Using the NOD/SCID Mice Model of Human Erythroleukemia for Evaluating the Cytotoxicity Activity of CB-CIK/NK Cells Stimulated by K562-DCs Fusion Vaccines.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 5240-5240
Author(s):  
Yang Li ◽  
Shaoliang Huang ◽  
Jianpei Fang ◽  
Xuchao Zhang ◽  
Jing Wei ◽  
...  

Abstract CD3+CD56+ cytokine-induced killer (CIK) cells are prospective effectors for adoptive immunotherapy, CIK/NK cells incubated with K562-dendritic cells (DCs) fusion vaccines have more higher cytotoxicity activity. In this study, the efficacy and the safety of application of cord blood (CB) derived CIK/NK cells stimulated by K562-dendritic cells (DCs) fusion vaccines were evaluated in vivo by the NOD/SCID mice model of human erythroleukemia (K562 line, CD13+). DCs and CIK/NK cells were inducted by combination of cytokines from CB MNCs, DCs were fused with inactivated K562 tumor line by PEG (mw1500). 5 days before the harvest of CIK/NK cells, 1×105 K562-DCs fusion vaccines were co-cultured with 1×106 CB-CIK/NK cells to prepare for the K562-DCs fusion vaccines stimulated CIK/NK cells. NOD/SCID mice divided into six groups, eight in one group. Mice in A,B and C groups were inoculated with 1×106 K562 cells by tail vein. 24 hours later, 1×107 K562-DCs fusion vaccines stimulated CIK/NK cells and 1×107 unstimulated CIK/NK cells were transfued into the mice of group A and B, respectively. Group D and E were K562-DCs fusion vaccines stimulated CIK/NK cells and no-stimulated CIK/NK cells control, transfued by 1×107 stimulated CIK/NK cells and 1×107 no-stimulated CIK/NK cells, respectively. Group F is a normal control that no any inoculation were taken. None of the NOD/SCID mice in group C that inoculated with 1×106 K562 cells survived longer than 39 days, hepatosplenomegalic mass was seen in five mice. Death in group A and B were only one and two, respectively, at day 65 and day 56, 62. There was no tumour mass can be seen in group A and B, and the survial were more than 70 days. Both survival time of group A(69.38±1.77 days) and B(67.25±5.34 days) were longer than that of group C(30.38±4.57 days) significantly (P<0.01). The tumor marker (CD13) in periperal blood, live and lung of CIK/NK cells treated NOD/SCID mice (group A and B) significantly less than group C(P<0.01). There was no difference of CD56 positive in periperal blood of group A and B survival mice between that of the control (group D and E). These result indicated that K562-DCs fusion vaccines stimulating CB-CIK/NK cells have a potent anti-tumour activity in vivo and without any side-effect.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3928-3928
Author(s):  
Michele Levin ◽  
Janet Ayello ◽  
Frances Zhao ◽  
Andrew Stier ◽  
Lauren Tiffen ◽  
...  

