Novel Retinoic Acid Metabolism Blocking Agents (RAMBAs) Induce Differentiation in ATRA Resistant Cell Line: Potential New Theraputics for Acute Promyleocytic Leukemia (APL).

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 746-746
Author(s):  
Kavita B. Kalra ◽  
Xiangfei Cheng ◽  
Marion Womak ◽  
Christopher Gocke ◽  
Jyoti B. Patel ◽  
...  

Abstract All trans retinoic acid (ATRA) has been used in differentiation therapy for APL and other types of cancers. However, the rapid emergence of ATRA resistance due in part to ATRA-induced acceleration of ATRA metabolism limits its use. A novel strategy to overcome the limitation associated with exogenous ATRA therapy has been developed by inhibiting the cytochrome P450-dependent ATRA-4-hydroxylase enzyme responsible for ATRA metabolism. These inhibitors are referred to as RAMBAs. Novel RAMBAs were developed which demonstrated a superior apoptosis, cell growth inhibition, in vivo anti-tumor effect in addition to the differentiation effect in breast cancer cell lines (Patel JB et al. J. Med. Chem2004,47:6716). We tested 3 RAMBAs, VN/14-1, 50-1, and 66-1 to investigate their activities against APL cell lines. RAMBAs did not confer cytotoxicity or apoptosis induction in vitro at the concentration between 0.5 to 5 μM as opposed to breast or prostate cancer cell lines. However, the differentiation effect was demonstrated by morphological and phenotypic changes using Wright-Giemsa stain and CD11b staining measured by flow cytometric analysis. VN/14-1 and VN/66-1 induced differentiation and apoptosis morphologically and phenotypically in HL60 cells. VN/14-1 and VN/50-1 showed superior differentiation in NB4 cell line compared to ATRA (70%, 69%, and 45%, respectively). Interestingly, HL60 ATRA resistant cell line was induced to undergo differentiation by VN/14-1 (0.5μM) at 55% whereas ATRA (0.5, 1, 5μM) showed less than 5% by flow cytometry analysis. VN/14-1 inhibited cell cycle at S phase whereas ATRA did not attenuate the cell cycle at the same concentration. We also tested the effect of RAMBAs on human CD34+ enriched cell colony formation. RAMBAs were added to the methylcellulose culture plates with CD34+ cells and colonies were determined after 14 days. There was no difference in the CFU-GM or BFU-E colony count between the control and the RAMBAs group. In summary, RAMBAs are promising differentiation agents in the treatment of APL, possibly through an inhibition of Cyp26A leading to increased endogenous ATRA levels. In addition, cell cycle inhibition may be a mechanism of differentiation induction in ATRA resistant cell lines. RAMBAs did not affect normal hematopoietic stem cells. We are currently testing whether RAMBAs can induce acetylation of histones in APL cell lines.

2017 ◽  
Vol 63 (1) ◽  
pp. 141-145
Author(s):  
Yuliya Khochenkova ◽  
Eliso Solomko ◽  
Oksana Ryabaya ◽  
Yevgeniya Stepanova ◽  
Dmitriy Khochenkov

The discovery for effective combinations of anticancer drugs for treatment for breast cancer is the actual problem in the experimental chemotherapy. In this paper we conducted a study of antitumor effect of the combination of sunitinib and bortezomib against MDA-MB-231 and SKBR-3 breast cancer cell lines in vitro. We found that bortezomib in non-toxic concentrations can potentiate the antitumor activity of sunitinib. MDA-MB-231 cell line has showed great sensitivity to the combination of bortezomib and sunitinib in vitro. Bortezomib and sunitinib caused reduced expression of receptor tyrosine kinases VEGFR1, VEGFR2, PDGFRa, PDGFRß and c-Kit on HER2- and HER2+ breast cancer cell lines


2008 ◽  
Vol 415 (1) ◽  
pp. 97-110 ◽  
Author(s):  
Neil E. Torbett ◽  
Antonio Luna-Moran ◽  
Zachary A. Knight ◽  
Andrew Houk ◽  
Mark Moasser ◽  
...  

