A NUP98-HOX Fusion Gene Containing the Homeodomain of HOXA10 Promotes Significant Expansion of Primitive Human Hematopoietic Cells in Extended Cultures.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1351-1351
Author(s):  
Suzan Imren ◽  
Guy Sauvageau ◽  
Connie J. Eaves ◽  
R. Keith Humphries

Abstract Expanding human hematopoietic stem cells (HSCs) in vitro is a major goal in clinical hematology but remains a major challenge due to the potent differentiating activity of known cytokines. We recently demonstrated that a NUP98-HOX fusion gene containing only the homeodomain (hd) of HOXA10 (NUP98-HOXA10hd) is a powerful stimulator of murine HSC expansion in vitro - causing >1000-fold net HSC increases in 10 days (Sekulovic et al, ISEH 2005). To investigate the proliferative effect of NUP98-HOXA10hd on primitive human hematopoietic cells, highly enriched CD34+ cord blood cells were prestimulated overnight and exposed to self-inactivating MNDUSNUP98-HOXA10hd pgkGFP or control pgkGFP lentiviruses for 6h. The gene transfer efficiency into CD34+ cells determined 4 days after infection was 56 ± 5% for NUP98-HOXA10hd and 66 ± 5% for the GFP control. GFP+ cells were sorted on day 5 and then maintained for another 5 days in serum-free cultures containing Flt3-ligand, Steel factor, IL-3, IL-6 and G-CSF. An aliquot of each was then plated into “primary” colony-forming cell (CFC) assay cultures. No difference was detected in either the numbers or the types of colonies generated in these primary CFC assays of the 10-day cultured cells from the NUP98-HOXA10hd and control arms. However, when these primary CFC assays were replated into secondary CFC assays, the number of colonies obtained from the NUP98-HOXA10hd-transduced cells was 5-fold higher as compared to the GFP-control transduced cells and, upon replating into tertiary CFC assays, this difference increased to over a 100-fold. To determine the effect of NUP98-HOXA10hd on more primitive hematopoietic cells, 104 day-10 GFP+ cells were co-cultured on mouse fibroblast feeders engineered to produce human SF, IL-3 and G-SCF. At the end of 6 weeks, 13-fold more cells were recovered from the cultures initiated with NUP98-HOXA10hd-transduced cells than from the control cultures (474,000 ± 190,000 vs 37,000 ± 16,000, 3 experiments). CFC outputs were also greatly enhanced (21-fold more CFC than in the controls cultures, range=20–80, 3 experiments). Moreover, the proportion of progenitors in the assays of the cultures initiated with NUP98-HOXA10hd cells that were multi-lineage (CFU-GEMM) was >10-fold higher as compared to the CFCs obtained from the control cultures (8 ± 3% vs 0.7 ± 0.7%). When this experiment was repeated using limiting dilutions of initial day-10 cells, the frequency of NUP98-HOXA10hd-transduced cells able to generate CFCs another 6 weeks later was 10-fold higher as compared to the day-10 GFP control-transduced cells. These findings document an unprecedented potency of NUP98-HOXA10hd for stimulating the ex-vivo expansion of very primitive pluripotent human hematopoietic cells.

Blood ◽  
1997 ◽  
Vol 90 (2) ◽  
pp. 641-650 ◽  
Author(s):  
Olga I. Gan ◽  
Barbara Murdoch ◽  
Andre Larochelle ◽  
John E. Dick

Abstract Many experimental and clinical protocols are being developed that involve ex vivo culture of human hematopoietic cells on stroma or in the presence of cytokines. However, the effect of these manipulations on primitive hematopoietic cells is not known. Our severe combined immune-deficient mouse (SCID)-repopulating cell (SRC) assay detects primitive human hematopoietic cells based on their ability to repopulate the bone marrow (BM) of immune-deficient non-obese diabetic/SCID (NOD/SCID) mice. We have examined here the maintenance of SRC, colony-forming cells (CFC), and long-term culture-initiating cells (LTC-IC) during coculture of adult human BM or umbilical cord blood (CB) cells with allogeneic human stroma. Transplantation of cultured cells in equivalent doses as fresh cells resulted in lower levels of human cell engraftment after 1 and 2 weeks of culture for BM and CB, respectively. Similar results were obtained using CD34+-enriched CB cells. By limiting dilution analysis, the frequency of SRC in BM declined sixfold after 1 week of culture. In contrast to the loss of SRC as measured by reduced repopulating capacity, the transplanted inocula of cultured cells frequently contained equal or higher numbers of CFC and LTC-IC compared with the inocula of fresh cells. The differential maintenance of CFC/LTC-IC and SRC suggests that SRC are biologically distinct from the majority of these in vitro progenitors. This report demonstrates the importance of the SRC assay in the development of ex vivo conditions that will allow maintenance of primitive human hematopoietic cells with repopulating capacity.


