Point Mutation and Alternative Splicing in the ABL Kinase Domain as a Mechanism for Imatinib Resistance.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 4814-4814
Author(s):  
Rong Chen ◽  
Steven Potts ◽  
Wanlong Ma ◽  
Hagop Kantarjian ◽  
Francis Giles ◽  
...  

Abstract Missense point mutations in the region encoding the ABL tyrosine kinase domain have been reported in approximately 35% of patients with imatinib-resistant chronic myeloid leukemia (CML). The reported mutations result in reactivation of the BCR-ABL tyrosine kinase. Screening patients with imatinib-resistant CML, we identified 42 different mutations in the ABL tyrosine kinase domain-encoding region, 2 of which were silent (no amino acid change): A864G and G909A. The A864G mutation was associated with a 54-nucleotide reduction in the length of the mRNA transcript, representing a loss of nucleotides 1089-1143; the G909A mutation was associated with a normal-length transcript. The nt1089-1143 transcript deletion represents a partial exon deletion in which the first half of exon 8 is skipped, suggesting that A864G leads to abnormal splicing. Splicing is regulated by 6- to 8-nucleotide exonic splicing enhancer (ESE) and exonic splicing silencer (ESS) motifs recognized by the SR proteins (a family of splicing factors). We therefore used ESEfinder to examine whether A864G or G909A alter ESE motifs, which could block the ability of SR proteins to recognize and bind. This search showed that A864G is at the 7th position of an AGCTGCAG ESE motif, a binding site for SR35, and is within 35 bp of the intron-exon junction. In total, ESEfinder predicted 18 putative SR35-binding ESEs within 50 bp of the intron-exon junction, covering 20% of the kinase domain. The AGCTGCAG motif is conserved in primates (chimpanzees and monkeys) but not in rodents, while A864G is found in mice Although similar links cannot be made with the G909A mutation, these data suggest that imatinib resistance may develop in some patients through alternative splicing and the expression of a truncated (or potentially elongated) protein.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 4831-4831
Author(s):  
Kaddour Chabane ◽  
Franck Nicolini ◽  
Jean-Michel Cayuela ◽  
Philippe Rousselot ◽  
Xavier Thomas ◽  
...  

Abstract The major mechanism for resistance to imatinib mesylate (IM) is the onset of ABL point mutations altering functional inhibition of the tyrosine kinase activity by IM. Biochemical, cellular assays and clinical studies have demonstrated that different BCR-ABL mutations exhibit various degrees of resistance, and mutations occurring in the ATP-binding loop may be correlated with subsequent disease progression. In this study, we investigated the status of the K247R ABL polymorphism and correlated it to disease outcome. Patients and methods: Two patients (P1 and P2) were diagnosed with CML based on peripheral blood findings, karyotyping analysis (showing t(9;22)(q34;q11)) and molecular analysis for BCR-ABL (indicating M-BCR fusion transcripts) in 2,000 and 1,994, respectively. P1, a 54 years old male, enrolled in the Novartis IRIS study, was randomly assigned to the interferon + AraC arm after informed consent. The patient achieved a complete hematologic remission (CHR) at 3 months and a complete cytogenetic response (CCR) at 24 months. At time of cytogenetic relapse (2 years later), P1 had never received IM which was introduced in April 2,005. P2 received IM (400mg to 600mg/day) during 82 months and had shown only CHR during 14 months with no MCR. Epithelial cells were collected in the mouth through sterile foam tipped applicators for both patients. DNA was obtained from blood samples of 232 individuals, including 124 patients with CML, 72 patients with acute myeloid leukemias (AML) and 36 normal healthy donors. The K247R change was studied by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique (AluI restriction enzymatic site abolished) and was confirmed by direct sequencing. Results: Both patients, showing the K247R substitution located close to the P-loop, were retrospectively investigated during disease progression. We found that this change accounted for 100% of the BCR-ABL transcripts at CML diagnosis (and in all the further samples) for P1 (no material was yet available from P2 at this time) and for 50% of the ABL gene in extracted DNA from epithelial cells in the 2 patients. P1, despite of the K247R substitution received IM (400 mg/day) and achieved a CHR, a CCR and a good molecular response (one log reduction after two months of IM). IM resistance observed in P2 was probably due to the presence of an additional F317L mutation, known to induce a very strong resistance to IM. The F317L mutation accounted for 100% of the BCR-ABL transcripts at the resistance, was absent in DNA from epithelial cells. The screening showed the K247R exchange in 1 normal subject (heterozygote), in 2 CML patients (P1 and P2: at heterozygous state in normal cells and at homozygous state in BCR-ABL transcripts) and in none AML samples. According to that, the incidence of this polymorphism seems to reach nearly 1 to 1.5%. Conclusion: This study demonstrates that the K247R substitution in ABL tyrosine kinase domain is not a mutation leading to IM resistance but only a rare polymorphism. Detailed analysis of this polymorphism status will be reported.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 494-494 ◽  
Author(s):  
Arghya Ray ◽  
Sandra Cowan-Jacob ◽  
Paul W. Manley ◽  
Jurgen Mestan ◽  
James D. Griffin

