Changes in Mcl-1 and Bim Expression with Bortezomib and Melphalan Therapy for Multiple Myeloma.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2481-2481 ◽  
Author(s):  
Rakesh Popat ◽  
Lyndsey Goff ◽  
Heather E. Oaekervee ◽  
Jamie D. Cavenagh ◽  
Simon P. Joel

Abstract Background: Proteasome inhibition has been shown to be effective against a variety of tumours. In multiple myeloma the response rates to bortezomib (B) in relapsed patients is 46% (APEX study ≥ MR), but are likely to be up to 75% when combined with melphalan (M). Mechanisms underlying this effect are yet to be fully determined. Aims: To investigate the effect of B, M and the combination of the two on myeloma cell lines and primary patient cells, focusing on the anti-apoptotic molecule Mcl-1 and the pro-apoptotic molecule Bim in the mediation of drug activity. Cell cycle analysis using propidium iodide and flow cytometry was also performed in parallel. Methods: The human multiple myeloma cell lines (HMCLs) RPMI 8226/S, U266 and purified primary patient malignant plasma cells were used for cell culture and viability assays using an ATP bioluminescence method. Cells were incubated for 24 or 48 hours with differing concentrations of B, M and combinations in varying schedules. EC50 values were calculated using a sigmoidal Emax model and the observed cell viability of the combination of the two drugs was compared with the additive effect expected. Mcl-1, Bim, caspase-3, and PARP were probed for by Western Blotting of HMCLs. Results: Both U266 and RPMI 8226/S cells showed dramatic reductions in cell viability to B, with EC50 values of 4.7nM and 5.3nM respectively, and responded to high concentrations of M with EC50 values of 95.6 uM and 91.5 uM respectively after 48 hour incubations. Synergistic responses were seen when M was added 24 hours prior to B, but not with B pre-treatment. This was also observed with primary patient cells. Mcl-1 levels increased after 6 hours of B exposure, likely due to proteasome inhibition, but decreased by 24 hours with associated cleavage. This effect was concentration-dependent with partial cleavage observed at 4nM (approximately EC30) and full cleavage at 50nM. Bim was present in untreated cells, unchanged after 6 hours of B exposure, but decreased at 24 hours at both concentrations. All of these changes were associated with cleavage of caspase-3 and the appearance of cleaved PARP, and persisted out to 48 hours exposure. Six hours following M exposure, there was an increase in Mcl-1 at the sub-toxic 10uM concentration (possibly a cell survival response), but a reduction at 100uM. Following 24/48 hour exposures changes were no different to control cells with 10uM M, however at 100uM (EC50 concentration) cleavage of Mcl-1 and a decrease in Bim were observed, similar to changes seen with 50nM B. On combining the two drugs simultaneously in a 48 hour exposure, B 4nM and M 10uM failed to induce any changes in U266 cells, but resulted in partial cleavage of Mcl-1 in RPMI 8226 cells. When the M concentration was increased to 100uM there was a decrease of both Mcl-1 and Bim and the associated cleavage of caspase-3 and PARP. There were no differences whether B preceded or followed M. Cell cycle analysis demonstrated G2 arrest following B therapy at 24 hours and in combination with M. Conclusions: This work demonstrates that in multiple myeloma, both Mcl-1 and Bim are closely involved in proteasome mediated cellular apoptosis and in M mediated cytotoxicity. In keeping with work in Jurkat cells (Nencioni et al., Blood 2005), Mcl-1 was found to transiently increase following proteasome inhibition, but then decreased at 24 hours as apoptosis occurred. An early rise in anti-apoptotic proteins such as Mcl-1 may explain why synergistic responses with B and M were seen only with M pretreatment.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 5067-5067
Author(s):  
Tali Tohami ◽  
Liat Drucker ◽  
Judith Radnay ◽  
Hava Shapiro ◽  
Michael Lishner