Blood ◽  
2003 ◽  
Vol 102 (13) ◽  
pp. 4369-4376 ◽  
Author(s):  
James C. Mulloy ◽  
Jorg Cammenga ◽  
Francisco J. Berguido ◽  
Kaida Wu ◽  
Ping Zhou ◽  
...  

AbstractHematopoiesis is a complex process involving hematopoietic stem cell (HSC) self-renewal and lineage commitment decisions that must continue throughout life. Establishing a reproducible technique that allows for the long-term ex vivo expansion of human HSCs and maintains self-renewal and multipotential differentiation will allow us to better understand these processes, and we report the ability of the leukemia-associated AML1-ETO fusion protein to establish such a system. AML1-ETO-transduced human CD34+ hematopoietic cells routinely proliferate in liquid culture for more than 7 months, remain cytokine dependent for survival and proliferation, and demonstrate self-renewal of immature cells that retain both lymphoid and myeloid potential in vitro. These cells continue to express the CD34 cell surface marker and have ongoing telomerase activity with maintenance of telomere ends, however they do not cause leukemia in nonobese diabetic-severe combined immunodeficiency (NOD/SCID) mice. Identification of the signaling pathways that are modulated by AML1-ETO and lead to the self-renewal of immature human progenitor cells may assist in identifying compounds that can efficiently expand human stem and progenitor cells ex vivo. (Blood. 2003; 102:4369-4376)


2019 ◽  
Author(s):  
P. Zhang ◽  
C. Zhang ◽  
J. Han ◽  
J. Gao ◽  
W. Zhao ◽  
...  

AbstractIn bone marrow, hematopoietic stem cells (HSCs) and multiple hematopoietic progenitor cells (HPCs) cooperate to differentiate and replenish blood and immune cells. It has long been recognized bone marrow niche parameters interact with hematopoietic stem and progenitor cells (HSPCs) and additional work is required to study niche physical signals controlling cell behavior. Here we presented that important biophysical signals, stiffness and dimensionality, regulating expansion of bone marrow HSPCs. Mice bone marrow derived progenitor cells were cultured in collagen I hydrogel in vitro. We found stiffer 3D matrix promoted the expansion of lineage negative (Lin−) progenitor cells and Lin−Sca-1+c-kit+ (LSK) HSPCs compared to softer hydrogel. Compared with cells cultured in 2D environment, 3D embedded construct had significant advantage on HSPCs expansion, accompanied by increases on myeloid and lymphoid lineage fractions. Bright changes on gene expression were subsequently discovered. According to these data, we concluded that culture matrix dimensionality is an important factor to regulate the behavior of subpopulations in hematopoietic cell pool, which should be considered in attempts to illuminate HSCs fate decision in vitro.Statement of SignificanceWe would like to submit the enclosed manuscript entitled "Importance of Niche-dimensionality in Regulating the Bone Marrow Hematopoietic Cells Pool", which we wish to be considered for publication in Biophysical Journal. Studies about the interaction between HSCs and factors provided by their microenvironment is largely focus on pure perspective of biology. But biophysical factors affecting HSC fate and behavior needs to be further explore. Herein we found ex vivo culture dimensionality affected HSPC expansion. Cell surface marker detection and mRNA expression analysis predicted the changes on myeloid and lymphoid lineage fractions. We hope niche physical signals which we identified will be considered to design HSC biomimetic niches in clinical applications. And we believe that our study will make it interesting to general readers. We deeply appreciate your consideration of our manuscript, and we look forward to receiving comments from the reviewers.


Blood ◽  
1999 ◽  
Vol 94 (12) ◽  
pp. 4053-4059 ◽  
Author(s):  
Yoshihiko Nakamura ◽  
Kiyoshi Ando ◽  
Jamel Chargui ◽  
Hiroshi Kawada ◽  
Tadayuki Sato ◽  
...  

