Bim Promoter Is Highly Methylated in Malignant Lymphoid Cell Lines, Leading to Downregulation of Bim Expression and Protection from Apoptosis.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2625-2625 ◽  
Author(s):  
Rocco G. Piazza ◽  
Vera Magistroni ◽  
Federica Andreoni ◽  
Anna Franceschino ◽  
Carlo Gambacorti

Abstract Bim, a proapoptotic, BH3-only, Bcl-2 family member, is the major physiological antagonist of the antiapoptotic Bcl-2 proteins in B and T lymphocytes. It is essential for the induction of apoptosis of activated T cells following an immune response and for the homeostasis of B cells; it also plays a key role in the induction of apoptosis of early hematopoietic progenitors following cytokine-deprivation. We performed a CpG Islands prediction analysis on Bim promoter, identifying a putative CpG Island. Using a Bisulfite Modification-Clonal Sequencing Analysis (BMCSA), we investigated the methylation status of 19 CpG sites (from nucleotide −504 to +64 from the ATG start site) in the Bim promoter in 12 malignant hematological cell lines: 7 of lymphoid and 5 of myeloid origin. A minimum of 6 clones were analysed. An homogeneous, very high level of methylation was present in all the lymphoid cell lines (Average Level of Methylation (ALM) 93.4 ± 4.4% Standard Deviation [SD]) and a variable level of methylation in the myeloid cell lines (ALM 37.1 ± 32.4%). The lowest ALM was found in lymphocytes from healthy donors (15.5 ± 2.1%). Evidence of Bim promoter methylation was also found in frozen tumor samples from patients affected by NPM/ALK+ lymphomas. We treated the 12 cell lines with the demethylating agent 5-azacytidine (AZA). The changes in the methylation status of Bim promoter were evaluated by BMCSA and the corresponding induction of Bim by Real-Time PCR (TaqMan) and by Western Blot. The demethylation of Bim promoter led to a potent induction of Bim at the mRNA and protein level. In the lymphoid, NPM/ALK positive, SUDHL-1 cell line, in which a complete demethylation (from 100% to 0%) was achieved, the increase in the expression of Bim was 7.7-fold and this correlated with a potent induction of apoptosis, as assessed by TUNEL and Annexin V assays. Similar results were obtained using a different demethylating agent: 5-aza-2′deoxycytidine (DAC). To assess whether the methylation of Bim promoter is an active process, a wash-out experiment was performed on the SUDHL-1 (high level of methylation, 100%), on the PML/RAR alpha positive myeloid NB4 (intermediate level of methylation, 33%) and on the BCR/ABL positive LAMA-R cell lines (unmethylated) previously treated with AZA or DAC. This experiment showed that the demethylation is reversible and that, following remethylation, the expression of Bim at mRNA and protein level is reduced to the initial value. In the NB4 cell line, in which methylation is clustered on the last 6 CpG sites, remethylation occurs following the same pattern. No de novo methylation was seen in LAMA-R after the wash-out. To address the biological role for the methylation of Bim promoter, we generated a TET-ON inducible system for BimS (the most potent proapoptotic isoform of Bim) in the highly methylated NPM/ALK+ Karpas-299 cell line, showing that, following an induction of Bim expression, the cells are potently induced to apoptosis, as assessed by FACS using TUNEL and Annexin V assays. We conclude that Bim promoter is actively methylated in several leukemias/lymphomas of T and B origin and that its methylation is associated with the downregulation of Bim expression and with protection from apoptosis.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 4802-4802
Author(s):  
Priscila S. Scheucher ◽  
Guilherme Augusto Silva dos Santos ◽  
Hamilton Luiz G Teixeira ◽  
Roberto P. Falcao ◽  
Eduardo Magalhaes Rego