Abstract Abstract 3928 Background: NK cells play a role in reducing relapse in hematological malignancy following AlloSCT (Dunbar et al, Haematologica, 2008). NK cell limitations include lack of tumor recognition and/or limited numbers of viable and functional NK cells (Shereck/Cairo et al, Ped Bld Can, 2007). NK ACI provide safe and effective therapy against tumor relapse; yet NK cells are limited to specific cancer types and not all patients demonstrate optimal response (Ruggieri et al. Science, 2002; Ljunggren et al. Nat Rev Immuno, 2007). To circumvent these limitations, methods to expand and activate PBMNCs with genetically engineered K562 cells expressing membrane bound IL-15 and 41BB ligand (K562-mbIL15-41BBL [modK562]; Imai/Campana et al, Blood, 2005) have shown to significantly increase NK cells in number and maintain heterogeneous KIR expression (Fusaki/Campana et al BJH, 2009). We have shown that CB NK cells can be activated/expanded and exhibit enhanced cytolytic activity when cultured in a cytokines/antibody cocktail (Ayello/Cairo et al, BBMT, 2006; Exp Heme, 2009). Objective: To evaluate CBNK expansion, activation, cytolytic mechanism and function against Burkitt lymphoma (BL) tumor target and its influence on NK cell mediated in-vitro and in-vivo cytotoxicity in NOD-SCID mice following stimulation with modK562 cells (generously supplied by D.Campana, St Jude's Children's Hospital, Memphis, Tx). Methods: Following 100GY irradiation, modK562cells were incubated 1:1 with CBMNCs in RPMI+IL-2 (10IU/ml) for 7 days in 5%CO2, 37°C. NK activation marker (LAMP-1), perforin and granzyme B were determined by flow cytometry. Cytotoxicty was determined via europium assay at 20:1 E:T ratio with Ramos (BL) tumor targets (ATCC). The mammalian expression construct (ffLucZeo-pcDNA (generously supplied by L.Cooper, MD, PhD) was transfected to BL cells using lipofectin and selected by zeocin for stable transfection. Six week old NOD-SCID mice received 5×106 BL cells subcutaneously. Upon engraftment, xenografted NOD-SCID mice were divided in 5 groups: injected with PBS (control), BL only, 5×106 wildtype (WT) K562 expanded (E) CBNK cells, modK562 expanded (E) CB NK cells (5×106) and modK562 expanded (E) CBNK cells (5×107). Ex-vivo ECBNK cells were injected weekly for 5 weeks and xenografted NOD-SCID mice were monitored by volumetric measurement of tumor size (Tomayko/Reynolds, Can Chemother Pharmac, 1989), bioluminescent imaging (Inoue et al Exp Heme, 2007) and survival. The survival distribution for each group was estimated using the Fisher exact test. Results: On Day 0, NK cells (CD56+/3-) population was 3.9±1.3%. After 7 days, modK562 expanded CBNK cells was significantly increased compared to WTK562 and media alone (72±3.9 vs 43±5.9 vs 9±2.4%, p<0.01). This represented a 35-fold or 3374±385% increase of the input NK cell number. This was significantly increased compared to WTK562 (1771±300%, p<0.05). ModK562 ECBNK cells demonstrated increased perforin and granzyme B expression compared to WTK562 (42±1.5 vs 15±0.5%,p<0.001; 22±0.5 vs 11±0.3%,p<0.001, respectively). Cytotoxicity was against BL tumor targets was significantly increased (42±3 vs 18±2%,p<0.01), along with NK activation marker expression, CD107a (p<0.05). At 5 weeks, in-vivo studies demonstrated increased survival of NOD-SCID mice receiving both 5×106 and 5×107 modK562 ECBNK cells when compared to those with no treatment (p=0.05, p=0.0007, respectively). There was no difference in survival when comparing mice that received 5×106 vs 5×107 modK562 ECBNK cells (p=0.0894) at 5 weeks. Tumor volume of mice receiving either dose of modK562 ECBNK cells was significantly less than those receiving WTK562 ECBNK cells (1.92±0.57 and 0.37±0.05 vs 3.41±0.25, p=0.0096 and p=0.0001, respectively). Conclusions: CBMNCs stimulated and expanded with modK562 cells results in significant expansion of CBNK cells with enhanced in-vitro cytotoxicity, significant receptor expression of NK activation marker (LAMP-1), and perforin and granzyme B. Furthermore, modK562 ECBNK cells leads to increased survival and lower tumor burden of NOD-SCID mice xenografted with BL. Future directions include modK562 ECBNK cells to be genetically modified to express chimeric antigen receptor CD20 (MSCV-antiCD20-41BB-CD3 ζ) against CD20+ hematologic malignancies for future studies to evaluate whether targeting enhances in-vitro and in-vivo cytotoxicity. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 5038-5038
Author(s):  
Bao-An Chen ◽  
Bin-bin Lai ◽  
Jian Cheng ◽  
Feng Gao ◽  
Wen-lin Xu ◽  
...  