Abstract The human Lin−CD34− cell population contains a newly defined class of hematopoietic stem cells that reconstitute hematopoiesis in xenogeneic transplantation systems. We therefore developed a culture condition in which these cells were maintained and then acquired CD34 expression and the ability to produce colony-forming cells (CFC) and SCID-repopulating cells (SRCs). A murine bone marrow stromal cell line, HESS-5, supports the survival and proliferation of Lin−CD34− cells in the presence of fetal calf serum and human cytokines thrombopoietin, Flk-2/Flt-3 ligand, stem cell factor, granulocyte colony-stimulating factor, interleukin-3, and interleukin-6. Although Lin−CD34− cells do not initially form any hematopoietic colonies in methylcellulose, they do acquire the colony-forming ability during 7 days of culture, which coincides with their conversion to a CD34+ phenotype. From 2.2% to 12.1% of the cells became positive for CD34 after culture. The long-term multilineage repopulating ability of these cultured cells was also confirmed by transplantation into irradiated NOD/SCID mice. These results represent the first in vitro demonstration of the precursor of CD34+ cells in the human CD34− cell population. Furthermore, the in vitro system we reported here is expected to open the way to the precise characterization and ex vivo manipulation of Lin−CD34− hematopoietic stem cells.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 569-569 ◽  
Author(s):  
Bruno Nervi ◽  
Pablo Ramirez ◽  
Matthew Holt ◽  
Michael P. Rettig ◽  
Julie K. Ritchey ◽  
...  

Abstract Hematopoietic stem cells (HSC) reside in the bone marrow (BM) and interact with stroma cells and extracellular matrix. CXCR4/SDF-1 axis regulates the trafficking of HSC to and from the BM. We utilized a PML-RARα knock-in mouse model of human acute promyelocytic leukemia (APL) to study APL interaction with the normal BM. We have previously shown there is a rapid mobilization of APL cells from the BM into peripheral blood (PB) after administration of AMD3100, a competitive inhibitor of CXCR4. We hypothesize that we can sensitize these tumor cells to chemotherapy by interrupting the interaction between APL and the BM stroma. We transduced banked APL cells with a dual function reporter gene that encodes a fusion protein comprised of Click Beetle Red luciferase, a bioluminescence imaging (BLI) optical reporter gene, and EGFP for ex vivo cell sorting (Luc/EGFP). Upon iv injection into genetically compatible recipients (F1 129/B6 mice), APL rapidly migrated to the BM with increased BLI signal in the femurs, spine, ribs, and skull, at 4 days after injection, followed by spleen infiltration and death due to leukostasis by day 15. 129/B6 F1 mice (n=28) were injected iv with 106 APL cells. By day 12 all mice had ±5% APL cells in PB. 8 mice received AraC (500mg/kg/sq) on days 12 and 13, and another 8 mice received AraC+AMD (5mg/kg/sq) 1 hour before and 3 hours after each AraC injection. 6 mice received only AMD and 6 control mice were observed. Total body BLI signal, WBC, and blasts per μl of blood on days 19 and 23 were higher in AraC versus AraC+AMD (p<0.004). Median survival for control, AMD, AraC and AraC+AMD groups were 18, 19, 23 and 30 days respectively (p<0.0006). Hemoglobin, platelet and granulocyte recovery post-chemotherapy was similar in both groups. We developed an in vitro mouse stroma system to study engraftment, ex vivo mobilization and sensitivity to chemotherapy. In vitro culture of APL cells showed no difference in APL survival between AraC versus AraC+AMD as measured by flow cytometry or BLI. Stroma offered a survival benefit versus no stroma (p<0.0001). We injected 4 genetically compatible mice with 106 APL cells iv and after 14 days mice were sacrificed. Blast percentage in blood, spleen and BM was 47, 58 and 40% respectively. We cultured cells from all three compartments ex vivo with AraC (25ng/ml). After 24 hours APL survival was 25, 80 and 60% respectively (p<0.006). We repeated the same experiment, but we did, in addition, a positive selection for CD34 to purify APL cells away from surrounding cells in the BM and spleen. Survival after ex vivo AraC incubation was 32, 30, 34% respectively (p=NS). In summary, CXCR4/SDF-1 is a key regulator for leukemia migration and homing to the BM. The interaction of APL cells with the BM and splenic microenvironments provides a survival benefit. Rapid mobilization of APL cells in vivo by AMD3100 interrupts APL-stromal interactions and sensitizes APL to chemotherapy. The impact of additional mobilizing agents on APL mobilization on sensitizing APL to chemo and radiotherapy will be presented. Finally, preliminary RNA profiling studies will be presented in an attempt to identify genes in APL cell that are differentially expressed when bound to and released from the BM.