Abstract Abstract 4802 Caffeic acid phenethyl ester (CAPE) is an active phenolic compound present in propolis obtained from honeybee hives. It is reported to present a spectrum of biological activities including antioxidant, anti-inflammatory and antitumoral. The antitumoral activity of CAPE as evaluated by several studies in vitro and in vivo seems to be related to distinct effects like inhibition of angiogenesis, invasion and metastasis and induction of apoptosis or differentiation of cancer cells. In the scenario of AML the demonstration of CAPE-induced apoptosis or cellular differentiation is restricted to the HL-60 cell line. Our aim was to evaluate the effects of CAPE treatment on primary AML samples as well as APL cell lines NB4 and NB4-R2 (a cell resistant to ATRA-induced differentiation) and on AML cell line Kasumi-1 (representative of core binding factor leukemia with AML1-ETO rearrangement). Proliferation and viability was evaluated by cell count with tripan blue in Neubauer chamber at fixed time intervals. Differentiation was evaluated by flow cytometer determination of CD11b expression. Apoptotic cells were defined as sub-G0 fraction and were evaluated by flow cytometer determination of propidium iodide- DNA fluorescence. Also apoptosis was detected by the annexin-V method. Leishman stained cytospins were used to confirm apoptosis or differentiation. CAPE did not induce differentiation in the cell lines NB4, NB4-R2 or Kasumi-1 and did not alter the differentiation induced by ATRA in NB4 cells. CAPE inhibited the proliferation of AML cell lines in a time and dose dependent fashion. The ED50 in 24h treatment for NB4 cell line (tripan blue) was 32.1 mcg/ml. ED50 (at 24h) for induction of apoptosis in the more sensitive assay using annexin-V in NB4 cells after 24h was 7.5mcg/ml and for Kasumi-1 was 10.2mcg/ml. CAPE (32 mcg/ml) significantly induced apoptosis after 24h in cells from AML patients (n=10), mean (IC95%) of 40.5% (29.26 – 51.76) versus control treated cells 18.16% (12.27 – 24.05); p=0.0004 In order to evaluate the mechanisms of CAPE-induced apoptosis in NB4 cells we performed a microarray analysis after 12 hours treatment (32mcg/ml). The majority of downregulated genes fall into two categories: positive cell cycle regulators and ribosomal genesis / protein traduction. In the other hand, upregulated genes fall into several categories, we point out chemokines and G- protein signalization genes. (Table 1 and 2) The role of IL-8 and Gro chemokines, that signaling by G-protein coupled receptors, has been determined in tumor progression and invasiveness. We are currently investigating the possibility that CAPE exerts an inhibitory effect in chemokine signaling in APL. In conclusion, CAPE-induced apoptosis in AML is associated with the regulation of specific genes. These properties are interesting and need further investigation. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2618-2618
Author(s):  
Jaspal S. Kaeda ◽  
Rolf Schwarzer ◽  
Robert K. Slany ◽  
Thomas Burmeister ◽  
Elisabetta Vagge ◽  
...  