Abstract Background: Medullary and extra-medullary dissemination of multiple myeloma (MM) cells involves cell-cell and cell-extracellular matrix (ECM) interactions. Proteins coordinating these intricate networks regulate the signaling cascades in a spatial and time dependent manner. Tetraspanins facilitate multiprotein complexing in defined membranal microdomains and select family members have been identified as metastasis suppressors. In preliminary studies, we observed that tetraspanins CD82, frequently down regulated or lost at the advanced clinical stages of various cancers, was absent in MM (8 BM samples, 5 cell lines) and CD81, characteristically expressed in leukocytes plasma membranes, was under-expressed (4/8 BM samples, 4/5 cell lines). We aimed to investigate the consequences of CD81 and CD82 over-expression in myeloma cell lines. Methods: CAG and RPMI 8226 were transfected with pEGFP-N1/C1 fusion vectors of CD81 and CD82. Transfected cells were assessed for - cell morphology (light and fluorescent microscope); cell survival (eGFP+/PI- cells); cell death (Annexin V/7AAD, pre-G1, activated caspase-3 (IC), caspase dependence with pan caspase inhibitor z-VAD-fmk); cell cycle (PI staining). Results: CD82 induced cell death was determined by morphologic characteristics in stably transfected CAG cells (50%) compared to their mock-transfected counterparts (8%) (p<0.05). Activated caspase-3 was also detected (40% of the CD82 transfected cells) (p<0.05). In CD82 transiently transfected MM cell lines a reduced fraction of surviving cells was observed compared to mocks (~60%) (p<0.05) yet, no increases in pre-G1 or Annexin V+/7AAD- subgroups were observed. Moreover, CD82 induced cell death could not be inhibited by the use of z-VAD-fmk. CD82 transfection did not affect the cell cycle of CAG and RPMI 8226 lines. CD81 stably transfected cell lines (CAG and RPMI 8226) could not be established. Indeed, in transiently transfected cells we determined a massive rate of CD81 induced cell death. This is demonstrated in a surviving fraction of only 10% CAG cells and 30% RPMI 8226 (compared to mock) (p<0.05). The CD81 transfected cells were negative for PS exposure, pre-G1 sub-population, or inhibition of death with z-VAD-fmk. The death inducing effect of both tetraspanins in the two cell lines was evident with the pEGFP-N1 orientation vector only. Conclusions: CD81 and CD82 over-expression in MM cell lines causes cell death. Based on the restriction of the killing effect to the pEGFP-N1 clone it may be speculated that its implementation is either dependent on the interactions of the N1 tetraspanin terminus or the proteins’ conformation. It is of interest that CD81 though normally expressed in RPMI 8226 still induced cell death when over-expressed, possibly indicative of ’negative signaling’. Tetraspanins’ suppressive effects on adhesion, motility, and metastasis in solid tumors combined with its capacity to induce myeloma cell death underscore the significance of its absence in MM cell lines and patients. We suspect that a better understanding of CD81/82 mediated signaling pathways will promote future treatment of myeloma cell in their microenvironment. Current studies designed to assess the involvement of oxidative stress in CD81/CD82 induced death are underway.


2004 ◽  
Vol 52 (5) ◽  
pp. 335-344 ◽  
Author(s):  
Naomi Gronich ◽  
Liat Drucker ◽  
Hava Shapiro ◽  
Judith Radnay ◽  
Shai Yarkoni ◽  
...  

