Mice Engineered To Express a Form of Thrombin Favoring Protein C Are Resistant to S. aureus-Induced Sepsis.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 267-267
Author(s):  
Matthew J. Flick ◽  
Anil K. Chauhan ◽  
Sara Welch ◽  
Maureen A. Shaw ◽  
Kathryn E. Talmage ◽  
...  

Abstract Thrombin is central in thrombus formation as both a positive mediator of thrombus formation through the proteolytic activation of PARs, fibrinogen, fXI and other prothrombotic substrates, and a negative modulator of the coagulation cascade through the activation of protein C. Detailed structure-function studies have revealed that thrombin can be redesigned to favor either procoagulant or anticoagulant substrates. The introduction of W215A/E217A substitutions in the murine thrombin active site (fIIWE) results in a pronounced “specificity switch” that reduces catalytic efficiency with fibrinogen by at least 3-orders-magnitude while only modestly reducing activity for protein C activation. To evaluate the effects of fIIWE activity in vivo, we have used a gene-targeting strategy to generate mice carrying the W215A/E217A mutations in the endogenous murine prothrombin gene. The mutant allele was transmitted through the germline and was found to support the expression of normal levels of hepatic fII mRNA and plasma fII in both heterozygous and homozygous neonates. Unlike fII knockout mice, homozygous fIIWE mice were observed at term with the expected Mendelian frequency. Nevertheless, homozygous fIIWE offspring uniformly succumbed to spontaneous bleeding events within days of birth. Heterozygous fIIWE/WT animals generally survived to adulthood, were capable of carrying multiple liters to term, and unchallenged mice displayed a hematological profile similar to wildtype mice. However, consistent with a predicted anticoagulant phenotype, adult fIIWE/WT heterozygotes exhibited significantly delayed thrombus formation following ferric chloride injury of mesenteric arterioles and extended bleeding times following tail tip excision relative to control mice expressing wildtype fII. Given that activated protein C has been shown to be efficacious in the treatment of sepsis, we explored whether the shift in thrombin specificity in heterozygous fIIWE/WT mice would confer the benefit of rendering animals tolerant to acute septic challenges. Kaplan-Meier analyses following intravenous administration of S. aureus revealed that fIIWE/WT mice exhibited a significant survival advantage over littermate wildtype animals challenged in parallel and tracked over a 7-day observation period. Notably, extended thrombus formation and bleeding times as well as resistance to sepsis was not simply a function of half normal wildtype fII expression. When these analyses were performed in animals carrying one wildtype allele and one null mutation allele, results were similar to wiltype. These studies further underscore the interplay between the hemostatic and inflammatory systems in vivo and highlight the possible therapeutic utility of recombinant (pro)thrombin derivatives with selected alterations in substrate specificity.

Blood ◽  
2011 ◽  
Vol 117 (23) ◽  
pp. 6326-6337 ◽  
Author(s):  
Matthew J. Flick ◽  
Anil K. Chauhan ◽  
Malinda Frederick ◽  
Kathryn E. Talmage ◽  
Keith W. Kombrinck ◽  
...  

Abstract Thrombin is a positive mediator of thrombus formation through the proteolytic activation of protease-activated receptors (PARs), fibrinogen, factor XI (fXI), and other substrates, and a negative regulator through activation of protein C, a natural anticoagulant with anti-inflammatory/cytoprotective properties. Protease-engineering studies have established that 2 active-site substitutions, W215A and E217A (fIIWE), result in dramatically reduced catalytic efficiency with procoagulant substrates while largely preserving thrombomodulin (TM)–dependent protein C activation. To explore the hypothesis that a prothrombin variant favoring antithrombotic pathways would be compatible with development but limit inflammatory processes in vivo, we generated mice carrying the fIIWE mutations within the endogenous prothrombin gene. Unlike fII-null embryos, fIIWE/WE mice uniformly developed to term. Nevertheless, these mice ultimately succumbed to spontaneous bleeding events shortly after birth. Heterozygous fIIWT/WE mice were viable and fertile despite a shift toward an antithrombotic phenotype exemplified by prolonged tail-bleeding times and times-to-occlusion after FeCl3 vessel injury. More interestingly, prothrombinWE expression significantly ameliorated the development of inflammatory joint disease in mice challenged with collagen-induced arthritis (CIA). The administration of active recombinant thrombinWE also suppressed the development of CIA in wild-type mice. These studies provide a proof-of-principle that pro/thrombin variants engineered with altered substrate specificity may offer therapeutic opportunities for limiting inflammatory disease processes.


