Conditional Disruption of the Murine Prothrombin Gene.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1600-1600
Author(s):  
Eric S. Mullins ◽  
Matthew J. Flick ◽  
Keith W. Kombrinck ◽  
Sandra J. Degen ◽  
William Sun ◽  
...  

Abstract Thrombin is the core protease in the hemostatic system. Thrombin directs thrombus formation through the proteolytic conversion of fibrinogen to fibrin and the local activation of protease-activated receptors on platelets and other cells. In addition, thrombin controls the coagulation system through the activation of fXI, protein C and other key hemostatic factors. Interestingly, the biological role of thrombin is seemingly not limited to the maintenance of vascular integrity. There is appreciable evidence that thrombin-mediated proteolysis plays an important role in development, the inflammatory response, tissue repair, tumor cell metastasis and other physiological and pathological processes. Unfortunately, the embryonic and perinatal lethal phenotype previously described in prothrombin null (fII−/−) mice limited the utility of those knockout animals in better defining the larger role of fII in vivo. In order to develop the means to explore the importance of thrombin in disease processes within adult animals, a mouse line was generated carrying a conditional (“floxed”) fII knockout allele (fIIfx mice). Homozygous fIIfx/fx mice and compound heterozygous mice carrying one fII floxed allele and one fII null allele (fIIfx/− mice) developed to term, were present in offspring in the expected Mendelian frequencies, survived to adulthood and retained normal reproductive success. In the absence of Cre-mediated recombination, fIIfx/− mice maintained circulating fII levels that were low (approximately 10% of normal), but spontaneous bleeding events were never encountered in these animals. Studies of fIIfx/− mice carrying a Cre recombinase transgene known to be constitutively expressed in the liver showed that prothrombin levels can be reduced to levels incompatible with post-natal survival. More sophisticated studies using the polyI:C-inducible Mx-Cre system revealed that unchallenged Mx-Cre+/fIIfx/− mice consistently survived to adulthood. However, induction of Cre under conditions that result in near-complete recombination of target floxed alleles within the liver resulted in the development of spontaneous bleeding events and death within 7 days. Multiple sites of hemorrhage were evident in these challenged adults, including lower gastrointestinal and intracranial sites of bleeding. Immunological analysis of plasma collected from these animals revealed that they carried levels of fII below current detection limits (< 1% of normal). Studies are underway to establish both the lowest level of plasma fII compatible with long-term survival and define the effects of extremely low fII levels on disease processes in vivo.

Blood ◽  
2009 ◽  
Vol 113 (3) ◽  
pp. 696-704 ◽  
Author(s):  
Eric S. Mullins ◽  
Keith W. Kombrinck ◽  
Kathryn E. Talmage ◽  
Maureen A. Shaw ◽  
David P. Witte ◽  
...  

Abstract Mice carrying a conditional prothrombin knockout allele (fIIlox) were established to develop an experimental setting for exploring the importance of thrombin in the maintenance of vascular integrity, the inflammatory response, and disease processes in adult animals. In the absence of Cre-mediated recombination, homozygous fIIlox/lox mice or compound heterozygous mice carrying one fIIlox allele and one constitutive-null allele were viable. Young adults exhibited neither spontaneous bleeding events nor diminished reproductive success. However, the induction of Cre recombinase in fIIlox mice using the poly I:C-inducible Mx1-Cre system resulted in the rapid and near-complete recombination of the fIIlox allele within the liver, the loss of circulating prothrombin, and profound derangements in coagulation function. Consistent with the notion that thrombin regulates coagulation and inflammatory pathways, an additional early consequence of reducing prothrombin was impaired antimicrobial function in mice challenged with Staphylococcus aureus peritonitis. However, life expectancy in unchallenged adults genetically depleted of prothrombin was very short (∼5-7 days). The loss of viability was associated with the development of severe hemorrhagic events within multiple tissues, particularly in the heart and brain. Unlike the constitutive loss of either clotting or platelet function alone, the conditional loss of prothrombin is uniformly not compatible with maintenance of hemostasis or long-term survival.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 267-267
Author(s):  
Matthew J. Flick ◽  
Anil K. Chauhan ◽  
Sara Welch ◽  
Maureen A. Shaw ◽  
Kathryn E. Talmage ◽  
...  