BackgroundAccumulating reports indicate that statins widely prescribed for hypercholesteromia have antineoplastic activity. We hypothesized that because statins inhibit farnesylation of Ras that is often mutated in multiple myeloma (MM), as well as the production of interleukin (IL)-6, a key cytokine in MM, they may have antiproliferative and/or proapoptotic effects in this malignancy.MethodsU266, RPMI 8226, and ARH77 were treated with simvastatin (0-30 μM) for 5 days. The following aspects were evaluated: viability (IC50), cell cycle, cell death, cytoplasmic calcium ion levels, supernatant IL-6 levels, and tyrosine kinase activity.ResultsExposure of all cell lines to simvastatin resulted in reduced viability with IC50s of 4.5 μM for ARH77, 8 μM for RPMI 8226, and 13 μM for U266. The decreased viability is attributed to cell-cycle arrest (U266, G1; RPMI 8226, G2M) and cell death. ARH77 underwent apoptosis, whereas U266 and RPMI 8226 displayed a more necrotic form of death. Cytoplasmic calcium levels decreased significantly in all treated cell lines. IL-6 secretion from U266 cells was abrogated on treatment with simvastatin, whereas total tyrosine phosphorylation was unaffected.ConclusionsSimvastatin displays significant antimyeloma activity in vitro. Further research is warranted for elucidation of the modulated molecular pathways and clinical relevance.


2010 ◽  
Vol 10 ◽  
pp. 311-320 ◽  
Author(s):  
Eva Kovacs

Multiple myeloma is a haematological disorder of malignant plasma cells. Interleukin-6 (IL-6) is a potent growth factor for the proliferation of these cells. Vincristine as a chemotherapeutic agent is used mainly in combination with other chemotherapeutic substances in the treatment of different haematological disorders.Viscum albumQuFrF (VAQuFrF) extract is an experimental drug that is not used in the treatment in tumour patients. It contains 2000 ng lectin and 10 µg viscotoxin in 10 mg extract. In this study, the effects of VAQuFrF extract were compared with those of vincristine in six human multiple myeloma cell lines (Molp-8, LP-1, RPMI-8226, OPM-2, Colo-677, and KMS-12-BM) using anin vitromodel. As parameters, the IL-6 production, proliferation, apoptosis/necrosis, and cell cycle phases of the cells were taken. To measure the IL-6 production, apoptosis/necrosis, and cell cycle phases, the substances were tested in dose ranges of 10, 50, and 100 µg/106cells. To measure the proliferation of the cells, the substances were tested in dose ranges of 1, 5, and 10 µg/105cells. The profile of the antitumour effects of the two substances is identical. (1) Neither VAQuFrF extract nor vincristine produced IL-6 in any cell line. (2) Both substances inhibited the proliferation of the cells (cytostatic effect), arrested the cell cycle phases, and increased the number of apoptotic/necrotic cells (cytocidal effect). At a dose of 10 µg/105cells, VAQuFrF more effectively inhibited the proliferation than vincristine (p< 0.01) in the cell lines Molp-8, LP-1, and RPMI-8226. (3) VAQuFrF affected the tumour cells mainly via cytostatic effect. Vincristine had a clear cytocidal effect. These findings indicate that VAQuFrF extract could be a novel drug in the treatment of multiple myeloma.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3393-3393
Author(s):  
Yoshitaka Miyakawa ◽  
Kanoko Kohmura ◽  
Kaori Saito ◽  
Hiroshi Yoshida ◽  
Asako Ikejima ◽  
...  

