Herpes-Simplex Thymidine Kinase Gene as a Selective Marker in Evaluating the Bone Marrow Microenvironment in Multiple Myeloma (MM).

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 510-510
Author(s):  
Alissa Huston ◽  
Ganwei Lu ◽  
Judy Anderson ◽  
Ken Patrene ◽  
Lily Hong ◽  
...  

Abstract MM is the most common cancer metastasizing to bone, with 85–90% of patients developing bone disease. It is unique from other forms of metastatic bone disease, as it is purely lytic. There are a multitude of factors involved in promoting bone disease in MM; however, what remains unanswered is why patients in complete remission from MM are unable to heal their bone lesions. We hypothesize that MM cells exert a permanent change in the bone marrow microenvironment, either through a change in the differentiation potential of mesenchymal stem cells or through stem cell depletion. To investigate this question we developed a new model of MM bone disease in which a herpes-simplex thymidine kinase gene (HSVtk), sensitive to ganciclovir (GCV), is expressed within a MM cell line and injected into the tibia of mice. This allows for eradication of the MM cells without the use of chemotherapy or immunotherapy, minimizes adverse effects on neighboring mesenchymal stem cells and directly involves the bone. The murine MM cell line (5TGM1) was infected, using a lentiviral system, with the tricistronic construct of HSVtk linked to green fluorescence protein (GFP) and blasticidin. Following blasticidin selection, 5TGM1tk cells stably expressing HSVtk and GFP were used for all experiments. GCV dosing curves to determine the dose resulting in 100% eradication were completed. The effects of GCV on both murine hematopoietic cells and mesenchymal stem cells induced to osteoblasts were completed using methylcellulose colony formation and alkaline phosphatase assays. Bystander effects of 5TGM1tk cells on murine hematopoietic cells and murine osteoblasts were completed using murine methylcellulose colony formation, alkaline phosphatase and colony-forming unit fibroblast (CFU-F) assays. In vivo data was obtained following intratibial injection of 5TGM1tk cells (1x105, 5x105, 1x106) or saline into NIH-III mice (3 mice per group, 12 mice total). Mice were evaluated at weekly intervals for tumor and lytic lesion development with plain radiographs and Micro QCT, and osteoblast activity evaluated by alkaline phosphatase analysis. No significant effects of GCV, at doses capable of eradicating the MM cell line (1ug/ml) were observed on murine hematopoietic cells or osteoblasts. No significant effect was observed on hematopoietic colony development when 5TGM1tk cells were cocultured with murine hematopoietic cells. A small bystander effect, approximately 30%, was identified when 5TGM1tk cells were cocultured with murine mesenchymal stem cells induced to osteoblasts in the presence of GCV. Dose-dependent CFU-F suppression was observed with increasing percentages of tumor cells (0–50%), however reversal of suppression was noted when cultured in the presence of GCV. 60% of the mice injected with 5TGM1tk cells developed tumor, and evidence of dose-dependent osteoblast suppression in vivo observed as measured by the alkaline phosphatase assay (p<0.00001). The current model provides us with the capacity to specifically target MM cells without using chemotherapy or immunotherapy. It provides a model to study and dissect the interactions between MM cells and mesenchymal stem cells, within the bone marrow microenvironment, which lead to osteoblast suppression. This model should provide important insights into the mechanisms of osteoblast suppression in MM and help to identify targeted therapies that can reverse this process for patients.

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3458-3458
Author(s):  
Hisayuki Yao ◽  
Yasuo Miura ◽  
Satoshi Yoshioka ◽  
Yoshihiro Hayashi ◽  
Akihiro Tamura ◽  
...  