Abstract Thrombin is central in thrombus formation as both a positive mediator of thrombus formation through the proteolytic activation of PARs, fibrinogen, fXI and other prothrombotic substrates, and a negative modulator of the coagulation cascade through the activation of protein C. Detailed structure-function studies have revealed that thrombin can be redesigned to favor either procoagulant or anticoagulant substrates. The introduction of W215A/E217A substitutions in the murine thrombin active site (fIIWE) results in a pronounced “specificity switch” that reduces catalytic efficiency with fibrinogen by at least 3-orders-magnitude while only modestly reducing activity for protein C activation. To evaluate the effects of fIIWE activity in vivo, we have used a gene-targeting strategy to generate mice carrying the W215A/E217A mutations in the endogenous murine prothrombin gene. The mutant allele was transmitted through the germline and was found to support the expression of normal levels of hepatic fII mRNA and plasma fII in both heterozygous and homozygous neonates. Unlike fII knockout mice, homozygous fIIWE mice were observed at term with the expected Mendelian frequency. Nevertheless, homozygous fIIWE offspring uniformly succumbed to spontaneous bleeding events within days of birth. Heterozygous fIIWE/WT animals generally survived to adulthood, were capable of carrying multiple liters to term, and unchallenged mice displayed a hematological profile similar to wildtype mice. However, consistent with a predicted anticoagulant phenotype, adult fIIWE/WT heterozygotes exhibited significantly delayed thrombus formation following ferric chloride injury of mesenteric arterioles and extended bleeding times following tail tip excision relative to control mice expressing wildtype fII. Given that activated protein C has been shown to be efficacious in the treatment of sepsis, we explored whether the shift in thrombin specificity in heterozygous fIIWE/WT mice would confer the benefit of rendering animals tolerant to acute septic challenges. Kaplan-Meier analyses following intravenous administration of S. aureus revealed that fIIWE/WT mice exhibited a significant survival advantage over littermate wildtype animals challenged in parallel and tracked over a 7-day observation period. Notably, extended thrombus formation and bleeding times as well as resistance to sepsis was not simply a function of half normal wildtype fII expression. When these analyses were performed in animals carrying one wildtype allele and one null mutation allele, results were similar to wiltype. These studies further underscore the interplay between the hemostatic and inflammatory systems in vivo and highlight the possible therapeutic utility of recombinant (pro)thrombin derivatives with selected alterations in substrate specificity.


Blood ◽  
2011 ◽  
Vol 117 (23) ◽  
pp. 6326-6337 ◽  
Author(s):  
Matthew J. Flick ◽  
Anil K. Chauhan ◽  
Malinda Frederick ◽  
Kathryn E. Talmage ◽  
Keith W. Kombrinck ◽  
...  

Abstract Thrombin is a positive mediator of thrombus formation through the proteolytic activation of protease-activated receptors (PARs), fibrinogen, factor XI (fXI), and other substrates, and a negative regulator through activation of protein C, a natural anticoagulant with anti-inflammatory/cytoprotective properties. Protease-engineering studies have established that 2 active-site substitutions, W215A and E217A (fIIWE), result in dramatically reduced catalytic efficiency with procoagulant substrates while largely preserving thrombomodulin (TM)–dependent protein C activation. To explore the hypothesis that a prothrombin variant favoring antithrombotic pathways would be compatible with development but limit inflammatory processes in vivo, we generated mice carrying the fIIWE mutations within the endogenous prothrombin gene. Unlike fII-null embryos, fIIWE/WE mice uniformly developed to term. Nevertheless, these mice ultimately succumbed to spontaneous bleeding events shortly after birth. Heterozygous fIIWT/WE mice were viable and fertile despite a shift toward an antithrombotic phenotype exemplified by prolonged tail-bleeding times and times-to-occlusion after FeCl3 vessel injury. More interestingly, prothrombinWE expression significantly ameliorated the development of inflammatory joint disease in mice challenged with collagen-induced arthritis (CIA). The administration of active recombinant thrombinWE also suppressed the development of CIA in wild-type mice. These studies provide a proof-of-principle that pro/thrombin variants engineered with altered substrate specificity may offer therapeutic opportunities for limiting inflammatory disease processes.


