and/or genomic integration, Ad/AAV/FVIIIΔ761-1639 was injected by tail vein into three groups of hemophilia A mice (2 X 1011 vp [n = 3]; 4 X 1011 vp [n = 3]; 8 X 1011 vp [n = 3]), with clear concentration-dependent increase in FVIII activity (range 160-510 mU/ml; plasma activity 16% – 51% of normal). Peak activity was seen by Day (D) 5, with slow return to baseline by D28 (0.1 – 0.9% activity); in only 3/9 mice was loss of FVIII activity associated with development of anti-FVIII antibodies. Quantitative-PCR using genomic DNA isolated from D28 liver, spleen, heart, lungs, and kidney demonstrated the highest concentration in liver (∼10 genomes/ cell), with little to no organ toxicity at early (D5 or 6) or late (D28) post-infusion time points. There was no evidence for spontaneous transgene excision or genomic integration in vivo as evaluated by quantitative PCR and genomic blotting. These data establish (i) the feasibility and applicability of developing high-titer Ad/AAV hybrid viruses for FVIII delivery using a small cellular promoter, (ii) the potential utility of this virus for generation of “gutted” monomeric and dimeric mAD/FVIII retaining AAV integration elements, and (iii) that the development of strategies for regulated Rep68/78 co-expression may provide a novel approach for excision, integration, and long-term FVIII transgene expression.


Blood ◽  
2002 ◽  
Vol 99 (2) ◽  
pp. 457-462 ◽  
Author(s):  
Yi Lin ◽  
Liming Chang ◽  
Anna Solovey ◽  
John F. Healey ◽  
Pete Lollar ◽  
...  

Abstract A culture of human blood outgrowth endothelial cells (BOECs) was established from a sample of peripheral blood and was transfected using a nonviral plasmid carrying complementary DNA for modified human coagulation factor VIII (B domain deleted and replaced with green fluorescence protein). BOECs were then chemically selected, expanded, cryopreserved, and re-expanded in culture. Stably transfected BOECs were administered intravenously daily for 3 days to NOD/SCID mice at 4 cell dose levels (from 5 × 104 to 40 × 104 cells per injection). In 156 days of observation, mice showed levels of human FVIII that increased with cell dose and time. Mice in all cell dose groups achieved therapeutic levels (more than 10 ng/mL) of human FVIII, and mice in the 3 highest dose groups acquired levels that were normal (100-200 ng/mL) or even above the normal range (highest observed value, 1174 ng/mL). These levels indicate that the BOECs expanded in vivo after administration. When the mice were killed, it was found that BOEC accumulated only in bone marrow and spleen and that these cells retained endothelial phenotype and transgene expression. Cell doses used here would make scale-up to humans feasible. Thus, the use of engineered autologous BOECs, which here resulted in sustained and therapeutic levels of FVIII, may comprise an effective therapeutic strategy for use in gene therapy for hemophilia A.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3182-3182
Author(s):  
Yi-Lin Liu ◽  
Hua Zhu ◽  
Alexander Schlachterman ◽  
Heesoon Chang ◽  
Rodney M. Camire ◽  
...  