Author(s):  
Dina Vara ◽  
Reiner K. Mailer ◽  
Anuradha Tarafdar ◽  
Nina Wolska ◽  
Marco Heestermans ◽  
...  

Objective: Using 3KO (triple NOX [NADPH oxidase] knockout) mice (ie, NOX1 −/− /NOX2 −/− /NOX4 −/− ), we aimed to clarify the role of this family of enzymes in the regulation of platelets in vitro and hemostasis in vivo. Approach and Results: 3KO mice displayed significantly reduced platelet superoxide radical generation, which was associated with impaired platelet aggregation, adhesion, and thrombus formation in response to the key agonists collagen and thrombin. A comparison with single-gene knockouts suggested that the phenotype of 3KO platelets is the combination of the effects of the genetic deletion of NOX1 and NOX2, while NOX4 does not show any significant function in platelet regulation. 3KO platelets displayed significantly higher levels of cGMP—a negative platelet regulator that activates PKG (protein kinase G). The inhibition of PKG substantially but only partially rescued the defective phenotype of 3KO platelets, which are responsive to both collagen and thrombin in the presence of the PKG inhibitors KT5823 or Rp-8-pCPT-cGMPs, but not in the presence of the NOS (NO synthase) inhibitor L-NG-monomethyl arginine. In vivo, triple NOX deficiency protected against ferric chloride–driven carotid artery thrombosis and experimental pulmonary embolism, while hemostasis tested in a tail-tip transection assay was not affected. Procoagulatory activity of platelets (ie, phosphatidylserine surface exposure) and the coagulation cascade in platelet-free plasma were normal. Conclusions: This study indicates that inhibiting NOXs has strong antithrombotic effects partially caused by increased intracellular cGMP but spares hemostasis. NOXs are, therefore, pharmacotherapeutic targets to develop new antithrombotic drugs without bleeding side effects.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1600-1600
Author(s):  
Eric S. Mullins ◽  
Matthew J. Flick ◽  
Keith W. Kombrinck ◽  
Sandra J. Degen ◽  
William Sun ◽  
...  

Abstract Thrombin is the core protease in the hemostatic system. Thrombin directs thrombus formation through the proteolytic conversion of fibrinogen to fibrin and the local activation of protease-activated receptors on platelets and other cells. In addition, thrombin controls the coagulation system through the activation of fXI, protein C and other key hemostatic factors. Interestingly, the biological role of thrombin is seemingly not limited to the maintenance of vascular integrity. There is appreciable evidence that thrombin-mediated proteolysis plays an important role in development, the inflammatory response, tissue repair, tumor cell metastasis and other physiological and pathological processes. Unfortunately, the embryonic and perinatal lethal phenotype previously described in prothrombin null (fII−/−) mice limited the utility of those knockout animals in better defining the larger role of fII in vivo. In order to develop the means to explore the importance of thrombin in disease processes within adult animals, a mouse line was generated carrying a conditional (“floxed”) fII knockout allele (fIIfx mice). Homozygous fIIfx/fx mice and compound heterozygous mice carrying one fII floxed allele and one fII null allele (fIIfx/− mice) developed to term, were present in offspring in the expected Mendelian frequencies, survived to adulthood and retained normal reproductive success. In the absence of Cre-mediated recombination, fIIfx/− mice maintained circulating fII levels that were low (approximately 10% of normal), but spontaneous bleeding events were never encountered in these animals. Studies of fIIfx/− mice carrying a Cre recombinase transgene known to be constitutively expressed in the liver showed that prothrombin levels can be reduced to levels incompatible with post-natal survival. More sophisticated studies using the polyI:C-inducible Mx-Cre system revealed that unchallenged Mx-Cre+/fIIfx/− mice consistently survived to adulthood. However, induction of Cre under conditions that result in near-complete recombination of target floxed alleles within the liver resulted in the development of spontaneous bleeding events and death within 7 days. Multiple sites of hemorrhage were evident in these challenged adults, including lower gastrointestinal and intracranial sites of bleeding. Immunological analysis of plasma collected from these animals revealed that they carried levels of fII below current detection limits (< 1% of normal). Studies are underway to establish both the lowest level of plasma fII compatible with long-term survival and define the effects of extremely low fII levels on disease processes in vivo.