Abstract We previously designed and synthesized a new NF-κB inhibitor, dehydroxymethylepoxyquinomicin (DHMEQ) (J Biol Chem, 2002). DHMEQ is a derivative of the weak antibiotics epoxyquinomicin C, which was isolated from the culture broth of Amycolaptosis sp. NF-κB is a critical regulatory protein that activates the transcription of a number of genes, including growth factors, angiogenesis modifiers, cell adhesion molecules and anti-apoptotic factors. As NF-κB has been shown as a good target for the new therapies such as bortezomib, we studied the effects of the new specific NFκB inhibitor, DHMEQ, to myeloma cells. In the present study, we demonstrated that DHMEQ inhibited the proliferation of human myeloma cell lines, RPMI8226 and U266 in dose- and time-dependent manners. Apoptosis was detected using fluorescein-conjugated Annexin-V by FACS. Around 45.3%of RPMI8226 and 45.2% of U266 were in apoptosis 12 hours after treatment with 10 μg/ml DHMEQ. Formation of apoptotic bodies were observed 24 hour-treatment with DHMEQ in both cell lines by Giemsa staining. In contrast, no obvious cell cycle arrest was observed with DHMEQ, indicating DHMEQ directly induces apoptosis without cell cycle arrests in these myeloma cell lines. The activation of caspase-3 in RPMI8226 and U266 cells were detected with the specific antibody against the active form of caspase-3 by FACS. When the myeloma cells were pretreated with 20 μM pan-caspase inhibitor, z-VAD-FMK, DHMEQ-induced apoptosis was inhibited by 62.1% in RPMI8226 and 71.9% in U266 cells, indicating DHMEQ-induced apoptosis was caspase-dependent. The binding activities of nuclear NF-κB protein to the oligonucleotides including NF-κB binding sites was suppressed by 81.9% in RPMI8226 and 69.0% in U266 1 hour after treatment with DHMEQ. NF-κB protein seemed more accumulated in cytoplasm of myeloma cells after treatment with DHMEQ under the confocal microscope, indicating DHMEQ prevents the translocation of NF-κB protein into the nucleus. Bcl-XL is the anti-apoptotic factor and its transcription is regulated by NF-κB. However, the expression level of Bcl-XL protein was not altered 24 hours after treatment with DHMEQ in RPMI8226 and U266. We also studied the effects of DHMEQ to the patient materials. We found that DHMEQ induced apoptosis in CD138-positive plasma cells from the myeloma patients (n=3), demonstrating that DHMEQ is also effective for primary cells. We previsously developed the model of human multiple myeloma by simply injecting U266 cells into the tail vein of the immunodeficient NOG mice. This myeloma model demostrated the massive osteolytic lesions and hind leg paralysis around 7 weeks after transplantation. We did not observe any invasion of U266 cells into other organs except bone marrow. As NF-κB regulates the proliferation of myeloma cells and osteoclasts, we expect DHMEQ will inhibit the tumor growth and prevent pathological fractures by inducing apoptosis in both myeloma cells and osteoclasts in vivo. We are currently evaluating the in vivo efficacies of DHMEQ using this experimental animal model of multiple myeloma. In conclusion, we demonstrated that DHMEQ targets NF-κB and induces apoptosis in myeloma cells through caspase-dependent pathways.


2019 ◽  
Vol 19 (2) ◽  
pp. 112-119 ◽  
Author(s):  
Mariana B. de Oliveira ◽  
Luiz F.G. Sanson ◽  
Angela I.P. Eugenio ◽  
Rebecca S.S. Barbosa-Dantas ◽  
Gisele W.B. Colleoni

Introduction:Multiple myeloma (MM) cells accumulate in the bone marrow and produce enormous quantities of immunoglobulins, causing endoplasmatic reticulum stress and activation of protein handling machinery, such as heat shock protein response, autophagy and unfolded protein response (UPR).Methods:We evaluated cell lines viability after treatment with bortezomib (B) in combination with HSP70 (VER-15508) and autophagy (SBI-0206965) or UPR (STF- 083010) inhibitors.Results:For RPMI-8226, after 72 hours of treatment with B+VER+STF or B+VER+SBI, we observed 15% of viable cells, but treatment with B alone was better (90% of cell death). For U266, treatment with B+VER+STF or with B+VER+SBI for 72 hours resulted in 20% of cell viability and both treatments were better than treatment with B alone (40% of cell death). After both triplet combinations, RPMI-8226 and U266 presented the overexpression of XBP-1 UPR protein, suggesting that it is acting as a compensatory mechanism, in an attempt of the cell to handle the otherwise lethal large amount of immunoglobulin overload.Conclusion:Our in vitro results provide additional evidence that combinations of protein homeostasis inhibitors might be explored as treatment options for MM.