Abstract Object: To the effect of Fe3O4-magnetic nanoparticle loaded with DNR on multidrugresistant K562 cells in vivo. Methods: K562-n and its MDR counterpart K562-n/VCR cell were inoculated subcutaneously into both sides of the back of nude mice (5×106 cells/each) to establish a human leukemia xenograft model. The mice were randomly divided into group A receiving normal saline every other day for 20days, group B receiving DNR every other day for 20days, group C receiving Fe3O4-magnetic nanoparticle every other day for 20days, group D receiving Fe3O4-magnetic nanoparticle loaded with DNR every other day for 20days, and group E receiving Fe3O4-magnetic nanoparticle containing DNR every other day for 20days with a magnetic field built on the surface of the tumor tissue. The tumor volume was measured on the day 1, 5, 9, 13, 17 and 21d after the first treatment. Tumor tissues were isolated for examination of the expression of mdr-1, bcl-2, bax and caspase-3 by reverse transcription polymerase chain reaction and Western blotting. Results: For K562-n/VCR tumor, the tumor volume was markedly lower in groups D and E than in groups A, B and C (group D or E vs group A, B or C, P &lt; 0.05). The transcription of mdr-1 and Bcl-2 gene was significantly lower in groups D and E than in groups A, B and C (group D or E vs group A, B or C, P &lt; 0.05). So did the protein expression of Bcl-2. However, there were no differences among these groups about the protein expression of P-gp. The protein and mRNA expressions of Bax and Caspase-3 in groups D and E were increased significantly compared with groups A, B and C (group D or E vs group A, B or C, P &lt; 0.05). The tumor volume of K562-n was markedly lower in groups C, D and E than in groups A and B (group C, D or E vs group A or B, P &lt; 0.05). Conclusion: In conclusion, DNR loaded Fe3O4-magnetic nanoparticles can suppress the growth and induce apoptosis further on the MDR K562-n/VCR tumor in vivo compared to DNR alone but not on the K562-n tumor. The external magnetic field failed to improve the antitumor effect.


Blood ◽  
2012 ◽  
Vol 119 (19) ◽  
pp. 4349-4357 ◽  
Author(s):  
Fanny Guimont-Desrochers ◽  
Geneviève Boucher ◽  
Zhongjun Dong ◽  
Martine Dupuis ◽  
André Veillette ◽  
...  

Abstract The cell lineage origin of IFN-producing killer dendritic cells (IKDCs), which exhibit prominent antitumoral activity, has been subject to debate. Although IKDCs were first described as a cell type exhibiting both plasmacytoid DC and natural killer (NK) cell properties, the current view reflects that IKDCs merely represent activated NK cells expressing B220, which were thus renamed B220+ NK cells. Herein, we further investigate the lineage relation of B220+ NK cells with regard to other NK-cell subsets. We surprisingly find that, after adoptive transfer, B220− NK cells did not acquire B220 expression, even in the presence of potent activating stimuli. These findings strongly argue against the concept that B220+ NK cells are activated NK cells. Moreover, we unequivocally show that B220+ NK cells are highly proliferative and differentiate into mature NK cells after in vivo adoptive transfer. Additional phenotypic, functional, and transcriptional characterizations further define B220+ NK cells as immediate precursors to mature NK cells. The characterization of these novel attributes to B220+ NK cells will guide the identification of their ortholog in humans, contributing to the design of potent cancer immunotherapies.


2009 ◽  
Vol 183 (8) ◽  
pp. 4948-4956 ◽  
Author(s):  
Eliseo F. Castillo ◽  
Spencer W. Stonier ◽  
Loredana Frasca ◽  
Kimberly S. Schluns
Keyword(s):  

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 659-659 ◽  
Author(s):  
Jan Davidson-Moncada ◽  
Noriko Sato ◽  
Robert F Hoyt ◽  
Robert N Reger ◽  
Marvin Thomas ◽  
...  