1980 ◽  
Vol 44 (02) ◽  
pp. 081-086 ◽  
Author(s):  
C V Prowse ◽  
A E Williams

SummaryThe thrombogenic effects of selected factor IX concentrates were evaluated in two rabbit models; the Wessler stasis model and a novel non-stasis model. Concentrates active in either the NAPTT or TGt50 in vitro tests of potential thrombogenicity, or both, caused thrombus formation in the Wessler technique and activation of the coagulation system in the non-stasis model. A concentrate with low activity in both in vitro tests did not have thrombogenic effects in vivo, at the chosen dose. Results in the non-stasis model suggested that the thrombogenic effects of factor IX concentrates may occur by at least two mechanisms. A concentrate prepared from platelet-rich plasma and a pyrogenic concentrate were also tested and found to have no thrombogenic effect in vivo.These studies justify the use of the NAPTT and TGt50 in vitro tests for the screening of factor IX concentrates prior to clinical use.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Ahmed Alarabi ◽  
Zubair Karim ◽  
Victoria Hinojos ◽  
Patricia A Lozano ◽  
Keziah Hernandez ◽  
...  

Platelet activation involves tightly regulated processes to ensure a proper hemostasis response, but when unbalanced, can lead to pathological consequences such as thrombus formation. G-protein coupled receptors (GPCRs) regulate platelet function by interacting with and mediating the response to various physiological agonists. To this end, an essential mediator of GPCR signaling is the G protein Gαβγ heterotrimers, in which the βγ subunits are central players in downstream signaling pathways. While much is known regarding the role of the Gα subunit in platelet function, that of the βγ remains poorly understood. Therefore, we investigated the role of Gβγ subunits in platelet function using a Gβγ (small molecule) inhibitor, namely gallein. We observed that gallein inhibits platelet aggregation and secretion in response to agonist stimulation, in both mouse and human platelets. Furthermore, gallein also exerted inhibitory effects on integrin αIIbβ3 activation and clot retraction. Finally, gallein’s inhibitory effects manifested in vivo , as documented by its ability to modulate physiological hemostasis and delay thrombus formation. Taken together, our findings demonstrate, for the first time, that Gβγ directly regulates GPCR-dependent platelet function, in vitro and in vivo . Moreover, these data highlight Gβγ as a novel therapeutic target for managing thrombotic disorders.


Author(s):  
Dina Vara ◽  
Reiner K. Mailer ◽  
Anuradha Tarafdar ◽  
Nina Wolska ◽  
Marco Heestermans ◽  
...  

Objective: Using 3KO (triple NOX [NADPH oxidase] knockout) mice (ie, NOX1 −/− /NOX2 −/− /NOX4 −/− ), we aimed to clarify the role of this family of enzymes in the regulation of platelets in vitro and hemostasis in vivo. Approach and Results: 3KO mice displayed significantly reduced platelet superoxide radical generation, which was associated with impaired platelet aggregation, adhesion, and thrombus formation in response to the key agonists collagen and thrombin. A comparison with single-gene knockouts suggested that the phenotype of 3KO platelets is the combination of the effects of the genetic deletion of NOX1 and NOX2, while NOX4 does not show any significant function in platelet regulation. 3KO platelets displayed significantly higher levels of cGMP—a negative platelet regulator that activates PKG (protein kinase G). The inhibition of PKG substantially but only partially rescued the defective phenotype of 3KO platelets, which are responsive to both collagen and thrombin in the presence of the PKG inhibitors KT5823 or Rp-8-pCPT-cGMPs, but not in the presence of the NOS (NO synthase) inhibitor L-NG-monomethyl arginine. In vivo, triple NOX deficiency protected against ferric chloride–driven carotid artery thrombosis and experimental pulmonary embolism, while hemostasis tested in a tail-tip transection assay was not affected. Procoagulatory activity of platelets (ie, phosphatidylserine surface exposure) and the coagulation cascade in platelet-free plasma were normal. Conclusions: This study indicates that inhibiting NOXs has strong antithrombotic effects partially caused by increased intracellular cGMP but spares hemostasis. NOXs are, therefore, pharmacotherapeutic targets to develop new antithrombotic drugs without bleeding side effects.