Blood ◽  
2000 ◽  
Vol 95 (3) ◽  
pp. 1039-1046 ◽  
Author(s):  
G. Teoh ◽  
Y.-T. Tai ◽  
M. Urashima ◽  
S. Shirahama ◽  
M. Matsuzaki ◽  
...  

It has been reported that the activation of multiple myeloma (MM) cells by CD40 induces proliferation, growth arrest, and apoptosis. To determine whether the biologic sequelae of CD40 activation in MM cells depends on p53 function, we identified temperature-sensitive p53 mutations in the RPMI 8226 (tsp53E285K) and the HS Sultan (tsp53Y163H) MM cell lines. These cells were then used as a model system of inducible wtp53-like function because wild-type-like p53 is induced at permissive (30°C) but not at restrictive (37°C) temperatures. Using p21-luciferase reporter assays, we confirmed that CD40 induces p53 transactivation in RPMI 8226 and HS Sultan cells cultured under permissive, but not restrictive, conditions. Furthermore, CD40 activation of these MM cells under permissive, but not restrictive, temperatures increased the expression of p53 and p21 mRNA and protein. Importantly, CD40 activation induced the proliferation of RPMI 8226 and HS Sultan cells at restrictive temperatures and growth arrest and increased subG1 phase cells at permissive temperatures. These data confirmed that CD40 activation might have distinct biologic sequelae in MM cells, depending on their p53 status.


2016 ◽  
Vol 103 (3) ◽  
pp. 261-267 ◽  
Author(s):  
Xiaoxuan Xu ◽  
Junru Liu ◽  
Beihui Huang ◽  
Meilan Chen ◽  
Shiwen Yuan ◽  
...  

Purpose Proteasome inhibition with bortezomib eliminates multiple myeloma (MM) cells by partly disrupting unfolded protein response (UPR). However, the development of drug resistance limits its utility and resistance mechanism remains controversial. We aimed to investigate the role of IRE1α/Xbp-1 mediated branch of the UPR in bortezomib resistance. Methods The expression level of Xbp-1s was measured in 4 MM cell lines and correlated with sensitivity to bortezomib. LP1 and MY5 cells with different Xbp-1s level were treated with bortezomib; then pivotal UPR regulators were compared by immunoblotting. RPMI 8226 cells were transfected with plasmid pEX4-Xbp-1s and exposed to bortezomib; then apoptosis was determined by immunoblotting and flow cytometry. Bortezomib-resistant myeloma cells JJN3.BR were developed and the effect on UPR signaling pathway was determined. Results By analyzing 4 MM cell lines, we found little correlation between Xbp-1s basic level and bortezomib sensitivity. Bortezomib induced endoplasmic reticulum stress-initiated apoptosis via inhibiting IRE1α/Xbp-1 pathway regardless of Xbp-1s basic level. Exogenous Xbp-1s reduced cellular sensitivity to bortezomib, suggesting the change of Xbp-1s expression, not its basic level, is a potential marker of response to bortezomib in MM cells. Furthermore, sustained activation of IRE1α/Xbp-1 signaling pathway in JJN3.BR cells was identified. Conclusions Our data indicate that reduced response of IRE1α/Xbp-1 signaling pathway to bortezomib may contribute to drug resistance in myeloma cells.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2360-2360
Author(s):  
Stuart Ratner ◽  
Charles A. Schiffer ◽  
Jeffrey A. Zonder