The PI3K (phosphoinositide 3-kinase) pathway regulates cell proliferation, survival and migration and is consequently of great interest for targeted cancer therapy. Using a panel of small-molecule PI3K isoform-selective inhibitors in a diverse set of breast cancer cell lines, we have demonstrated that the biochemical and biological responses were highly variable and dependent on the genetic alterations present. p110α inhibitors were generally effective in inhibiting the phosphorylation of PKB (protein kinase B)/Akt and S6, two downstream components of PI3K signalling, in most cell lines examined. In contrast, p110β-selective inhibitors only reduced PKB/Akt phosphorylation in PTEN (phosphatase and tensin homologue deleted on chromosome 10) mutant cell lines, and was associated with a lesser decrease in S6 phosphorylation. PI3K inhibitors reduced cell viability by causing cell-cycle arrest in the G1 phase, with multi-targeted inhibitors causing the most potent effects. Cells expressing mutant Ras were resistant to the cell-cycle effects of PI3K inhibition, which could be reversed using inhibitors of Ras signalling pathways. Taken together, our data indicate that these compounds, alone or in suitable combinations, may be useful as breast cancer therapeutics, when used in appropriate genetic contexts.


2016 ◽  
Vol 63 (3) ◽  
Author(s):  
Karolina Kowalska ◽  
Magdalena Nowakowska ◽  
Kamila Domińska ◽  
Agnieszka W. Piastowska-Ciesielska

The aim of this study was to evaluate the coexpression of caveolin-1 (CAV-1), angiotensin II type 1 receptor (AT1-R) and forkhead box Ml (FOXM1) in prostate and breast cancer cell lines, in comparison with normal cell lines. CAV-1, AT1-R and FOXM1 expression was determined by reverse transcription-quantitative polymerase chain reaction and western blot analysis in the prostate cancer cell lines PC3, DU145 and LNCaP; prostate normal cell line PNT1A; breast cancer cell lines MCF-7 and MDA-MB-231; and the normal breast cell line 184A1. A correlation between the expression levels of the investigated genes and their metastatic properties was determined by the Spearman's rank test (P<0.05) and Aspin-Welsch t-test, respectively. In prostate cell lines, a significant correlation was noted between CAV-1 and AT1-R expression and between FOXM1 and CAV-1 expression. A correlation between the expression levels of the investigated genes and their metastatic potential was also observed, with relatively high expression of all the investigated genes in the normal prostate cell line PNT1A. In comparison to prostate cancer cell lines, an adverse dependency between CAV-1, AT1-R, FOXM1 expression and metastatic potential was observed in the breast cancer cell lines. Relatively high expression of all tested genes was observed in the normal breast cell line 184A1, which was decreasing respectively with increasing metastatic potential of breast cancer cell lines. The results obtained here indicate that CAV-1, FOXM1 and AT1-R may be potential markers of tumorigenesis in certain types of cancer in vitro.


2000 ◽  
Vol 68 (4) ◽  
pp. 369-377 ◽  
Author(s):  
S.N. Pandeya ◽  
P. Yogeeswari ◽  
E.A. Sausville ◽  
A.B. Mauger ◽  
V.L. Narayanan

Various 4-substituted phenyl semicarbazone derivatives were synthesized and evaluated in vitro by NCI in the 3-cell line, one dose primary anticancer assay. Three compounds showed significant activity against breast MCF7 cell line and were further evaluated for potential anticancer activity in an in vitro human disease-oriented tumour cell line screening panel that consisted of 60 human tumour cell lines arranged in nine subpanels, representing diverse histologies. Leukemia, colon, ovarian and breast cancer cell lines were relatively more sensitive to these compounds than the other cell lines. The 4-carboxy substituted p-nitrobenzylidene phenyl semicarbazone (1c) emerged as the most active compound with average GI50 value (the molar drug concentration required for the 50% growth inhibition) of 28.6µM. This compound showed greater activity than methotrexate against NCI-H226(Lung), BT-549 and T-47D(Breast) cancer cell lines.


Sign in / Sign up

Export Citation Format

Share Document