Abstract Increased expression of Musashi 2 (also known as MSI2), a mRNA binding protein, is reported to trigger progression of chronic myeloid leukemia (CML) from chronic phase (CP) to blast crisis (BC), which is frequently fatal. The data imply that MSI2 is upregulated by HOXA9 leading to disruption of the critical hematopoietic stem cell (HSC) fate decisions via the NUMB-NOTCH signaling pathway. These events lead to HSC proliferation, impaired myeloid differentiation and are associated with worse prognosis in CML and acute myeloid leukemia (Kharas, et al. Nat Med 2010; 16:903; Ito, et al. Nature 2010; 466:765). Previously, we confirmed increased MSI2 levels in CML patients in blast crisis (BC) compared with those in CP, irrespective of lymphoid or myeloid transformation (Kaeda, et al. Blood. 2011;118;supplement). To further elucidate this regulatory pathway we assessed whether HOXA9 expression correlated with increased MSI2mRNA levels and upregulation of NOTCH. Because of the rarity of BC samples and finding MSI2 increased in lymphoid and myeloid BC CML patients, we studied lymphoid [n=12 (Lymphoma:8; Myeloma:3; ALL:1)] and myeloid [n=12 (AML:4; CML:6; HES:1; ET:1)] cells lines. We also included 29 BCR-ABL positive (e1a2: 18; e13a2: 6; e14a2: 5) diagnostic samples from acute lymphoblastic leukaemia (ALL) patients (M:18; F:11); median age 50 years (range: 26-74). We quantified MSI2 and HOXA9 mRNA transcripts by quantitative PCR and expressed the data as % ratio of the control gene, GUSβ.Western blotting of cell line protein extracts was performed to assess expression of NOTCH 1, 2, 3 receptors and delta like ligand 3. We found MSI2 [median: 7.10% (range:0.06-38.71)] and HOXA9 [median: 2.40% (range:0.00-51.13)] expression was generally restricted to myeloid cell lines. Of the 12 lymphoid cell lines, MSI2 was only detectable in SUPB15 with 8.44%. The latter is a B-lymphocyte ALL cell line, known to express BCR-ABL e1a2 transcript. Similarly, HOXA9 [median: 0.00 (range:0.00-27.0%)] expression ranged from undetectable to 0.08%, among this group, apart from HD-MY-Z with 27.0%. In contrast, HOXA9 [median: 0.02% (range:0.01-2.18)] and MSI2 [median: 3.58% (range: 1.24-22.38)] transcripts were detectable in all 29 BCR-ABL positive ALL patients, irrespective of the transcript type expressed. Among the ALL samples 7 (24%) had increased MSI2 levels, i.e. >6.7% (Kaeda, et al. Blood. 2011;118;supplement) and of these 6 expressed e1a2 transcript and the other e13a2. In summary, upregulated MSI2 expression was observed in 17 (32.0%) of the 53 samples screened. But only 4 [KG1, EOL1, HEL and MEG-01 (all myeloid cell lines)] of the 17 also had increased HOXA9 levels. Remarkably, 5 (62%) of the 8 myeloid cell lines with increased MSI2 are known to express BCR-ABL. NOTCH1 receptor was detectable in all the lymphoid cell lines. But, NOTCH expression was highly variable in myeloid cell lines. Overall, an upregulated MSI2 mRNA expression was not reflected in the NOTCH receptor levels nor in the HOXA9levels. Our observations are consistent with MSI2 being limited to myeloid linage. However, in contrast to earlier reports our data imply that MSI2 functions via a pathway other than NOTCH signaling and is not regulated by HOXA9 alone. But the cell lines and ALL patients’ data provide further evidence of correlation between MSI2 and BCR-ABL expression, suggesting they interact, directly or indirectly, to arrest cell differentiation and trigger BC. These findings, together with our reported data, show increased MSI2 levels to be an important biomarker of poor prognosis and are likely to have an impact in optimizing clinical management. It also represents a potential novel therapeutic target, especially for the BCR-ABL positive stem cells resistant to tyrosine kinase inhibitors. Disclosures: Kaeda: Novartis: Research Funding. le Coutre:Novartis: Research Funding.


1991 ◽  
Vol 273 (3) ◽  
pp. 573-578 ◽  
Author(s):  
M C Garcia ◽  
C Garcia ◽  
M A Gijon ◽  
S Fernandez-Gallardo ◽  
F Mollinedo ◽  
...  

