IL-7 Effects on Thymocyte Progenitors.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3318-3318
Author(s):  
Nahed El Kassar ◽  
Baishakhi Choudhury ◽  
Francis Flomerfelt ◽  
Philip J. Lucas ◽  
Veena Kapoor ◽  
...  

Abstract IL-7 is a non-redundant cytokine in T cell development. We studied the role of IL-7 in early T-cell development using a model of transgenic (Tg) mice with the murine IL-7 gene under control of the lck proximal promoter. At high IL-7 over-expression (x39 fold increase at day 1 in total thymic tissue), we observed a disruption of TCRαβ development along with increased B cell development in the thymus (7- to 13-fold increase) (El Kassar, Blood, 2004). In order to further explore abnormal T and B cell thymic development in these mice, we first confirmed that they both arise in parallel and were non-cell autonomous, by in vivo injection of neutralizing anti-IL-7 MAb and mixed bone marrow chimera experiments. Using a six color flow cytometry analysis, we found a dramatic decrease of the early thymocyte progenitors (ETPs, lin−CD44+CD25−c-kithiIL-7R−/lo) in the adult Tg mice (x4.7 fold decrease). Lin−CD44+CD25−c-kit+ thymocytes were sorted and cultured on OP9 and OP9 delta-like1 (OP9-DL1) stromal cells (kindly provided by Pr Zuniga Pflucker). At day 14, we observed an important decrease of T cell development (54% vs. 1% of DP cells) and an increase of NK cells (x5 fold increase) in the Tg-derived DN1 cell culture. DN2 (Lin−CD44+CD25−c-kit+) Tg thymocytes showed the same, but less dramatic abnormalities. While DN1 progenitors developed effectively into B220+CD19+ cells on OP9 stromal cells, no B cell development was observed on OP-DL stromal cells from DN1-Tg derived progenitors or by addition of increasingly high doses of IL-7 (x10, x40, x160) to normal B6-derived DN1 progenitors. Instead, a block of T-cell development was observed with increased IL-7. We hypothesized a down regulation of Notch signaling by IL-7 over-expression and analyzed by FACS Notch expression in the DN thymocytes. By staining the intra-cellular part of Notch cleaved after Notch 1/Notch ligand activation, Tg-derived DN2 cells showed decreased Notch signaling. More importantly, HES expression was decreased in the DN2, DN3 and DN4 fractions by semi-quantitative PCR. Sorted Pro/Pre B cells from Tg thymi showed TCR Dβ1-Jβ1 rearrangement indicating their T specific origin, in opposition to Pro/Pre B cells sorted from the bone marrow of the same mice. We suggest that more than one immature progenitor seeds the thymus from the bone marrow. While ETPs had T and NK proliferative capacity, another thymic progenitor with B potential may be responsible for thymic B cell development in normal and IL-7 Tg mice. Finally, IL-7 over-expression may induce a decreased Notch signaling in thymic progenitors, inducing a switch of T vs. B lineage development.

1997 ◽  
Vol 155 (1) ◽  
pp. 165-170 ◽  
Author(s):  
R Kooijman ◽  
SC van Buul-Offers ◽  
LE Scholtens ◽  
RG Reijnen-Gresnigt ◽  
BJ Zegers

Treatment of mice with IGF-I stimulates T and B cell development. We showed that overexpression of IGF-II in transgenic FVB/N mice only stimulated T cell development. In the present study, we further addressed the in vivo effects of IGF-II in the absence of IGF-I to get more insight into the potential abilities of IGF-II to influence T and B cell development. To this end, we studied lymphocyte development in IGF-II transgenic Snell dwarf mice that are prolactin, GH and thyroid-stimulating hormone deficient and as a consequence show low serum IGF-I levels. We showed that T cell development was stimulated to the same extent as in IGF-II transgenic FVB/N mice. Furthermore, IGF-II increased the number of nucleated bone marrow cells and the number of immature B cells without having an effect on the number of mature B cells in spleen and bone marrow. Our data show that IGF-II has preferential effects on T cell development compared with B development, and that these preferential effects also occur in the absence of measurable IGF-I levels.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 81-81 ◽  
Author(s):  
Sung-UK Lee ◽  
Manami Maeda ◽  
Nagisa Sakurai ◽  
Freddy Radtke ◽  
Takahiro Maeda