Abstract Adoptive transfer of allogeneic or autologous natural killer (NK) cells is now being developed for therapy of both hematological and solid malignancies. The efficacy of NK immunotherapy to mediate anti-tumor effects will ultimately be dependent on their ability to traffic and home to the tumor microenvironment. Recent data suggest expanded NK cells are ineffective at homing to the bone marrow (BM) and lymph nodes (LN) where hematological malignancies reside. A variety of techniques to maintain and/or enforce expression of homing receptors in NK cells are now being explored in preclinical models to improve their localization to the BM and LN. Historically, xenogeneic human into mouse or mouse into mouse models have been utilized for preclinical development of adoptive NK transfer. These experiments often use fluorescent dye-labeled NK cells and require repeated invasive biopsies, which can be confounded by sampling error, or the requirement for post mortem analysis. Here we present a method to track in real time and in vivo adoptively infused zirconium-89 (89Zr) labelled NK cells by PET imaging. A rhesus macaque (RM) model was used for these preclinical experiments as RM and human NK cells have similar expansion kinetics, and have greater similarity than mice in their phenotype, function, and homing receptors and ligands. PBMCs collected from the PB of 13 RMs were enriched for NK cells by CD3+ T-cell depletion and were then expanded for 14 days by culturing with irradiated human EBV-LCL cells in X-VIVO 20 media containing 10% human AB serum and 500 IU/μl of human IL-2. RM NK cells expanded a mean 145±41 fold and contained >99% pure CD3- and CD56+ cells. The phenotype and tumor cytotoxicity of RM NK cells were similar to NK cells expanded from humans (n=3) using similar expansion cultures; at a 10:1 E:T ratio, 67% and 73% of K562 cells were lysed by RM and human NK cell respectively. To label NK cells, 89Zr was conjugated to oxine, which readily permeabilized the cellular membrane and was retained in the cells. Expanded NK cells from both humans and RM showed no changes in CD16 or CD56 expression for up to 6 days following radiolabeling. Human and RM NK cell viability 0 to 24 hours following radiolabelling was 60-100% then declined to 20-30% after 6 days. 89Zr retention by both human and RM NK cells was 75-80% in the first 24 hours of culture but gradually declined with time, decreasing to 20-30% after 7 days of culture. Culturing radiolabeled human NK cells for 24-36 hours with different cellular populations including Ramos and Raji cell lines and normal human PBMCs revealed no significant transfer of radioactivity (max 2% above baseline), establishing that 89Zr was not transferred from labeled to unlabeled cells. Oxine labeling did not alter the cytotoxicity of human or RM NK cells vs K562 cells compared to unlabeled controls. 89Zr-oxine labeling of expanded RM NK cells is currently being used to quantify NK cell trafficking and survival following adoptive transfer in autologous macaques. In these experiments, RM recipients of adoptively infused 89Zr labeled NK cells receive concurrent deferoxamine to chelate and then enhance renal excretion of any free 89Zr that is released from dead cells. In the experiments shown below, 13 x 107 autologous ex vivo expanded 89Zr-labeled RM NK cells were injected IV into a 5.7 kg RM and tracked by sequential PET/CT imaging for 7 days. Up to 1-hour post infusion, most NK cell activity was restricted to the lungs. By 4 hours, NK cells began to traffic from the lungs to the liver and spleen. By 2 days, NK cells were no longer detectable in the lungs and resided largely in the liver and spleen, where they remained for the remainder of the 7 day imaging period. During the entire observation period, little to no NK cell radioactivity was detected in the LN or BM. In conclusion, 89Zr oxine labelling of NK cells followed by PET/CT imaging represents a powerful tool to track the in vivo fate of adoptively transferred NK cells. The RM model presented here provides a method to evaluate and optimize various strategies aimed at altering the phenotype of NK cells, with the goal of improving their homing to the BM and LN where hematological cancers reside. These preclinical in vitro and in vivo data suggest this technology could be safely extended to humans and could be applied to other cellular populations besides NK cells. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2003 ◽  
Vol 102 (1) ◽  
pp. 127-135 ◽  
Author(s):  
Christian P. Kalberer ◽  
Uwe Siegler ◽  
Aleksandra Wodnar-Filipowicz