Abstract Hemophilia A is an inherited X-linked bleeding disorder caused by a deficiency in Factor VIII (FVIII). Clinically significant improvement of hemophilia phenotype can be achieved with low circulating factors, thus makes it a good target disease for gene therapy. Adeno-associated virus (AAV) vectors have proven successful for the delivery of the factor IX gene in humans with hemophilia B. For the treatment of hemophilia A, a problem in the packaging of the rFVIII cDNA or various B-domainless derivatives (i.e. rFVIII-SQ) in AAV vectors is the large size of the insert, which combined with required elements, can exceed the packaging capacity of AAV (~5 kb). This difficulty limits the choice of both promoter and regulatory elements when designing an expression cassette for AAV vectors. Here we developed strategies to overcome these limitations by (1) development of a novel FVIII B-domain deleted molecule (2) construction of a short liver-specific promoter. We further tested these vectors in a series of in vitro and in vivo experiments. Factor VIII-SQ is a well-characterized derivative of FVIII and has been used by several groups in a gene therapy setting; the recombinant protein is used clinically to treat hemophilia A. We have constructed a shorter version of FVIII-SQ, by deleting the entire B-domain. In addition, we have engineered this FVIII to be intracellularly processed using a PACE-furin recognition site such that the protein is secreted from cells as two chains (FVIII-RKR; fully processed heavy and light chains). This FVIII-RKR along with FVIII-SQ was transiently expressed in COS-1 cells and conditioned media was collected at 24, 48 and 72 hrs post transfection. Using a combination of ELISA and functional assays we were able to demonstrate that FVIII-RKR was efficiently secreted from these cells. The data also revealed that FVIII-RKR has a 4–8-fold increase in specific activity compared to FVIII-SQ. We further tested whether FVIII-RKR could function in an in vivo setting. Plasmid DNA (50μg) containing FVIII-RKR or FVIII-SQ with liver-specific mouse transthyretin (mTTR) promoter were introduced into hemophilia A (HA) mice hydrodynamically via tail vein. Two out of four mice in the SQ group and three out of four mice in the RKR group had significant shortening of the clotting time at days 1 and 3 post injection, indicating that this shortened version of FVIII is functional in vivo. To address FVIII long-term expression we synthesized AAV vectors and delivered to immuno-deficient HA mice through hepatic portal vein. AAV vectors containing an expression cassette of mTTR promoter and FVIII-SQ have been administered. Expression of physiological FVIII levels was observed in high dose group (4.0E+12 vector genome per animal, n=4). FVIII activity averages 1.88 U/ml by Coamatic assay or 0.81 U/ml by aPTT assay at 12 weeks post injection. In low dose group (1.0E+12 vector genome per animal, n=5) therapeutic level of FVIII is achieved, 0.59 U/ml by Coamatic assay or 0.23 U/ml by aPTT assay at 12 weeks post injection. Finally, AAV vectors with FVIII-RKR have been produced and shown to have similar packaging efficiency to AAV-FVIII-SQ. Studies are currently underway with AAV-FVIII-RKR to evaluate the ability of this vector to drive long-term expression of functional protein. In summary, we developed a novel FVIII molecule that has high specific activity and is suitable for efficiently packaging in the AAV vectors.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 5489-5489
Author(s):  
Christopher B. Doering ◽  
Bagirath Gangadharan ◽  
H. Trent Spencer

Abstract Marrow-derived stromal cells (MSCs) are considered a promising cellular vehicle for the delivery of nucleic acid-based therapeutics. In preclinical studies using a murine model of hemophilia A, we studied the effectiveness of ex vivo retrovirally-modified MSCs at synthesizing therapeutic amounts of factor VIII (fVIII). Previously, we observed robust anti-fVIII immune responses following intraperitoneal or intravenous delivery of MSCs genetically-modified to express a B-domain-deleted high expression porcine fVIII (HEP-fVIII) transgene (1). The presence of anti-HEP-fVIII antibodies masked any potential HEP-fVIII in circulation and thus, it was not determined whether or not the MSCs persisted in vivo. Furthermore, transplantation of HEP-fVIII-expressing MSCs into wild-type C57BL/6 mice induced an anti-fVIII immune response that decreased the endogenous murine fVIII levels to <10% of normal between wks 2 and 3 post-transplant. Analysis of plasma samples from these mice demonstrated the presence of anti-fVIII immunoglobulin populations that displayed cross-reactivity with human and murine fVIII in an ELISA and inhibited human and murine fVIII activity in a modified Bethesda assay. Therefore, pre-existing tolerance does not prevent the generation of antibodies that bind and inhibit murine fVIII. To further study the expression of HEP-fVIII from MSCs in immuno-suppressed animals, hemophilia A mice were pretreated with 5.5 Gy total body irradiation (TBI) prior to receiving HEP-fVIII-expressing MSCs. Pre-transplant TBI facilitated the detection of circulating fVIII activity for up to 6 wks, compared to 5 days in non-irradiated mice with an observed peak fVIII activity of 20 units/ml, which is 20-fold higher than the normal human level. However approximately 6 wks post-transplant, these mice developed large abdominal tumors that displayed histology similar to non-malignant fibrosarcoma. PCR analysis confirmed the presence of the HEP-fVIII transgene in the tumor cells at ~38 copies per diploid genome equivalent. In contrast shortly after viral transduction, the MSCs were shown to contain ~2 transgene copies per diploid genome equivalent, which increased to 5 and subsequently to 19 during ~1yr of expansion in culture. These results suggest that time-dependent genome amplification occurred during ex vivo culture and possibly in vivo post-transplantation. Cultured tumor cell explants secreted high levels of fVIII at a rate of 12 units/106 cells/24 hr in serum-free medium. Together these data indicate that the genetically-modified MSCs comprised a significant proportion of the tumor mass. The observation of tumor formation in these mice is consistent with previous reports describing a transformed phenotype in human and murine MSCs that had been cultured extensively ex vivo (2–4). The current findings demonstrate that, although murine MSCs are amenable to ex vivo manipulations and are capable of efficient fVIII biosynthesis, the immunogenicity of MSC-produced fVIII and the potential for oncogenic transformation raise important concerns regarding the use of MSCs as vehicles for gene therapy.