Abstract Multiple myeloma (MM) cell adhesion to fibronectin (FN), mediated via VLA-4 and VLA-5, has been shown to induce resistance to several chemotherapeutic drugs. Disruption of MM cell adhesion to FN and other marrow microenvironment elements might therefore enhance the effects of therapy. We now present the first evidence that Eph-ephrin signaling may be exploited to inhibit MM cell binding to fibronectin. Ephs are transmembrane tyrosine kinases and ephrins are their cell-surface ligands. There are two classes of Ephs and ephrins, A and B. Both Ephs and ephrins can transduce repulsive signals that cause interacting cells to lose contact with each other and with extracellular matrix. We are not aware of any previous systematic study of Eph and ephrin expression or function in MM cells. We have found MM cell lines H929, U266, and RPMI 8226 express members of the A classes of both Ephs and ephrins, but not the B classes. First, we demonstrated ligation with commercially available anti-ephrin A3 antibody was followed by ephrin capping and shedding from the cell surface. We next explored whether ephrin ligation affects MM cell adhesiveness in culture. Whereas H929, U266, and RPMI 8226 cells adhered rapidly to fibronectin-coated plastic surfaces, all three cell lines failed completely to adhere to a mixed coating of FN and rabbit anti-ephrin A3 antibody for a period of 2 hrs. This effect was not seen with FN + normal rabbit Ig. This suggests binding of ephrin A3 (or another cross-reacting A-class ephrin) by solid-state antibody triggers intracellular signals that interfere with initial steps of integrin-mediated adhesion. After 2 hr, spontaneous partial recovery of adhesion occurred, reaching a plateau of approximately 30% of control values by 24 hr. We postulate this recovery occurs via clipping of the extracellular ephrin domain by transmembrane metalloproteases, since recovery of FN adhesion was partially prevented by the metalloprotease inhibitor GM6001 (25 uM). Also consistent with this theory, we found in a separate experiment that GM6001 reduced the shedding of cross-linked A-class ephrins from MM cell lines. In summary, we have demonstrated that manipulation of EPH-ephrin signaling can impair MM-cell adhesion to FN, and that this effect is enhanced by simultaneous inhibition of metalloprotease activity. We are currently studying the effect of A-class ephrin ligation on adhesion-mediated drug resistance in MM cell lines. We also intend to evaluate EPH-ephrin expression in marrow specimens from patients with MM.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1694-1694
Author(s):  
Carolina Elosua ◽  
Purificacion Catalina ◽  
Brian A Walker ◽  
Nicholas J Dickens ◽  
Athanasia Avramidou ◽  
...  

Abstract Multiple Myeloma (MM) is a malignancy depicted by clonal expansion of plasma cells in the bone marrow. There are two broad genetic subtypes of multiple myeloma as defined as hyperdiploid multiple myeloma (H-MM), characterized by trisomies of chromosomes 3, 5, 7, 9, 11, 15, 19, and 21, and nonhyperdiploid multiple myeloma (NH-MM) associated with primary translocations involving the immunoglobulin heavy chain (IgH). These two subtypes of multiple myeloma have two different molecular pathogenesis given that characteristic changes of each have been already observed. In order to contribute to the understanding of this malignancy and to unveil the different molecular pathogenesis, our interest is focused on Human Multiple Myeloma Cell lines (HMCLs), as a model, and a broad but specific group of enzymatic proteins: the Kinases. Kinase hyperactivity or lack of it often results in disregulation of cellular pathways involved in proliferation and survival. In our study, we describe the patterns of genetic lesions and molecular pathogenesis of 11 HMCLs with Single Nucleotide Polymorphism (SNP)-based mapping arrays from Affymetrix Human Mapping 500K array set. This technique allows the examination and identification of copy number changes, bi-allelic deletions and the identification of loss of heterozygosity (LOH) due to loss and uniparental disomy, as well as gene localization and identification. The 11 HMCLs utilized are characterized for their structural alterations and not by hyperdiploidy. In addition, so as to fulfill the selection criteria, a minimum of 3 cell lines must present the alterations cited below. The most frequently identified alterations were located as follows: Previously described gains were observed in 1q, 7q, 8, 11q, 18, 19, and 20q; but also found at 4q. The bi-allelic deletions were ascertained on 3p. Similarly, we identified the regions of hemizygotic deletions on 1, 2q, 6q, 8q, 9p, 11q, 12, 13q, 14q, 17p, and 20p. In addition, described regions of homozygotic deletions were detected on 1p, 6q, 8p, 13q, 16q, and 22q, and furthermore located on 2q, 3, 4q, 9, 10q, 12p, and 20p. Finally, the uniparental disomies (UPDs) obtained were traced on 1q, 4q, 8q, 10q, and 22q. These identified alterations are affecting a series of enzymatic genes belonging to targeted pathways. Within the chromosomes 1, 10, 11, 14, and 16 we have localized kinases that are part of the PI3K/AKT pathway, which affect to a number of intracellular and extracellular myeloma growth cytokines. In the chromosomes 1, 6, 12, and 19 we identified a series of Cyclin-Dependent Kinases that are critical regulators of cell cycle progression and RNA transcription, since they regulate and control the cyclins, cell cycle regulatory proteins, which can provoke dysregulation and abnormally accelerated cell cycle progression. And finally on chromosomes 1, 2, 14, 21, and 22 we observed certain Aurora and related kinases, as another family of the cell cycle regulators and often aberrantly activated in human tumor cells, they facilitate transit from G2 through cytokinesis. These mutated kinases may be potential targets for therapeutics. Our data demonstrates the genomic complexity of multiple myeloma enhancing our understanding of the molecular pathogenesis of the disease and the importance of the HMCLs as a model.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3673-3673
Author(s):  
Rentian Feng ◽  
Jorge A Rios ◽  
Markus Mapara ◽  
Suzanne Lentzsch