Abstract Abstract 81 Hematopoietic stem cells (HSC) have the ability to self-renew and give rise to all hematopoietic lineage cells. Understanding signals that regulate the balance between self-renewal and differentiation of HSCs is an important issue in stem cell biology as well as regenerative medicine. Notch signals are critical regulators of the lymphoid lineage fate, but their role in adult HSC function is currently under debate. We explored the role of the LRF (Leukemia/Lymphoma Related Factor), a Notch repressor (also known as Zbtb7a, pokemon, OCZF and FBI-1) in HSC function, as it plays key roles in embryonic development, oncogenesis, and hematopoiesis. Conditional inactivation of the LRF gene in mouse HSCs (LRFF/FMx1-Cre mice) led to the development of CD4/CD8 DP (double positive) T-cells at the expense of B-cell development in the bone marrow (BM) in a Notch-dependent manner. Absolute numbers of the most primitive HSCs (LT-HSCs), defined as CD150+CD48−Flt3−Vcam-1+IL7Rα−LSK (Lin−Sca1+c-Kit+), were significantly reduced, while lymphoid-biased multi-potential progenitors (LMPPs: CD150−CD48+Flt3+Vcam-1+/−IL7Rα−LSK) and common lymphoid progenitors (CLPs: Lin−CD150−CD48+Flt3+Vcam-1−IL7Rα+) were barely detectable in LRFF/FMx1-Cre mice one month after pIpC injection. Enhanced T cell development and concomitant loss of B cell development was also seen in LRF−/− fetal liver (FL). Lin−IL7Rα+c-Kit+PIR+ (Paired Immunoglobulin-like receptors) T cell precursors were significantly increased in LRF−/− FL, indicating that Notch-mediated aberrant lymphoid fate determination also takes place during fetal hematopoiesis. To address which Notch gene(s) are targeted by LRF, we studied the HSC/progenitor population of conditional LRF knockout (LRFF/FMx1-Cre) as well as LRF/Notch1 double conditional knockout mice (LRFF/FNotch1F/FMx1-Cre). In the absence of Notch1, normal B cell development was restored in LRFF/FMx1-Cre mice. Reduction of LT-HSCs in LRFF/FMx1-Cre resulted from high Notch1 activity, as loss of Notch1 rescued LT-HSC numbers, suggesting that LRF functions to maintain HSCs and normal lymphoid fate by blocking Notch1. HSCs in active cell cycle are sensitive to 5-fluoro-uracil (5-FU) treatment, which causes remaining dormant HSCs to be recruited into the cell cycle to rapidly produce new cells and to quickly re-establish the hematopoietic system. To examine the self-renewal capacity of LRF deficient LT-HSC, LRFF/FMx1-Cre mice were treated with 5-FU after pIpC injection and the recovery of LT-HSC numbers examined. While control LT-HSC numbers recovered to pretreatment levels 3 wk after 5-FU treatment, levels in LRFF/FMx1-Cre mice remained low, accompanied by DP T cell development in the BM. Furthermore, after 5-FU treatment, LT-HSC numbers of LRFF/FNotch1F/FMx1-Cre were compatible to those of control and LRFF/FMx1-Cre mice, indicating that lack of self-renewal capacity in LRF deficient LT-HSCs was due to excessive differentiation toward T cells caused by Notch1. In support of this idea, when mice were given 5-FU weekly as a challenge to assess their HSC function in vivo, the survival percentage in LRFF/FMx1-Cre mice was much lower than in controls (0% versus 50% in 1 month, P <0.0001) and that of LRFF/FNotch1F/FMx1-Cre mice was compatible to controls. Serial bone marrow transplant experiments further demonstrated functional defects of LRF deficient HSCs, as they failed to reconstitute the hematopoietic system in secondary recipients. Microarray analysis and subsequent Gene Set Enrichment Analysis demonstrated upregulation of genes that were enriched in progenitor compartments. Since LRF can act as a transcriptional repressor, mRNA levels of Notch receptors and Notch ligands were examined using the same data set. A Notch target gene Hes1, but not Notch1 itself, was upregulated, and increased levels of Hes1 was also confirmed by real-time q-PCR in FACS-sorted LT-HSCs, as well as in 10.5 d.p.c whole embryos. These data suggest that LRF does not transcriptionally regulate Notch1, as LRF loss led to Notch1 target gene activation at the LT-HSC level without affecting Notch1 mRNA. Our genetic studies clearly indicate that LRF is indispensable for the maintenance of the HSC pool by repressing T cell-instructive signals mediated by Notch1 in the BM niche. Our findings shed new light on the regulatory mechanisms underlying the balance between HSC self-renewal and differentiation. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3238-3238
Author(s):  
Nahed El Kassar ◽  
Philip J. Lucas ◽  
Frank Flomerfelt ◽  
Melinda Merchant ◽  
Catherine V. Bare ◽  
...  