Stem Cells ◽  
2007 ◽  
Vol 25 (10) ◽  
pp. 2660-2669 ◽  
Author(s):  
Hideto Matsui ◽  
Masaru Shibata ◽  
Brian Brown ◽  
Andrea Labelle ◽  
Carol Hegadorn ◽  
...  

2017 ◽  
Vol 3 (2) ◽  
pp. 711-715
Author(s):  
Michael de Wild ◽  
Simon Zimmermann ◽  
Marcel Obrecht ◽  
Michel Dard

AbstractThin mechanically stable Ti-cages have been developed for the in-vivo application as X-ray and histology markers for the optimized evaluation of pre-clinical performance of bone graft materials. A metallic frame defines the region of interest during histological investigations and supports the identification of the defect site. This standardization of the procedure enhances the quality of pre-clinical experiments. Different models of thin metallic frameworks were designed and produced out of titanium by additive manufacturing (Selective Laser Melting). The productibility, the mechanical stability, the handling and suitability of several frame geometries were tested during surgery in artificial and in ex-vivo bone before a series of cages was preclinically investigated in the female Göttingen minipigs model. With our novel approach, a flexible process was established that can be adapted to the requirements of any specific animal model and bone graft testing.


2021 ◽  
pp. 1-7
Author(s):  
Sarah Jarrin ◽  
Abrar Hakami ◽  
Ben Newland ◽  
Eilís Dowd

Despite decades of research and billions in global investment, there remains no preventative or curative treatment for any neurodegenerative condition, including Parkinson’s disease (PD). Arguably, the most promising approach for neuroprotection and neurorestoration in PD is using growth factors which can promote the growth and survival of degenerating neurons. However, although neurotrophin therapy may seem like the ideal approach for neurodegenerative disease, the use of growth factors as drugs presents major challenges because of their protein structure which creates serious hurdles related to accessing the brain and specific targeting of affected brain regions. To address these challenges, several different delivery systems have been developed, and two major approaches—direct infusion of the growth factor protein into the target brain region and in vivo gene therapy—have progressed to clinical trials in patients with PD. In addition to these clinically evaluated approaches, a range of other delivery methods are in various degrees of development, each with their own unique potential. This review will give a short overview of some of these alternative delivery systems, with a focus on ex vivo gene therapy and biomaterial-aided protein and gene delivery, and will provide some perspectives on their potential for clinical development and translation.


2021 ◽  
Vol 18 ◽  
pp. 347-354
Author(s):  
Masashi Noda ◽  
Kohei Tatsumi ◽  
Hideto Matsui ◽  
Yasunori Matsunari ◽  
Takeshi Sato ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document