Abstract The development of kinase inhibitors such as imatinib that block the Bcr/Abl tyrosine kinase has significantly improved chronic myeloid leukemia (CML) therapy. However, patients with advanced disease often develop resistance to imatinib due to the emergence of clones with point mutations in the tyrosine kinase domain. AMN107, a novel second generation inhibitor of Bcr/Abl (Weisberg et al., Cancer Cell, 7:129, 2005) is currently in Phase 2 clinical trials and shows significant clinical activity in some patients with imatinib-resistant CML. However, it is possible that resistance to AMN107 could occur through the emergence of new Bcr/Abl point mutations, and here we report the results of a random mutagenesis study to identify Bcr/Abl mutants selected for resistance to AMN107. A library of mutations was generated in the target gene by propagating a native BCR-ABL-GFP retroviral construct through a bacterial strain deficient in a DNA repair pathway. Murine Ba/F3 cells were then transfected/infected with the mutated vector and subsequently the cells were selected for the ability to proliferate in the presence of AMN107 (0.125–0.5 μM). The Ba/F3 cells expressing native Bcr-Abl did not grow under these conditions. Single cell clones were expanded and a total of 60 individual colonies were isolated for which BCR/ABL was sequenced. Twenty colonies had single point mutations located in the kinase domain of the BCR-ABL gene. The rest had multiple point mutations and were not considered for further analysis. The point mutants identified in this way were all validated by preparing the corresponding Bcr-Abl cDNA using site-directed mutagenesis, generating a new mutant-Bcr-Abl/Ba/F3 cell line and testing for resistance to both AMN107 and imatinib. The mutant cell lines confer varying degrees of resistance to AMN107, from 5- to 400-fold. The mutant variants identified in this study included 15 novel mutations and 5 known imatinib-resistant mutations that have previously been identified in CML patients. These latter mutations included, T315I, which similar to imatinib, showed maximum resistance against AMN107 (~50% survival at 10 μM concentration). Interestingly, the majority of novel AMN107-resitant mutants were also found to be resistant to imatinib and the rank order was highly correlated to the rank order of resistance to AMN107. These data may be helpful in providing insights into the mechanism of acquired resistance of Bcr-Abl to small molecule inhibitors and are likely to predict some of the resistance mutations that may be observed in the clinic.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 4890-4890
Author(s):  
Diogo G. Luque ◽  
Ana Carolina S. Ferreira ◽  
Flavia C. Vasconcelos ◽  
Raquel C. Maia ◽  
Jolie K. Kwee

Abstract Imatinib (imatinib mesylate: Novartis Pharmaceuticals, Basel, Switzerland) is a well-known selective inhibitor of BCR-ABL tyrosine kinase activity, a hallmark enzyme in the pathogenesis of chronic myeloid leukemia (CML). Resistance to imatinib in CML patients has been associated with different and complex types of mechanisms ranging from nonspecific multidrug resistance protein, preventing the drug to reach its target, to BCR-ABL kinase domain point mutations, reducing the affinity of the enzyme to Imatinib. More recently, it was described that modulation of reduced glutathione (GSH) intracellular levels restores sensitivity to Imatinib in Imatinib-resistant cell line. This suggests that induction of hydrogen peroxide (H2O2), a well-known apoptotic reactive oxygen species (ROS), might be another Imatinib anti-leukemic mechanism action. Additionally, it is known that catalase activity is enhanced through phosphorilation by the c-abl tyrosine kinase (TK). In a preliminary work, our group found normal levels of GSH but high levels of antioxidant enzyme catalase in CML patients. The aim of this work is to evaluate the possible role of catalase as another pathway to Imatinib resistance. White blood cells from blood donors, CML patients and patients with reactional leukocytosis caused by infectious bacterian diseases were obtained using Ficoll-Hypaque. Catalase activity was measured by monitoring decomposition of 10mM H2O2 at 240nm according to the method described by Aebi. The viability of eritroleukemia cell lineage K562 previously treated or not with 100μM 3-aminotriazole (catalase inhibitor) was evaluated by MTT method with Imatinib 1, 5 and 25μM for 24 and 48 hours. Imatinib induced intracellular ROS generation was monitored by flow cytometry with 40μM 2′, 7′-dichlorofluorescein diacetate (DCFH-DA), a well-known ROS capturing reagent. Catalase activity was increased up to 30x in CML patients but not in reactional leukocytosis. When BCR-ABL positive cell line K562 was treated with Imatinib (50μM), catalase activity levels decreased in 38% compared with untreated cells. Also, we found that 3-aminotriazole can overcome the resistance to Imatinib in K562 cells resulting in 25% enhancement of dead cells. The protection of catalase against Imatinib-ROS generation was confirmed by DCFH-DA/FACs in cells incubated with PEG-catalase (monomethoxypolyethylene glycol covalent attached to catalase). Taken together, these results suggest that catalase might be another attractive target for overcoming resistance to Imatinib in Imatinib-resistant CML cells with high catalase activity.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 639-639 ◽  
Author(s):  
Heike Pfeifer ◽  
Barbara Wassmann ◽  
Anna Pavlova ◽  
Lydia Wunderle ◽  
Patrick Brueck ◽  
...  