Abstract We have shown that high IL-7 transgene (Tg) over-expression (39-fold at day 1 in thymic tissue) under the T cell specific, proximal lck promoter had a dose effect on TCRαβ that was accompanied by active B cell development in the thymus. To further characterize these affects in the thymus of IL-7 transgenic mice, we analyzed thymi from day 18 embryos and newborn Tg mice, as well as fetal thymic organ culture (FTOC) derived from using day 16 embryos. We show that arrested T-cell and increased B-cell thymic development is initiated during fetal development. Using mixed bone marrow chimeras and anti-IL-7 monoclonal antibody injection, we further demonstrate that abnormalities in thymic T and B cell development are non-cell autonomous and are due to IL-7 over-expression. Recently, it was shown that only the early thymocyte progenitor (ETP, c-kit+IL-7R−/lo) fraction within the DN1 subpopulation had a T-cell proliferative potential in contrast to the c-kit−IL-7R+ DN1 subset. Here we show that in Tg mice the ETPs were decreased, while the c-kit−IL-7R+ cells are increased in both percentage and absolute count when compared to normal controls. In order to explore the T vs. B ETP potential, we seeded re-aggregate thymic organ cultures with sorted lin−CD44+CD25−c-kit+IL-7R+ cells. While ETPs derived from normal controls were able to proliferate and produce 83% of DP thymocytes, ETPs sorted from Tg mice developed poorly (10-fold less) into DP cells (30%) and produced 14% of B220+ cells vs. 6% in controls. Moreover, sorted Pro/Pre B derived thymic B cells from Tg mice, but not BM-derived Pro/Pre B cells had the TCRβD-J rearrangement, suggesting a T-specific origin. Since the B-cell differentiation pathway in normal mice is selectively inhibited by thymic presentation of Notch ligands, we hypothesized that IL-7 down-regulates Notch signaling. To test this hypothesis, we analyzed thymocyte progenitors (DN1-DN4) in normal and Tg mice for the intra-cytoplasmic part of Notch, that is cleaved upon Notch/Notch-ligand activation. Notch staining was decreased in the lin−CD44+CD25inter representing the only DN2 population present in these Tg mice. These data favour a decrease of Notch signalling in mice with high IL-7 Tg over-expression, inducing a block in TCRαβ development, and skewing of thymic B cell development by T vs. B lineage subversion. These conclusions may have implications for IL-7 in the clinical setting.


Blood ◽  
2011 ◽  
Vol 118 (2) ◽  
pp. 309-318 ◽  
Author(s):  
Manuella L. Gomes Ochtrop ◽  
Sigune Goldacker ◽  
Annette M. May ◽  
Marta Rizzi ◽  
Ruth Draeger ◽  
...  

Abstract In common variable immunodeficiency (CVID) defects in early stages of B-cell development, bone marrow (BM) plasma cells and T lymphocytes have not been studied systematically. Here we report the first morphologic and flow cytometric study of B- and T-cell populations in CVID BM biopsies and aspirates. Whereas the hematopoietic compartment showed no major lineage abnormalities, analysis of the lymphoid compartment exhibited major pathologic alterations. In 94% of the patients, BM plasma cells were either absent or significantly reduced and correlated with serum immunoglobulin G levels. Biopsies from CVID patients had significantly more diffuse and nodular CD3+ T lymphocyte infiltrates than biopsies from controls. These infiltrates correlated with autoimmune cytopenia but not with other clinical symptoms or with disease duration and peripheral B-cell counts. Nodular T-cell infiltrates correlated significantly with circulating CD4+CD45R0+ memory T cells, elevated soluble IL2-receptor and neopterin serum levels indicating an activated T-cell compartment in most patients. Nine of 25 patients had a partial block in B-cell development at the pre-B-I to pre-B-II stage. Because the developmental block correlates with lower transitional and mature B-cell counts in the periphery, we propose that these patients might form a new subgroup of CVID patients.