Blood ◽  
1997 ◽  
Vol 89 (2) ◽  
pp. 534-540 ◽  
Author(s):  
Ken D. Kurz ◽  
Tommy Smith ◽  
Alexander Wilson ◽  
Bruce Gerlitz ◽  
Mark A. Richardson ◽  
...  

Abstract Conversion by α-thrombin of the zymogen human protein C (HPC) to activated protein C (aPC) is an important physiologic feedback control mechanism for the coagulation cascade. Although activation of HPC by thrombomodulin-bound thrombin is relatively rapid, activation by free thrombin occurs at a significantly slower rate. Previously, we generated a “hyper-activatable” derivative of HPC (FLIN-Q3) with an increased activation rate by free α-thrombin in vitro. In this study, the antithrombotic efficacy of FLIN-Q3 was compared with both native zymogen and aPC in an arteriovenous shunt model of thrombosis in the guinea pig. Recombinant proteins were infused 15 minutes before and throughout a 15-minute period while blood was circulated from carotid to jugular through tubing that enclosed a thread on which fibrin was deposited. Parallel dose-dependent antithrombotic responses were observed. Under these non–steady-state conditions, the calculated infusion doses associated with a 50% reduction of thrombus mass were 2.7, 24, and 250 mg/kg/h for aPC, FLIN-Q3, and HPC, respectively. Thrombus weight correlated inversely with plasma concentration of aPC, measured amidolytically, from either direct infusion of aPC or that generated from the zymogens in the animal, and similarly correlated inversely with anticoagulant activity measured by whole blood aPTT. Neither zymogen form showed significant aPC activity before shunt circulation, suggesting a requirement for exposure to thrombin. After the infusion was discontinued for 15 minutes, a second period of thrombus formation in the shunt demonstrated the ability of zymogen forms of PC, unlike aPC, to provide “on-demand” anticoagulant responses to repeated thrombotic stimuli. Thus, a “hyper-activatable” PC molecule such as FLIN-Q3 may represent a superior form of anticoagulant therapy than either the native zymogen or aPC.


Blood ◽  
1989 ◽  
Vol 73 (3) ◽  
pp. 639-642 ◽  
Author(s):  
A Gruber ◽  
JH Griffin ◽  
LA Harker ◽  
SR Hanson

The in vivo antithrombotic properties of human plasma activated protein C (APC), a natural anticoagulant enzyme, were investigated in a baboon model of thrombus formation on prosthetic vascular grafts. Infusion of 0.25 to 1.1 mg/kg/h purified, human, APC inhibited blood clotting, as measured by the activated partial thromboplastin time (APTT), and reduced vascular graft platelet deposition by 40% to 70%, as determined by the real-time scintillation camera imaging of 111In-labeled platelet deposition. APC infusion also preserved graft patency. Hemostatic plug formation remained normal, as measured by the template bleeding times. These results suggest that APC administration may produce immediate antithrombotic effects under arterial flow conditions.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 456-456
Author(s):  
Shiri Gur Cohen ◽  
Tomer Itkin ◽  
Orit Kollet ◽  
Sagarika Chakrabarty ◽  
Aya Ludin ◽  
...  