Abstract Background: Point mutations in the tyrosine kinase domain (TKD) of BCR-ABL are an important cause of resistance to imatinib (IM) in pts. with CML and Ph+ ALL. The significantly inferior response to IM in Ph+ALL pts. who failed prior chemotherapy compared to those with de novo Ph+ALL suggests that treatment with cytotoxic drugs may promote the development of TKD mutations. However, it is not known whether the frequency and pattern of TKD mutations at the time of treatment initiation with TK inhibitors are related to disease stage or prior anti-leukemic therapy. Moreover, the potential of combined treatment with IM and multi-agent chemotherapy to influence the development of mutational resistance, as compared to IM alone, has not been determined. Patients and methods: 51 pts. with newly diagnosed Ph+ALL (>55 yrs.) enrolled in a GMALL study of combined IM and chemotherapy, and 68 Ph+ALL pts. who had failed prior chemotherapy and received single-agent IM as salvage therapy were analysed for the occurrence of point mutations within the TKD. Bone marrow samples collected pre-treatment, during therapy and at relapse were examined by denaturing high-performance liquid chromatography (D-HPLC) and cDNA sequencing. Results: The frequency of TKD mutations pre-IM was 44% in newly diagnosed Ph+ALL and 53% (34/64) in pts. with advanced Ph+ALL. At relapse after combination therapy (n=19), the frequency of de novo ALL pts. harbouring a TKD mutation had increased to 89% (P-loop 47%, T315I 29%, A-loop 24%), 2 pts. (11%) showed wild-type BCR-ABL. The frequency of TKD mutations in pts. with advanced disease who relapsed after IM was 55% (P-loop 73%, T315I 23%, A-loop 4 %). In both patient groups, the D-HPLC pattern showed concordance between the mutation detected in pre-therapeutic specimens and the dominant mutation detected at relapse. The CR rate in de novo pts. receiving IM induction was 90 % irrespective of detectable mutations pre-study. Bcr-abl transcripts became undetectable during the course of therapy in 40% of pts. with and 37% of pts. without a mutation. Median remission duration in pts. with a T315I mutation (n=4) was 130 d (range: 53–319d), in contrast to 526 d (range: 504–549d) with activation loop and 411 d (range: 106–745d) with P-loop mutations. To date, 7 pts. with an initially detected mutation remain in CR after median FU of 12.8 mo (range 2.4–24.5 mo.). Conclusions: Bcr-abl TKD mutations are detectable prior to first imatinib exposure in approximately 50% of Ph+ALL patients. Clinical imatinib resistance is in most cases associated with the identical mutation detected pre-IM, which is not eradicated by the combination of chemotherapy and IM. Identification and elimination of TKD mutations during early stages of treatment is essential to improve treatment.


Hematology ◽  
2009 ◽  
Vol 2009 (1) ◽  
pp. 371-381 ◽  
Author(s):  
Oliver G. Ottmann ◽  
Heike Pfeifer

AbstractThe tyrosine kinase inhibitor (TKI) imatinib has become an integral part of front-line therapy for Ph+ ALL, with remission rates exceeding 90% irrespective of whether imatinib is given alone or combined with chemotherapy. Treatment outcome with imatinib-based regimens has improved compared with historic controls, but most patients who do not undergo allogeneic stem cell transplantation (SCT) eventually relapse. Acquired resistance on TKI treatment is associated with mutations in the bcr-abl tyrosine kinase domain in the majority of patients, and may be detected at low frequency prior to TKI treatment in a subset of patients. Second generation TKIs, eg, dasatinib and nilotinib, show activity against most of the bcr-abl tyrosine kinase domain (TKD) mutations involved in acquired imatinib resistance, but clinical benefit is generally short-lived. Accordingly, SCT in first complete remission (CR) is considered to be the best curative option. Molecular monitoring of minimal residual disease levels appears to have prognostic relevance and should be used to guide treatment. International standardization and quality control efforts are ongoing to ensure comparability of results. Mutation analysis during treatment relies increasingly on highly sensitive PCR techniques or denaturing HPLC and may assist in treatment decisions, eg, in case of molecular relapse. Results from current studies of second-generation TKI as front-line treatment for Ph+ ALL are promising and show high molecular response rates, but follow-up is still too short to determine their impact on remission duration and long-term survival. Strategies to improve outcome after SCT include the pre-emptive use of imatinib, which appears to reduce the relapse rate. In patients ineligible for transplantation, novel concepts for maintenance therapy are needed. These could involve novel immunotherapeutic interventions and combinations of TKI.