Abstract Definition of the cytokine environment, which regulates the maturation of human natural killer (NK) cells, has been largely based on in vitro assays because of the lack of suitable animal models. Here we describe conditions leading to the development of human NK cells in NOD/SCID mice receiving grafts of hematopoietic CD34+ precursor cells from cord blood. After 1-week-long in vivo treatment with various combinations of interleukin (IL)–15, flt3 ligand, stem cell factor, IL-2, IL-12, and megakaryocyte growth and differentiation factor, CD56+CD3- cells were detected in bone marrow (BM), spleen, and peripheral blood (PB), comprising 5% to 15% of human CD45+ cells. Human NK cells of NOD/SCID mouse origin closely resembled NK cells from human PB with respect to phenotypic characteristics, interferon (IFN)–γ production, and cytotoxicity against HLA class 1–deficient K562 targets in vitro and antitumor activity against K562 erythroleukemia in vivo. In the absence of growth factor treatment, CD56+ cells were present only at background levels, but CD34+CD7+ and CD34-CD7+ lymphoid precursors with NK cell differentiation potential were detected in BM and spleen of chimeric NOD/SCID mice for up to 5 months after transplantation. Our results demonstrate that limitations in human NK cell development in the murine microenvironment can be overcome by treatment with NK cell growth–promoting human cytokines, resulting in the maturation of IFN-γ–producing cytotoxic NK cells. These studies establish conditions to explore human NK cell development and function in vivo in the NOD/SCID mouse model. (Blood. 2003;102:127-135)


Blood ◽  
2005 ◽  
Vol 106 (7) ◽  
pp. 2252-2258 ◽  
Author(s):  
Thierry Walzer ◽  
Marc Dalod ◽  
Scott H. Robbins ◽  
Laurence Zitvogel ◽  
Eric Vivier

AbstractSeveral recent publications have focused on the newly described interactions between natural-killer (NK) cells and dendritic cells (DCs). Activated NK cells induce DC maturation either directly or in synergy with suboptimal levels of microbial signals. Immature DCs appear susceptible to autologous NK-cell-mediated cytolysis while mature DCs are protected. NK-cell-induced DC activation is dependent on both tumor necrosis factor-α (TNF-α)/interferon-γ (IFN-γ) secretion and a cell-cell contact involving NKp30. In vitro, interleukin-12 (IL-12)/IL-18, IL-15, and IFN-α/β production by activated DCs enhance, in turn, NK-cell IFN-γ production, proliferation, and cytotoxic potential, respectively. In vivo, NK-cell/DC interactions may occur in lymphoid organs as well as in nonlymphoid tissues, and their consequences are multiple. By inducing DC activation, NK-cell activation induced by tumor cells can indirectly promote antitumoral T-cell responses. Reciprocally, DCs activated through Toll-like receptors (TLRs) induce potent NK-cell activation in antiviral responses. Thus, DCs and NK cells are equipped with complementary sets of receptors that allow the recognition of various pathogenic agents, emphasizing the role of NK-cell/DC crosstalk in the coordination of innate and adaptive immune responses.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3666-3666
Author(s):  
Tarun K. Garg ◽  
Susann Szmania ◽  
Jumei Shi ◽  
Katie Stone ◽  
Amberly Moreno-Bost ◽  
...  

Abstract Immune-based therapies may improve outcome for multiple myeloma (MM) by eradicating chemo-resistant disease. Our recent trial utilizing IL2 activated, killer immunoglobulin-like receptor-ligand mismatched NK cell transfusions from haplo-identical donors yielded (n) CR in 50% of patients. Unfortunately, after NK cell therapy, 2/10 patients had progressive disease, and the median duration of response for the other 8/10 patients was only 105 days (range 58–593). This may have been due to an insufficient dose of alloreactive NK cells and early rejection. Furthermore, appropriate donors were identified for only 30% of otherwise eligible patients. We therefore investigated whether NK cells from MM patients could be expanded and activated to kill autologous MM. We then examined whether pre-treatment of MM cell targets with elotuzumab, a humanized antibody to the MM tumor antigen CS1, could further enhance NK cell-mediated lysis. PBMC from 5 MM patients were co-cultured for 14 days with irradiated K562 cells transfected with 4-1BBL and membrane bound IL15 in the presence of IL2 (300U/ml) as previously described (Imai et al, Blood2005;106:376–383). The degree of NK cell expansion, NK immunophenotype, and ability to kill MM (4 hour 51Cr release assays) were assessed. To determine the ability of ex vivo expanded NK cells to traffic to bone marrow, activated NK cells were injected into the tail vein of NK cell depleted NOD-SCID mice, which were then sacrificed after 48 hours. Flow cytometry for human CD45, CD3, and CD56 was performed on cells from blood, marrow and spleen. There was an average 64-fold expansion of NK cells (range: 8–200) after 2 weeks of co-culture with K562 transfectants. Expansion of T cells was not observed. The NK cell activating receptor NKG2D, and natural cytotoxicity receptors NKp30, NKp44, and NKp46 were up-regulated following the expansion. Expanded NK cells were able to kill autologous MM (E:T ratio 10:1, average 31%, range 22–41%), whereas resting NK cells did not. Pretreatment of autologous MM cells with elotuzumab increased the activated NK cell-mediated killing by 1.7-fold over target cells pretreated with an isotype control antibody. This level of killing was similar to that of the highly NK kill-sensitive cell line K562 (Figure). Autologous PHA blasts and CD34+ stem cells were not killed. Activated human NK cells were detectable in the bone marrow of NOD-SCID mice 48 hours after injection. Ex vivo activation of NK cells from MM patients with K562 transfectants can induce killing of autologous MM and produce large numbers of NK cells for potential therapy. The addition of elotuzumab to activated NK cell therapy enhances anti-MM effects by ADCC thus invoking an additional NK cell-mediated mechanism of MM killing. Importantly, ex vivo activated NK cells traffic to the bone marrow in mice. Autologous NK cell therapy eliminates the issues related to allo-donor availability and early NK cell rejection, and could provide an option for patients refractory to chemotherapy agents. Figure Figure