Hematopoeitic stem and progenitor cells (HSPC) dynamically switch between a quiescent, non-motile mode in the bone marrow (BM), to an active state, in which they proliferate, differentiate and egress to the circulation. Injection of the coagulation protease thrombin induced rapid HSPC mobilization to the blood via activation of its major receptor, protease activated receptor 1 (PAR1) on BM hematopoietic and stromal cells. We hypothesized that coagulation factors control stem cells fate in the BM. We examined if thrombin is generated in the murine BM and found by immunohistochemistry prothrombin associated with bone lining osteoblasts in the endosteum region. These cells also highly express osteopontin which induces stem cell quiescence and retention. Cleavage of osteopontin by thrombin or by osteoclast derived cathepsin K induces stem cell mobilization. In addition, a unique structure of multinucleated CD45+ cell clusters in the trabecular-rich area of the murine femoral metaphysis express the cell surface receptor Tissue Factor (TF), a potent initiator of the coagulation cascade leading to thrombin generation. These clusters were found adjacent to multinucleated TRAP (tatrate resistant acid phosphate) positive active osteoclasts. In vitro, we found that immature osteoclasts expressed TF in cell fusion areas, suggesting that osteoclast maturation also activates the coagulation thrombin/PAR1 axis, thus mediating HSPC recruitment to the circulation. Supporting this notion, bleeding which prompts a hemostatic response and thrombin production, is a strong inducer of osteoclasts activation and HSPC mobilization. In addition, injection of bacterial lipopolysaccharides (LPS) is known to activate osteoclasts and induce HSPC mobilization (Kollet et al Nat Med 06). We found that LPS injection upregulated TF expression by CD45+ myeloid cells in the murine BM. LPS treatment provoked massive HSPC mobilization, which was attenuated by PAR1 inhibition. To further address the role of thrombin in stem cell maintenance, we targeted prothrombin in vivo by applying Antisense Oligonucleotides (ASO) knockdown technology, previously shown to induce a dose- and time-dependent up to 90% reduction of prothrombin mRNA levels in the murine liver (Monia et al Blood 2010). Prothrombin depletion altered the BM niche microenvironment by expanding the mesenchymal stem and progenitor (MSPC) population and the long-term repopulating CD34-/ROSlow/LSK HSPC population in the BM. In untreated mice, TF was also expressed by a small MSPC population, suggesting that the bone stomal compartment may also contribute to the regulation of HSPC mobilization upon demand. To further asses the role of thrombin generation in HSPC development, we examined the involvement of the endothelial cell receptor Thrombomodulin (TM) that is pivotal for the anticoagulant pathway which mediates activation of protein C. TM protein is expressed by BM small blood vessels resembling sinusoids and by neighboring MSPC. By immunohistochemistry, we also detected activated protein C on the same blood vessels. A mouse model with a mutation in the TM gene (TMPro/Pro) is characterized by reduced capacity for activated protein C generation which in turn increases thrombin levels in these mice. We found increased circulating hematopoietic stem cells in TMPro/Pro mice, suggesting that chronically increased basal levels of thrombin generation can promote HSC egress. Conversely, short term (5 day) intermittent treatment of mice with low dose thrombin that mainly causes activated protein C formation in vivo, display higher levels of CD34-/ROSlow/LSK and EPCR+LSK stem cells in the BM, indicating additional roles for the anticoagulant pathway in BM stem cell pool maintenance. In summary, our results provide evidence that the activator of the coagulation cascade, TF, and coagulation factors Thrombin and activated protein C are present in the BM and regulate and integrate functions of hematopoietic stem and progenitor cells and BM stromal progenitor cells. Disclosures: Crosby: Isis pharmaceuticals: the ASO for prothrombin was obtained from Isis pharmaceuticals Other. Monia:Isis pharmaceuticals: the ASO for prothrombin was obtained from Isis pharmaceuticals Other.


Blood ◽  
2012 ◽  
Vol 119 (3) ◽  
pp. 874-883 ◽  
Author(s):  
Thati Madhusudhan ◽  
Hongjie Wang ◽  
Beate K. Straub ◽  
Elisabeth Gröne ◽  
Qianxing Zhou ◽  
...  

Abstract The cytoprotective effects of activated protein C (aPC) are well established. In contrast, the receptors and signaling mechanism through which aPC conveys cytoprotection in various cell types remain incompletely defined. Thus, within the renal glomeruli, aPC preserves endothelial cells via a protease-activated receptor-1 (PAR-1) and endothelial protein C receptor-dependent mechanism. Conversely, the signaling mechanism through which aPC protects podocytes remains unknown. While exploring the latter, we identified a novel aPC/PAR-dependent cytoprotective signaling mechanism. In podocytes, aPC inhibits apoptosis through proteolytic activation of PAR-3 independent of endothelial protein C receptor. PAR-3 is not signaling competent itself as it requires aPCinduced heterodimerization with PAR-2 (human podocytes) or PAR-1 (mouse podocytes). This cytoprotective signaling mechanism depends on caveolin-1 dephosphorylation. In vivo aPC protects against lipopolysaccharide-induced podocyte injury and proteinuria. Genetic deletion of PAR-3 impairs the nephroprotective effect of aPC, demonstrating the crucial role of PAR-3 for aPC-dependent podocyte protection. This novel, aPC-mediated interaction of PARs demonstrates the plasticity and cell-specificity of cytoprotective aPC signaling. The evidence of specific, dynamic signaling complexes underlying aPC-mediated cytoprotection may allow the design of cell type specific targeted therapies.