Blood ◽  
2000 ◽  
Vol 95 (7) ◽  
pp. 2312-2320 ◽  
Author(s):  
Pilar Lauzurica ◽  
David Sancho ◽  
Miguel Torres ◽  
Beatriz Albella ◽  
Mónica Marazuela ◽  
...  

Abstract AIM/CD69 is the earliest leukocyte activation antigen and is expressed mainly by activated T, B, and natural killer (NK) cells. It is also constitutively expressed by platelets, by bone marrow myeloid precursors, and by small subsets of resident lymphocytes in the secondary lymphoid tissues. The engagement of CD69 by specific antibodies induces intracellular signals, including Ca++ flux, cytokine synthesis, and cell proliferation. To investigate the physiological relevance of CD69, we generated mice deficient in CD69 (CD69-/-) by gene targeting in embryonic stem cells. CD69 (-/-) mice showed largely normal hematopoietic cell development and normal T-cell subpopulations in thymus and periphery. Furthermore, studies of negative- and positive-thymocyte selection using a T-cell receptor transgenic model demonstrated that these processes were not altered in CD69 (-/-) mice. In addition, natural killer and cytotoxic T lymphocyte cells from CD69-deficient mice displayed cytotoxic activity similar to that of wild-type mice. Interestingly, B-cell development was affected in the absence of CD69. The B220hiIgMneg bone marrow pre-B cell compartment was augmented in CD69 (-/-) mice. In addition, the absence of CD69 led to a slight increase in immunoglobulin (Ig) G2a and IgM responses to immunization with T-dependent and T-independent antigens. Nevertheless, CD69-deficient lymphocytes had a normal proliferative response to different T-cell and B-cell stimuli. Together, these observations indicate that CD69 plays a role in B-cell development and suggest that the putative stimulatory activity of this molecule on bone marrow-derived cells may be replaced in vivo by other signal transducing receptors.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 35-35
Author(s):  
Anna Luiza Facchetti Vinhaes Assumpcao ◽  
Guoping Fu ◽  
Zhanping Lu ◽  
Ashley Kuehnl ◽  
Renren Wen ◽  
...  

T cell development originates from hematopoietic stem and progenitor cells in the bone marrow, which migrate to the thymus and obtain T cell identification. Transcription factors play critical roles in regulating early T cell development. While Notch signals are critically required at the early stage of T cell development, the completion of T cell lineage commitment is far from the initial response to Notch signaling. Other transcription factors such as PU.1, Ikaros, and RUNX1 are required to enable progenitor cells to committee T cell lineage before Notch signaling. YY1 is a ubiquitous transcription factor and mammalian Polycomb Group Protein (PcG) with important functions to regulate lymphocytes development, stem cell self-renewal, cell proliferation, and survival. Previous study showed that YY1 can interact with the Notch1 receptor intracellular domain and regulate Notch1 transactivation activities in vitro. Thus, YY1 may also belong to the core T cell lineage regulatory factors and is required for progenitor cell commitment to T cell development. To test how loss-of-function of YY1 impacts early T cell development, we utilized a conditional Yy1 knockout allele Yy1f/f with loxP sites flanking the Yy1 promoter region and exon 1. Yy1f/fmice were crossed to the inducible Mx1-Cre. In Yy1f/fMx1-Cre mice, YY1 deletion was achieved after treatment with the pI-pC. Yy1-/- mice had significantly reduced numbers of lymphoid-primed multipotent progenitor, (LMPP), common lymphoid progenitor (CLP), and double-negative (DN) T cells compared to Yy1+/+ mice. YY1 deficiency resulted in an early T cell developmental blockage at the DN1 stage. In addition, Notch1 mRNA and protein expressions were significantly reduced in Yy1-/- thymocytes compared to Yy1+/+ thymocytes. In Yy1-/- thymocytes, Notch target gene Hes1 was also downregulated. Thus, YY1 is required for early T cell development and Notch1 signaling. YY1 mediates stable PcG-dependent transcriptional repression via recruitment of PcG proteins that catalyze histone modifications. Our previous results demonstrated that YY1 PcG function is required for Igκ chain rearrangement in early B cell development, however, it is not required for YY1 functions in promoting HSC self-renewal and maintaining HSC quiescence. Many questions remain unanswered regarding how cell- and tissue-specificity is achieved by PcG proteins. Herein, we utilized a YY1 REPO domain mutant (YY1ΔREPO). The small 25 amino acid REPO domain is necessary and sufficient for recruiting other PcG proteins to YY1-bound chromatin sites in Drosophila. While YY1ΔREPO is competent for DNA binding, transcriptional activation, transient transcriptional repression, and interaction with transcriptional coregulators such as HDACs, it is defective in all YY1 PcG functions and unable to recruit other PcG proteins to DNA. This mutant is therefore a powerful tool for dissecting mechanisms governing YY1 PcG-dependent versus -independent functions. Bone marrow cells from Yy1f/f Mx1-Cre mice were transduced retrovirally with MigR1-FlagYY1, MigR1-FlagYY1ΔREPO or MigR1 vector and transplanted into lethally irradiated CD45.1+ mice. In addition, Mx1-Cre bone marrow cells infected with MigR1 vector were used as the wild-type control and transplanted into CD45.1+ mice. While YY1 is required for DN1 to DN2 transition, YY1 PcG function/REPO domain is not required for DN1 transition. Instead, in mice lack of YY1 PcG function/REPO domain, early T cells had increased cell apoptosis and failed to survive. Interestingly, although YY1 PcG function/REPO domain is critical for early T cell survival, it is not required for YY1 regulation of Notch1 expression. We concluded that YY1 is a critical regulator for early T cell development and Notch signaling. There is a lineage-specific requirement for the YY1 PcG function/REPO domain for early T cell development. While YY1 PcG function is required for early T cell survival, it is not required for YY1 regulation of Notch1 expression. YY1 PcG and non-PcG functions promotes T cell development by unique mechanisms of promoting cell survival and Notch1 expression respectively. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 124-124
Author(s):  
Ivan Maillard ◽  
Laleh Talebian ◽  
Zhe Li ◽  
Yalin Guo ◽  
Daisuke Sugiyama ◽  
...  