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3004-3004
Author(s):  
Kathrin Meinhardt ◽  
Ruth Bauer ◽  
Irena Kroeger ◽  
Julia Schneider ◽  
Franziska Ganss ◽  
...  

Abstract Abstract 3004 Clinical studies exploiting the impact of natural killer (NK) cells in allogeneic hematopoietic stem cell transplantation (HSCT) have provided promising results. It is known that NK cells are a heterogeneous population and can be divided into functionally distinct NK cell subpopulations. Murine NK cells can be separated along their expression of CD27 and CD11b and CD117 (c-kit). However, the functional relevance of distinct NK cell subsets in graft-versus-host-disease (GVHD) has not been investigated in detail so far. We have established different protocols for ex vivo isolation and expansion of murine NK cell subpopulations. These NK subsets were further analyzed in vitro and in vivo in an allogeneic murine GVHD model. Here we report on different genomic, phenotypic and functional properties of 4 NK cell subsets. Our data clearly demonstrate that CD27+ NK cells revealed the highest IFN-g production upon coculture with tumor cells and/or IL-2. Interestingly, the CD11b+ NK cells express multiple genes of cytotoxic pathways and develop the highest cytotoxic capacity towards tumor cells. We observed up to 60% tumor lysis by CD27- CD11b+ NK cells compared to 40–45% by CD27+ CD11b+, about 25% by CD27+ CD11b- and 10% by c-kit+ CD11b- NK cells at an effector-target ratio of 5:1, respectively. Furthermore, the CD11b+ NK cell subset significantly reduced T cell proliferation induced by allogeneic dendritic cells in mixed lymphocytes reactions. Next, we analyzed the migratory capacity and tissue-specific homing of FACS-sorted NK cell subsets by adoptive transfer of congeneic CD45.1+ and Luc+ NK cell subpopulations in autologous and allogeneic bone marrow transplantation. Of interest, FACS analysis and in vivo imaging showed that CD11b+ NK cells migrated to peripheral GVHD target organs, whereas CD27+ NK cells preferentially homed to the bone marrow. Finally, this study addressed for the first time the role of distinct NK cell subpopulations in the development of GVHD in a fully MHC mismatched HSCT mouse model. Importantly, we identified the CD11b+ NK cell population as the NK cell subset that significantly diminished GVHD. In vivo imaging of Luc+CD11b+ NK cells revealed that this subset migrates to the colonic tissue to prevent development of GVHD colitis as shown by colonoscopy. In summary, our comparative study outlines that only CD11b+ NK cells, migrating to the peripheral GVHD target organs and providing the most efficient cytolytic capacity directed against allogeneic dendritic cells, protect against GVHD. These new insights are highly relevant for the selection of optimal NK cell subsets in the field of cellular immunotherapy. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document