Blood ◽  
1989 ◽  
Vol 73 (3) ◽  
pp. 639-642 ◽  
Author(s):  
A Gruber ◽  
JH Griffin ◽  
LA Harker ◽  
SR Hanson

Abstract The in vivo antithrombotic properties of human plasma activated protein C (APC), a natural anticoagulant enzyme, were investigated in a baboon model of thrombus formation on prosthetic vascular grafts. Infusion of 0.25 to 1.1 mg/kg/h purified, human, APC inhibited blood clotting, as measured by the activated partial thromboplastin time (APTT), and reduced vascular graft platelet deposition by 40% to 70%, as determined by the real-time scintillation camera imaging of 111In-labeled platelet deposition. APC infusion also preserved graft patency. Hemostatic plug formation remained normal, as measured by the template bleeding times. These results suggest that APC administration may produce immediate antithrombotic effects under arterial flow conditions.


Blood ◽  
2020 ◽  
Vol 135 (9) ◽  
pp. 689-699 ◽  
Author(s):  
Erik I. Tucker ◽  
Norah G. Verbout ◽  
Brandon D. Markway ◽  
Michael Wallisch ◽  
Christina U. Lorentz ◽  
...  

Abstract Although thrombin is a key enzyme in the coagulation cascade and is required for both normal hemostasis and pathologic thrombogenesis, it also participates in its own negative feedback via activation of protein C, which downregulates thrombin generation by enzymatically inactivating factors Va and VIIIa. Our group and others have previously shown that thrombin’s procoagulant and anticoagulant activities can be effectively disassociated to varying extents through site-directed mutagenesis. The thrombin mutant W215A/E217A (WE thrombin) has been one of the best characterized constructs with selective activity toward protein C. Although animal studies have demonstrated that WE thrombin acts as an anticoagulant through activated protein C (APC) generation, the observed limited systemic anticoagulation does not fully explain the antithrombotic potency of this or other thrombin mutants. AB002 (E-WE thrombin) is an investigational protein C activator thrombin analog in phase 2 clinical development (clinicaltrials.gov NCT03963895). Here, we demonstrate that this molecule is a potent enzyme that is able to rapidly interrupt arterial-type thrombus propagation at exceedingly low doses (&lt;2 µg/kg, IV), yet without substantial systemic anticoagulation in baboons. We demonstrate that AB002 produces APC on platelet aggregates and competitively inhibits thrombin-activatable fibrinolysis inhibitor (carboxypeptidase B2) activation in vitro, which may contribute to the observed in vivo efficacy. We also describe its safety and activity in a phase 1 first-in-human clinical trial. Together, these results support further clinical evaluation of AB002 as a potentially safe and effective new approach for treating or preventing acute thrombotic and thromboembolic conditions. This trial was registered at www.clinicaltrials.gov as #NCT03453060.


2010 ◽  
Vol 103 (06) ◽  
pp. 1239-1244 ◽  
Author(s):  
Miguel Centelles ◽  
Cristina Puy ◽  
Jacinto Lopez-Sagaseta ◽  
Kenji Fukudome ◽  
Ramón Montes ◽  
...  

SummaryThe endothelial protein C receptor (EPCR) plays an anticoagulant role by improving protein C activation. Although low levels of activated protein C (APC) constitute a thrombosis risk factor, the relationship between modulating EPCR function and thrombosis has not been addressed so far. Monoclonal antibodies (mAb) against murine EPCR were raised, and their ability to block protein C/APC binding was tested. The ferric chloride carotid artery injury model in mice was chosen to test the effect of anti-EPCR mAb on thrombus formation. The time to total occlusion of the vessel was analysed in three groups, given an isotype control mAb (IC), a blocking (RCR-16) or a non-blocking (RCR-20) anti-EPCR mAb. RCR-16 prevented the interaction between protein C/APC and EPCR as demonstrated by surface plasmon resonance and flow cytometry, and inhibited the activation of protein C on the endothelium. IC and RCR-20 were unable to induce such effects. In vivo, RCR-16 shortened the time to total vessel occlusion with respect to IC [13.4 ± 1.0 (mean ± SD) and 17.8 ± 3.2 minutes, respectively, p<0.001]. Occlusive thrombi lasting for more than one hour were observed in all RCR-16-treated animals, but only in 43% of IC-treated ones. Results with RCR-20 were indistinguishable from those observed with IC. For the first time, a direct relationship between blocking EPCR and thrombosis is demonstrated. Blocking anti-EPCR autoantibodies can predispose to thrombosis episodes and may constitute a new therapeutic target.


Sign in / Sign up

Export Citation Format

Share Document