Blood ◽  
2005 ◽  
Vol 106 (12) ◽  
pp. 3948-3954 ◽  
Author(s):  
Shinya Kimura ◽  
Haruna Naito ◽  
Hidekazu Segawa ◽  
Junya Kuroda ◽  
Takeshi Yuasa ◽  
...  

Although the Abelson (Abl) tyrosine kinase inhibitor imatinib mesylate has improved the treatment of breakpoint cluster region–Abl (Bcr-Abl)–positive leukemia, resistance is often reported in patients with advanced-stage disease. Although several Src inhibitors are more effective than imatinib and simultaneously inhibit Lyn, whose overexpression is associated with imatinib resistance, these inhibitors are less specific than imatinib. We have identified a specific dual Abl-Lyn inhibitor, NS-187 (elsewhere described as CNS-9), which is 25 to 55 times more potent than imatinib in vitro. NS-187 is also at least 10 times as effective as imatinib in suppressing the growth of Bcr-Abl–bearing tumors and markedly extends the survival of mice bearing such tumors. The inhibitory effect of NS-187 extends to 12 of 13 Bcr-Abl proteins with mutations in their kinase domain but not to T315I. NS-187 also inhibits Lyn without affecting the phosphorylation of Src, Blk, or Yes. These results suggest that NS-187 may be a potentially valuable novel agent to combat imatinib-resistant Philadelphia-positive (Ph+) leukemia.


2020 ◽  
Vol 4 (s1) ◽  
pp. 9-10
Author(s):  
Gabriela Maria Witek ◽  
Whelton Miller ◽  
David Slochower ◽  
Esther Berko ◽  
Yael Mossé ◽  
...  

OBJECTIVES/GOALS: Neuroblastoma (NB) is an embryonal cancer of the sympathetic nervous system that affects mostly infants and young children. The complex genetic background present across NB patients results in diverse clinical response and difficulty in individualizing therapy. Currently, NB patients undergo a regimen of genotoxic chemotherapeutics, radiation therapy, and new immunotherapy that, while effective, has significant side effects, including excruciating pain. One promising avenue for targeted therapy in neuroblastoma focuses on anaplastic lymphoma kinase (ALK), a cell surface neural receptor tyrosine kinase. We previously identified activating point mutations within the tyrosine kinase domain of ALK as the primary cause of hereditary NB, and we and others subsequently showed that these same alterations are the most common somatic single-nucleotide mutations in the sporadic forms of the disease. Crizotinib, a first-generation small molecule ATP-competitive inhibitor of the ALK tyrosine kinase, showed limited anti-tumor activity in patients with relapsed NB harboring ALK F1174 and F1245 mutations. We have demonstrated that lorlatinib, a novel ATP-competitive ALK inhibitor, overcomes this de novo resistance in preclinical models of ALK-driven NB. Recent clinical trials with lorlatinib in patients with non-small cell lung cancer harboring an ALK fusion, and in patients with NB harboring ALK mutations show the emergence of multiple or compound ALK mutations as a mechanism of resistance. We postulate that these compound mutations disrupt the interaction between and ALK and cause resistance. In this study, we employ a computational approach to model mutated ALK in complex with lorlatinib as well as ATP to understand whether the new mutations alter the affinity or mode of lorlatinib/ATP binding to ALK, and thus cause suboptimal ALK inhibition. METHODS/STUDY POPULATION: We employ methods in computational structural biology and drug design, primarily based on molecular modeling, molecular dynamics (MD), and molecular docking. Based on existing crystal structures of wildtype ALK, we model the mutations and perform MD simulations in order to characterize the activation state of the protein as well as perform ensemble docking calculations to assess the binding affinities and modes in ALK-lorlatinib and ALK-ATP complexes. RESULTS/ANTICIPATED RESULTS: We expect that the compound mutations cause resistance to lorlatinib either by lowering protein affinity for the drug or increasing the affinity for ATP. Alternatively, the compound mutations may disrupt the protein activation state, in which case ALK may no longer be active, and another protein/pathway could be driving the resistance. DISCUSSION/SIGNIFICANCE OF IMPACT: The results of this study will enable the understanding of the mechanism of resistance to lorlatinib and facilitate the design of new ALK inhibitors, or help develop more optimal and mechanism-guided therapies aimed to overcome the resistance.


Sign in / Sign up

Export Citation Format

Share Document