Abstract The family of core binding factors includes the DNA-binding subunits Runx1-3 and the common non-DNA binding partner CBFβ. Runx1 and CBFβ are essential for the emergence of hematopoietic stem cells during fetal development, but not for stem cell maintenance during later ontogeny. Runx1 is also required for megakaryocyte differentiation, B cell development, and for the DN2 to DN3 transition in thymocyte development. Runx2/CBFβ are critical for normal osteogenesis, and Runx3 for CD4 silencing in CD8+ T cells, but their contribution to other steps of hematopoietic development is unknown. To examine the collective role of core binding factors in hematopoiesis, we generated a hypomorphic Cbfb allele (Cbfbrss). CBFβ protein levels were reduced by approximately 2–3 fold in fetuses homozygous for the Cbfbrss allele (Cbfbrss/rss), and 3–4 fold in fetuses carrying one hypomorphic and one knockout allele (Cbfbrss/−). Cbfbrss/rss and Cbfbrss/− fetuses had normal erythroid and B cell development, and relatively mild abnormalities in megakaryocyte and granulocyte differentiation. In contrast, T cell development was very sensitive to an incremental reduction of CBFβ levels: mature thymocytes were decreased in Cbfbrss/rss fetuses, and virtually absent in Cbfbrss/−fetuses. We next assessed the development of Cbfbrss/rss and Cbfbrss/− fetal liver progenitors after transplantation to irradiated adult recipients, in competition with wild-type (wt) bone marrow cells. Wt, Cbfbrss/rss and Cbfbrss/− fetal progenitors replenished the erythroid, myeloid and B cell compartments equally well. The overall development of Cbfbrss/rss T cells was preserved, although CD4 expression was derepressed in double negative thymocytes. In Cbfbrss/− chimeras, mature thymocytes were entirely derived from competitor cells. Furthermore, the developmental block in Cbfbrss/− progenitors was present at the earliest stages of T cell development within the DN1 (ETP) and DN2 subsets. Our data define a critical CBFβ threshold for normal T cell development, and they situate an essential role of core binding factors during the earliest stages of T cell development. In addition, early thymopoiesis appeared more severely affected by reduced CBFβ dosage than by the lack of Runx1 (Ichikawa et al., Nat Med 2004; Growney et al., Blood 2005), suggesting that Runx2/3 may contribute to core binding factor activity in the T cell lineage.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2244-2244
Author(s):  
Gerald J. Spangrude ◽  
Birgitta Johnson ◽  
Scott Cho ◽  
Xiaosong Huang ◽  
L. Jeanne Pierce