Abstract Patients with relapsed multiple myeloma (MM) previously treated with bortezomib and lenalidomide often fail to respond to further therapies. To identify potential new treatment approaches for MM, we used Luminex technology to screen a library of 1,120 compounds provided by the Multiple Myeloma Research Foundation. By multiplex cytokine array, we identified benzimidazoles including the anthelmintics mebendazole, fenbendazole, albendazole, nocodazole and pyrvinium pamoate, as inhibiting the production of cytokines essential for MM cell growth and survival, such as IL-6 (inhibition rate 40–70%), MIP-1α (inhibition rate 65–75%), VEGF (inhibition rate 75%), and soluble IL-6R (inhibition rate 40–52%). Consequently, these anthelmintics demonstrated dose-dependent inhibition of myeloma cell (RPMI-8226, H929, U266 and MM1S) proliferation. The lead compound, nocodazole, caused nuclear fragmentation and caspase-8 activation in MM cell lines and primary CD138+ cells in dose- and time-dependent fashion (IC50: 30–60 nM). Importantly, growth and survival signals provided by bone marrow stromal cells in bone marrow co-cultures failed to protect MM cells from nocodazole-induced cell death. In the apoptotic cells, caspase-8 was more activated than caspase-9, suggesting that mitochondrial signaling is not a major apoptotic pathway. Cell cycle analysis indicated that G2/M cell cycle arrest reached a peak at 17 hr. Sub-G1 proportion was strongly increased after treatment for 24 hr in all tested cell lines. Electron microscope (EM) and nuclear staining studies consistently showed the accumulation of metaphase cells, and morphologic elongation at 7 hr, at which time G2/M arrest was obvious. Most of the elongated cells had only one nucleus, suggesting that they failed to progress to mitosis due to overall microtubular network disarray. We conclude that nocodazole exposure induced microtubular network disarray with cell elongation, and G2/M arrest with a late stage mitotic block resulting in cell death. Benzimidazoles including nocodazole, traditionally used as antihelmintic drugs, have shown antitumor activity against hepatocellular, lung and adrenocortical carcinoma, and melanoma. In our study, we identified the anthelmintic compound nocodazole as a new anti-myeloma agent. Nocodazole warrants further investigation for its anti-MM effects in vitro and in vivo.


Sign in / Sign up

Export Citation Format

Share Document