2020 ◽  
Vol 4 (4) ◽  
pp. 638-643
Author(s):  
Manuel Salzmann ◽  
Sonja Bleichert ◽  
Bernhard Moser ◽  
Marion Mussbacher ◽  
Mildred Haase ◽  
...  

Abstract Platelets are small anucleate cells that release a plethora of molecules to ensure functional hemostasis. It has been reported that IκB kinase 2 (IKK2), the central enzyme of the inflammatory NF-κB pathway, is involved in platelet activation, because megakaryocyte/platelet-specific deletion of exons 6 and 7 of IKK2 resulted in platelet degranulation defects and prolonged bleeding. We aimed to investigate the role of IKK2 in platelet physiology in more detail, using a platelet-specific IKK2 knockout via excision of exon 3, which makes up the active site of the enzyme. We verified the deletion on genomic and transcriptional levels in megakaryocytes and were not able to detect any residual IKK2 protein; however, platelets from these mice did not show any functional impairment in vivo or in vitro. Bleeding time and thrombus formation were not affected in platelet-specific IKK2-knockout mice. Moreover, platelet aggregation, glycoprotein GPIIb/IIIa activation, and degranulation were unaltered. These observations were confirmed by pharmacological inhibition of IKK2 with TPCA-1 and BMS-345541, which did not affect activation of murine or human platelets over a wide concentration range. Altogether, our results imply that IKK2 is not essential for platelet function.


1981 ◽  
Author(s):  
R E Canfield

Immunochemical measurement of the products of fibrinogen proteolysis has provided a method to study the terminal events of coagulation that are initiated by thrombin as well as those events associated with the fibrinolytic actions of plasmin. Thrombin releases fibrinopeptide A (FPA) and later fibrinopeptide B (FPB). Immunologic techniques to measure FPA are now well established; determination of FPB is complicated by degradation of the peptide in plasma. Early plasmin cleavage occurs at the NH2-terminal end of the Bβ-chain of fibrinogen yielding Bβ 1-42. This fragment exhibits limited crossreactivity with antisera to FPB. The action of plasmin at this site on fibrin I may play an important role in determining whether thrombin release of FPA ultimately leads to thrombus formation in vivo. Other early plasmin cleavage products arise from the COOH-terminal half of the α-chain. Details concerning the application of these immunochemical measurements to an understanding of the role of thrombin and plasmin-mediated proteolysis of fibrinogen and fibrin will be discussed. In addition, immunochemical attempts to detect the presence of factor XIIIa-catalyzed crosslinks will also be described.


Blood ◽  
2011 ◽  
Vol 118 (14) ◽  
pp. 3990-4002 ◽  
Author(s):  
Royston-Luke Huang ◽  
Ziqiang Teo ◽  
Han Chung Chong ◽  
Pengcheng Zhu ◽  
Ming Jie Tan ◽  
...  

Abstract Vascular disruption induced by interactions between tumor-secreted permeability factors and adhesive proteins on endothelial cells facilitates metastasis. The role of tumor-secreted C-terminal fibrinogen-like domain of angiopoietin-like 4 (cANGPTL4) in vascular leakiness and metastasis is controversial because of the lack of understanding of how cANGPTL4 modulates vascular integrity. Here, we show that cANGPTL4 instigated the disruption of endothelial continuity by directly interacting with 3 novel binding partners, integrin α5β1, VE-cadherin, and claudin-5, in a temporally sequential manner, thus facilitating metastasis. We showed that cANGPTL4 binds and activates integrin α5β1-mediated Rac1/PAK signaling to weaken cell–cell contacts. cANGPTL4 subsequently associated with and declustered VE-cadherin and claudin-5, leading to endothelial disruption. Interfering with the formation of these cANGPTL4 complexes delayed vascular disruption. In vivo vascular permeability and metastatic assays performed using ANGPTL4-knockout and wild-type mice injected with either control or ANGPTL4-knockdown tumors confirmed that cANGPTL4 induced vascular leakiness and facilitated lung metastasis in mice. Thus, our findings elucidate how cANGPTL4 induces endothelial disruption. Our findings have direct implications for targeting cANGPTL4 to treat cancer and other vascular pathologies.


Sign in / Sign up

Export Citation Format

Share Document