Abstract The ability to study lymphocyte differentiation in culture has been greatly advanced by the availability of the OP9 bone marrow stromal cell line, which was derived from an op/op mouse and thus lacks M-CSF. As a result, the normal default myeloid differentiation from bone marrow-derived stem and progenitor cells does not occur, and lymphocyte differentiation is favored. Introduction of the Notch ligand Delta-like 1 into OP9 cells results in promotion of T cell development and parallel suppression of B cell development. While the OP9-DL1 model of T cell development works quite well when fetal liver-derived progenitors are cultured, the success of T cell development from adult bone marrow-derived progenitors has been more difficult to reproduce. We have undertaken a systematic analysis of variables that can prevent efficient T cell development in OP9-DL1 cultures, and have found that one limiting factor that impacts the efficiency of differentiation of both T and B cell lineages is the accumulation of ammonium ions as a result of the spontaneous decomposition of l-glutamine. L-glutamine, which is present at 2 to 4 mM in standard tissue culture media, is unstable and will spontaneously degrade to form ammonium ions and pyroglutamic acid at a rate of 1%/day at 4°C and at a 10-fold higher rate at 37°C. To evaluate the effects of the two major products of l-glutamine decomposition on lymphoid differentiation, we added each product to differentiation cultures at 3 mM in the presence of a stable source of l-glutamine (l-alanyl-l-glutamine). Cultures were established in 1 ml containing 4×104 stromal cells (OP9 for B cell differentiation, OP9-DL1 for T cell differentiation), 1×103 bone marrow-derived lymphoid progenitors enriched by phenotype (c-kit+LinnegSca-1+Thy-1.1neg), and 5 ng/ml Flt3L plus 5 ng/ml IL-7. Every 3 to 4 days, cultures were harvested and passaged onto fresh stromal cell monolayers; lymphoid cells were counted and evaluated for surface antigen expression at each passage. While addition of pyroglutamic acid had no inhibitory effect on lymphocyte growth or differentiation, addition of ammonium chloride slowed growth and prevented differentiation of both T and B lymphocytes. Growth of the stromal cell monolayers was not affected by ammonium chloride at the concentrations utilized in these studies. We conclude that freshly-prepared culture medium, preferably containing a stabilized form of l-glutamine, is a critical aspect contributing to the success of lymphocyte differentiation cultures established from adult bone marrow cells. We also found that decreasing IL-7 concentrations to 1 ng/ml resulted in more rapid differentiation of T cells and a more balanced representation of CD4 and CD8 single positive cells. Our studies help define optimal conditions for differentiation of bone marrow-derived lymphoid progenitor cells into T and B lineages in vitro, and provide evidence that hematopoietic differentiation displays variable degrees of sensitivity to ammonium ions derived from decomposition of l-glutamine. These results will help define optimal conditions for expansion and differentiation of hematopoietic stem and progenitor cells in vitro.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1246-1246
Author(s):  
Ryan B. Day ◽  
Adam Greenbaum ◽  
Daniel C. Link