Blood ◽  
2000 ◽  
Vol 95 (9) ◽  
pp. 2829-2837 ◽  
Author(s):  
Stephen J. Szilvassy ◽  
Todd E. Meyerrose ◽  
Barry Grimes

Loss of long-term hematopoietic stem cell function in vitro is associated with cell cycle progression. To determine whether cytokine-induced proliferation also limits the rate of short-term engraftment and potential clinical utility of ex vivo expanded hematopoietic cells, murine Sca-1+c-kit+Lin− cells were cultured in interleukin-6 (IL-6), IL-11, granulocyte colony-stimulating factor (G-CSF), stem cell factor, flk-2 ligand, and thrombopoietin for 7 days. Cells amplified 2000-fold were then stained with Hoechst 33342, separated into G0/G1 (72% ± 3%) or S/G2/M (27% ± 3%) fractions by flow sorting, and injected into lethally irradiated mice. Although long-term (more than 6 months) engraftment of lymphoid and myeloid lineages was greater in primary and secondary recipients of expanded cells residing in G0/G1 at the time of transplantation, there were no noted differences in the short-term (less than 6 weeks) recovery kinetics of circulating blood cells. When hematopoietic cells were expanded in cultures containing the tetrapeptide stem cell inhibitor N-Acetyl-Ser-Asp-Lys-Pro (AcSDKP) to reduce progenitor cycling prior to transplantation, again there were no differences observed in short-term reconstitution by inhibited or uninhibited cells. Interestingly, AcSDKP significantly accelerated engraftment by expanded hematopoietic cells when administered in vivo at the time of transplantation. Leukocytes recovered to 20% of normal levels approximately 1 week faster, and thrombocytopenia was largely abrogated in AcSDKP-treated versus untreated mice. Therefore, while AcSDKP can accelerate the engraftment of ex vivo expanded hematopoietic progenitors, which suggests a relatively simple approach to improve their clinical utility, its effects appear unrelated to cell cycle arrest.


Blood ◽  
1999 ◽  
Vol 94 (3) ◽  
pp. 923-931 ◽  
Author(s):  
Orit Kollet ◽  
Ronit Aviram ◽  
Judith Chebath ◽  
Herzl ben-Hur ◽  
Arnon Nagler ◽  
...  

In vitro maintenance and proliferation of human hematopoietic stem cells is crucial for many clinical applications. Early hematopoietic cells express low levels of FLT-3 and c-kit receptors, as well as the interleukin-6 (IL-6) receptor signal transducing element, gp130, but do not express IL-6 receptor itself. Therefore, we have attempted to maintain human cord blood or bone marrow CD34+ cells ex vivo in serum-free cultures containing stem cell factor (SCF) and FLT-3 ligand (FL) alone or together with a new recombinant molecule of soluble IL-6 receptor fused to IL-6 (IL6RIL6 chimera). The effect of IL6RIL6 chimera on the proliferation and differentiation of CD34+ cells was compared with that of each chimera component added separately. The engraftment potential of in vitro-cultured cells was determined using our recently established functional in vivo assay for primitive human severe combined immunodeficiency (SCID)-repopulating cells (SRC). We report here that IL6RIL6 chimera induced significantly higher levels of progenitors and SRC compared with SCF + FL alone or together with IL-6 and soluble IL-6 receptor. IL6RIL6 chimera prolonged in vitro maintenance of SRC for up to 14 days. Stimulation of CD34+CD38−/low enriched cells with IL6RIL6 chimera maintained the early CD34+CD38−/lowcell subpopulation, which could be detected in vitro for up to 14 days. Moreover, IL6RIL6 chimera preferentially stimulated the growth of early CD34+38−/low cells, resulting in significantly higher levels of progenitors compared with more mature CD34+38+ cells. Taken together, these findings demonstrate the importance of IL6RIL6 chimera in stimulating the proliferation of early CD34+· CD38−gp130+IL-6R−cells in vitro and extended maintenance of progenitors and SRC.