The binding and metabolism of platelet-activating factor (PAF) was studied in human cell lines resembling myeloid cells (HL60 and U937) and B and T lymphocytes (Daudi and Jurkat). All of the cell lines were found to bind and catabolize exogenous [3H]PAF in a time- and temperature-dependent manner. PAF binding could also be demonstrated in isolated membrane fractions, which provides further evidence of the existence of true membrane receptors. Myeloid cell lines contained numbers of receptors at least 10-fold higher than in lymphoid cell lines. Biosynthesis of PAF upon challenge by ionophore A23187 could be demonstrated in HL60 and U937 cells. In contrast, lymphoid cell lines were unable to produce PAF. Incubation with [14C]acetate showed incorporation of the label into three main fractions: neutral lipids, phosphatidylcholine and PAF, but the distribution of the label varied depending on the cell line. Significant incorporation into phosphatidylcholine was observed in uninduced myeloid cell lines. A phospholipase A2 acting on 1-O-hexadecyl-2-arachidonoyl-sn-glycero-3-phosphocholine and an acetyl-CoA:lyso-PAF acetyltransferase were expressed in the HL60 cell line and showed variations in specific activity with granulocytic differentiation. In contrast, these enzyme activities were not expressed in Daudi and Jurkat cell lines. These data indicate (1) the occurrence of PAF binding and catabolism in both myeloid and lymphoid cell lines; (2) the restriction of PAF biosynthesis to myeloid cell lines, especially HL60 cells; (3) the occurrence of differentiation-elicited changes in the specific activities of the enzymes involved in PAF biosynthesis by the remodelling pathway; and (4) the central role played by the disposal of lyso-PAF, a product of the phospholipase A2 reaction, in PAF biosynthesis.


1978 ◽  
Vol 20 (2) ◽  
pp. 193-197 ◽  
Author(s):  
S. R. Sirianni ◽  
C. C. Huang

One normal human lymphoid cell line was treated continuously with the fungicide Folpet (N-trichloromethylthio-phthalimide) at 0.5, 1, 2, and 4 μg/ml of media and one Burkitt cell line was pulse-treated with the same compound for 15 min at 2.5, 5, 10, and 15 μg/ml. Various times after treatment, cell viability counts and chromosome analyses were made. Severe cell growth inhibition and an increase in chromosome aberrations were observed in both cell lines. There were two types of induced chromosome aberrations. Aberrations type A appeared in cultures treated with lower doses and were characterized by chromosome or chromatid gaps and breaks and also infrequently seen exchanges and dicentrics. In the later stages of the experiment, the rate of growth and aberrations returned to control levels. Chromosome aberrations type B appeared in early samples of cultures treated with higher doses. The whole complement of chromosomes was affected. The aberrations included chromosome stickiness, despiralization and pulverization. The cultures died off within two days.


2020 ◽  
Author(s):  
Bodo Haas ◽  
Janine Ciftcioglu ◽  
Sanja Jermar ◽  
Sandra Weickhardt ◽  
Niels Eckstein ◽  
...  

Abstract Background D,L-methadone (MET), an analgesic drug used for pain treatment and opiate addiction has achieved attention from oncologist and social media as possible chemosensitizing agent in glioblastoma multiforme (GBM) treatment. MET has been reported to enhance doxorubicin-induced cytotoxicity in GBM cells via activation of the µ-opioid receptor (MOR) and subsequent apoptosis induction. Here, we further aimed at quantifying MET effects in comparison to other opioids alone and in combination with doxorubicin and clinically more relevant temozolomide (TMZ) in a set of GBM cell lines and primary GBM cells. Methods MOR expression in GBM cells was investigated by immunofluorescence and immunoblotting. Resistance to drugs alone or in combination was assessed by MTT assays. Concentration effect curves were fitted to data points by nonlinear regression analysis and IC50 values were calculated. Apoptotic rates were determined by Annexin V staining. Results We found that MET alone was cytotoxic to GBM cells at high micromolar concentrations in MTT assays by induction of apoptosis and necrosis while morphine and oxycodone were hardly cytotoxic. Naloxone was not able to block MET-induced cytotoxicity, indicating that cell death inducing effects of MET are not MOR dependent. We recorded doxorubicin and TMZ concentration response curves by MTT assays in combination with fixed MET concentrations. MET only enhanced doxorubicin cytotoxicity in one cell line and in part in primary cells at certain MET concentrations. MET was not effective in sensitizing cells towards TMZ. Contrarily, in two cell lines MET even decreased sensitivity towards TMZ. Conclusions MET can be considered cytotoxic to GBM cells only at clinically not relevant concentrations by induction of apoptosis and necrosis. Sensitizing effects are only observed in combination with doxorubicin but not with TMZ and are highly dependent on cell line and applied drug concentrations.


Sign in / Sign up

Export Citation Format

Share Document