Abstract Abstract 1246 Infectious stress is associated with a shift in the bone marrow from lymphopoiesis to granulopoiesis. Expression of granulocyte colony-stimulating factor (G-CSF), the principal cytokine regulating granulopoiesis, is often induced during infection. We previously reported that G-CSF treatment is associated with marked suppression of B lymphopoiesis in murine bone marrow. After 5 days of G-CSF treatment (250 μg/kg), total B cells in the bone marrow were reduced 8.1 ± 0.9-fold. Pre-pro-B cells were reduced 1.6 ± 0.3-fold, pro-B cells 12.4 ± 1.9-fold, pre-B cells 5.6 ± 0.8-fold, immature B cells 7.5 ± 1.2-fold, and mature naïve B cells 83 ± 7.6-fold. B-committed lymphoid progenitors (BLP) were modestly but significantly decreased (1.4 ± 0.2-fold), while common lymphoid progenitors (CLP) were not affected by G-CSF treatment. Increased apoptosis of mature naïve B cells in the bone marrow was observed. Studies of G-CSF receptor deficient (Csf3r−/−) bone marrow chimeras show that G-CSF acts in a non-cell intrinsic fashion to suppress B lymphopoiesis. Consistent with this observation, we show that G-CSF treatment results in decreased expression in the bone marrow microenvironment of multiple B-supportive factors including CXCL12, interleukin-6, interleukin-7, and B cell activating factor (BAFF). Prior studies have established that CXCL12-abundant reticular (CAR) cells in the bone marrow play a key role in B cell development. CAR cells are perivascular stromal cells that express very high levels of CXCL12 and are in direct contact with pre-pro-B cells. G-CSF treatment did not affect CAR cell number. However, RNA expression profiling of sorted CAR cells showed that expression of several genes associated with B cell development are significantly decreased by G-CSF, including CXCL12 (4.2 ± 1.5-fold). In addition to CAR cells, other stromal cells in the bone marrow express CXCL12, including osteoblasts and endothelial cells. To assess the role of CXCL12 production by each of these cell types to B lymphopoiesis, we generated Cxcl12flox mice and crossed them with mice expressing the following tissue-specific Cre-recombinase transgenes: Osteocalcin-Cre (Oc-Cre) targeting mature mineralizing osteoblasts; Osterix-Cre (Osx-Cre) targeting CAR cells and all osteolineage cells; or Prx1-Cre targeting mesenchymal progenitors and their progeny. Deletion of Cxcl12 using Oc-Cre or Osx-Cre had a similar effect on B cell development, with an isolated loss of mature naïve B cells in the bone marrow (2.7 ± 0.5 and 4.1 ± 1.7-fold, respectively). In contrast, deletion of Cxcl12 using Prx1-Cre resulted in severe suppression of B lymphopoiesis that included a loss of CLP (3.3 ± 2.0-fold), BLP (5.6 ± 4.3-fold), and pre-pro-B cells (12.4 ± 5.1-fold). Interestingly, treatment of Prx1-Cre Cxcl12flox/- mice with G-CSF resulted in additional B cell loss, indicating that deletion of Cxcl12 in mesenchymal stromal cells is not sufficient to fully recapitulate G-CSF-induced B cell suppression. In summary, G-CSF treatment results in marked changes in the bone marrow microenvironment that lead to a suppression of B lymphopoiesis. While G-CSF-induced inhibition of CXCL12 expression from stromal cells contributes to B cell suppression, additional alterations in the microenvironment also contribute to this phenotype. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2000 ◽  
Vol 95 (7) ◽  
pp. 2312-2320 ◽  
Author(s):  
Pilar Lauzurica ◽  
David Sancho ◽  
Miguel Torres ◽  
Beatriz Albella ◽  
Mónica Marazuela ◽  
...  

AIM/CD69 is the earliest leukocyte activation antigen and is expressed mainly by activated T, B, and natural killer (NK) cells. It is also constitutively expressed by platelets, by bone marrow myeloid precursors, and by small subsets of resident lymphocytes in the secondary lymphoid tissues. The engagement of CD69 by specific antibodies induces intracellular signals, including Ca++ flux, cytokine synthesis, and cell proliferation. To investigate the physiological relevance of CD69, we generated mice deficient in CD69 (CD69-/-) by gene targeting in embryonic stem cells. CD69 (-/-) mice showed largely normal hematopoietic cell development and normal T-cell subpopulations in thymus and periphery. Furthermore, studies of negative- and positive-thymocyte selection using a T-cell receptor transgenic model demonstrated that these processes were not altered in CD69 (-/-) mice. In addition, natural killer and cytotoxic T lymphocyte cells from CD69-deficient mice displayed cytotoxic activity similar to that of wild-type mice. Interestingly, B-cell development was affected in the absence of CD69. The B220hiIgMneg bone marrow pre-B cell compartment was augmented in CD69 (-/-) mice. In addition, the absence of CD69 led to a slight increase in immunoglobulin (Ig) G2a and IgM responses to immunization with T-dependent and T-independent antigens. Nevertheless, CD69-deficient lymphocytes had a normal proliferative response to different T-cell and B-cell stimuli. Together, these observations indicate that CD69 plays a role in B-cell development and suggest that the putative stimulatory activity of this molecule on bone marrow-derived cells may be replaced in vivo by other signal transducing receptors.


Sign in / Sign up

Export Citation Format

Share Document