Blood ◽  
1997 ◽  
Vol 90 (2) ◽  
pp. 641-650 ◽  
Author(s):  
Olga I. Gan ◽  
Barbara Murdoch ◽  
Andre Larochelle ◽  
John E. Dick

Many experimental and clinical protocols are being developed that involve ex vivo culture of human hematopoietic cells on stroma or in the presence of cytokines. However, the effect of these manipulations on primitive hematopoietic cells is not known. Our severe combined immune-deficient mouse (SCID)-repopulating cell (SRC) assay detects primitive human hematopoietic cells based on their ability to repopulate the bone marrow (BM) of immune-deficient non-obese diabetic/SCID (NOD/SCID) mice. We have examined here the maintenance of SRC, colony-forming cells (CFC), and long-term culture-initiating cells (LTC-IC) during coculture of adult human BM or umbilical cord blood (CB) cells with allogeneic human stroma. Transplantation of cultured cells in equivalent doses as fresh cells resulted in lower levels of human cell engraftment after 1 and 2 weeks of culture for BM and CB, respectively. Similar results were obtained using CD34+-enriched CB cells. By limiting dilution analysis, the frequency of SRC in BM declined sixfold after 1 week of culture. In contrast to the loss of SRC as measured by reduced repopulating capacity, the transplanted inocula of cultured cells frequently contained equal or higher numbers of CFC and LTC-IC compared with the inocula of fresh cells. The differential maintenance of CFC/LTC-IC and SRC suggests that SRC are biologically distinct from the majority of these in vitro progenitors. This report demonstrates the importance of the SRC assay in the development of ex vivo conditions that will allow maintenance of primitive human hematopoietic cells with repopulating capacity.


Blood ◽  
1999 ◽  
Vol 94 (12) ◽  
pp. 4053-4059 ◽  
Author(s):  
Yoshihiko Nakamura ◽  
Kiyoshi Ando ◽  
Jamel Chargui ◽  
Hiroshi Kawada ◽  
Tadayuki Sato ◽  
...  

The human Lin−CD34− cell population contains a newly defined class of hematopoietic stem cells that reconstitute hematopoiesis in xenogeneic transplantation systems. We therefore developed a culture condition in which these cells were maintained and then acquired CD34 expression and the ability to produce colony-forming cells (CFC) and SCID-repopulating cells (SRCs). A murine bone marrow stromal cell line, HESS-5, supports the survival and proliferation of Lin−CD34− cells in the presence of fetal calf serum and human cytokines thrombopoietin, Flk-2/Flt-3 ligand, stem cell factor, granulocyte colony-stimulating factor, interleukin-3, and interleukin-6. Although Lin−CD34− cells do not initially form any hematopoietic colonies in methylcellulose, they do acquire the colony-forming ability during 7 days of culture, which coincides with their conversion to a CD34+ phenotype. From 2.2% to 12.1% of the cells became positive for CD34 after culture. The long-term multilineage repopulating ability of these cultured cells was also confirmed by transplantation into irradiated NOD/SCID mice. These results represent the first in vitro demonstration of the precursor of CD34+ cells in the human CD34− cell population. Furthermore, the in vitro system we reported here is expected to open the way to the precise characterization and ex vivo manipulation of Lin−CD34− hematopoietic stem cells.


Author(s):  
Fatima Aerts-Kaya

: In contrast to their almost unlimited potential for expansion in vivo and despite years of dedicated research and optimization of expansion protocols, the expansion of Hematopoietic Stem Cells (HSCs) in vitro remains remarkably limited. Increased understanding of the mechanisms that are involved in maintenance, expansion and differentiation of HSCs will enable the development of better protocols for expansion of HSCs. This will allow procurement of HSCs with long-term engraftment potential and a better understanding of the effects of the external influences in and on the hematopoietic niche that may affect HSC function. During collection and culture of HSCs, the cells are exposed to suboptimal conditions that may induce different levels of stress and ultimately affect their self-renewal, differentiation and long-term engraftment potential. Some of these stress factors include normoxia, oxidative stress, extra-physiologic oxygen shock/stress (EPHOSS), endoplasmic reticulum (ER) stress, replicative stress, and stress related to DNA damage. Coping with these stress factors may help reduce the negative effects of cell culture on HSC potential, provide a better understanding of the true impact of certain treatments in the absence of confounding stress factors. This may facilitate the development of better ex vivo expansion protocols of HSCs with long-term engraftment potential without induction of stem cell exhaustion by cellular senescence or loss of cell viability. This review summarizes some of available strategies that may be used to protect HSCs from culture-induced stress conditions.


Sign in / Sign up

Export Citation Format

Share Document