Abstract Abstract 3458 The interaction between hematopoietic cells and bone marrow microenvironment is important for the regulation of hematopoiesis. Recent studies have identified the specific bone marrow microenvironment for the hematopoietic stem cells, the “endosteal niche” and the “vascular niche”, in which mesenchymal stem cells and their progenies including osteoblasts are demonstrated to be major cellular constituents. We found that osteogenesis-induced mesenchymal stem cells by the combinations of ascorbic acid, dexamethasone, and potassium dihydrogen phosphate have unique capabilities of both expanding CD34+ hematopoietic progenitor cells and of differentiating CD34+ hematopoietic progenitor cells into mature cells. The osteogenesis-induction was achieved by treating human MSCs with ascorbic acid, dexamethasone, and potassium dihydrogen phosphate (osteogenesis-inducing cocktails: OICS). When human MSCs were osteogenesis-induced by OICS for 3 weeks, MSCs differentiated into mature osteoblasts with abundant calcium accumulation assessed by Alizarin red S staining. However, when human MSCs were treated with OICS for short periods, they did not show apparent calcium accumulation but expressed early-stage osteogenic marker, osterix, and maintain differentiation capability to adipocytes. Intriguingly, purified CD34+ hematopoietic cells (5.0×103 cells/dish) were expanded to the number of 12.6±1.01×104 (#3 of the figure) in 10 day co-cultures with the osterix positive osteogenesis-induced cells in StemSpan Medium (StemCell Technologies) supplemented with 100ng/mL SCF, 100ng/mL Flt-3 ligand, 50ng/mL TPO, and 20ng/mL IL-3. As a control, CD34+ hematopoietic cells was expanded to the number of 6.2±0.4×104 (#2 of the figure) in co-cultures of unstimulated MSCs. Moreover, although the most of the hematopoietic cells expanded on unstimulated MSCs showed an immature blast-like morphology, the hematopoietic cells expanded in the co-cultures with OICS-stimulated MSCs showed a tendency to differentiate into the mature hematopoietic cells, which was supported by the expression of glycophorin-A and CD14 on the hematopoietic cells by FACS analysis. When purified CD34+ hematopoietic cells were co-cultured with OICS-stimulated MSCs in the transwell, the number of expanded CD34+ hematopoietic cells was decreased to 21.7% (#4 of the figure). In contrast, there was no apparent difference in the expression of differentiation markers in the expanded hematopoietic cells between the co-cultures in the presence and in the absence of transwell. Therefore, cell-cell interactions through surface membrane molecules were involved in CD34+ hematopoietic cells expansion mediated by OICS-stimulated MSCs, and soluble factors were mainly involved in the enhancement of hematopoietic differentiation. Real-time PCR analysis showed that the expression of CXCL12 and LIF was reduced in OICS-stimulated MSCs. Given that osteogenic stimulation of MSCs by OICS enhances the expansion and differentiation of CD34+ hematopoietic cells in vitro, we tested the possibility of in vivo administration of OICS to mice receiving bone marrow transplantation after myeloablative conditioning for obtaining quick hematopoietic recover. Lethally irradiated (9Gy) C57BL/6 mice were injected with OICS on day 1–7 after receiving total bone marrow transplantation. The number of leukocytes was decreased to bottom level around 7 days after transplantation in both OICS-treated and non-treated (control) mice. However, the number of leukocyte showed a rapid increase in OICS-treated mice compared with that in control mice. These results suggested that short-term osteogenic stimulation supports the hematopoietic recovery in vivo, probably in part, through acting on MSCs in bone marrow microenvironment. In conclusion, osteogenesis-induced, osterix positive mesenchymal stem cells have unique capabilities to enhance both expansion of CD34+ hematopoietic cells through surface membrane molecules, and differentiation of CD34+ hematopoietic cells into mature cells through soluble factors. This work suggests a possibility that “pharmacological stimulation” of MSCs could modify the bone marrow microenvironment through enhancement of biological potency of MSCs. Further studies are needed whether this strategy may be applied in the clinical settings. Disclosures: No relevant conflicts of interest to declare.


2017 ◽  
Vol 352 (2) ◽  
pp. 218-224 ◽  
Author(s):  
Meng-Yu Wang ◽  
Janne Nestvold ◽  
Øystein Rekdal ◽  
Gunnar Kvalheim ◽  
Øystein Fodstad

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 505-505
Author(s):  
Neil Rabin ◽  
Chara Kyriakou ◽  
Reuben Benjamin ◽  
Arnold Pizzey ◽  
Orla Gallagher ◽  
...  

Abstract Bone disease in multiple myeloma (MM) results from increased osteoclast (OCL) numbers and activity, which is associated with an increase in RANK Ligand and reduction in osteoprotegerin (OPG). Systemic administration of recombinant OPG reduces MM bone disease, but the short half life of OPG limits its usefulness. Gene modified mesenchymal stem cells (MSCs) offer a potential means of delivering stable expression of OPG in vivo to reduce OCL activation and bone destruction. Bone marrow derived human MSCs were transduced with a self-inactivating bicistronic lentiviral vector containing human OPG and GFP (MSCOPG). Control vector was identical except the OPG was cloned in reverse orientation (MSCGPO). Efficient transduction was demonstrated by high GFP expression (96% MSCOPG, 92% (MSCGPO). Stable transgene expression of human OPG (hOPG) occurred for beyond 20 passages in vitro, and hOPG was detected in vivo after tail vein administration of MSCOPG (2ng/mL hOPG detected in mouse serum 1 week after tail vein administration of 3 x 106 MSCOPG). Immunophenotype and differentiation potential of MSCs were maintained following transduction. A xenogeneic model of MM was developed. 1 x 107 KMS-12-BM cells injected tail vein into b2 m NOD/SCID mice leads to tumour infiltration in the bone marrow at 6 weeks, with varied tumour take between the bones examined. Using histomorphometric analysis trabecular bone area (TBA) was assessed as the proportion of trabecular bone in 0.5625 mm2 of marrow space 0.2 mm from growth plate. OCL were recorded as the proportion lining the endocortical surface (%OcPm). Reduction of trabecular bone in the tibia is related to the amount of tumour (KMS-12-BM tibia with >70% tumour mean TBA 0.7+/− 0.2 vs. KMS-12-BM tibia with <70% tumour mean 5.1+/− 0.8, p<0.01, which is similar to non diseased animals). All subsequent analysis were carried out on tibia with >70% tumour. There was no change in trabecular bone in the lumbar vertebrae. OCL were increased in the tibia and lumbar vertebrae of tumour bearing mice (PBS group mean %OcPm 0.9+/− 0.3 and 1.1+/− 0.4 vs. KMS-12-BM group mean 7.2+/− 3.2 and 7.5 +/− 2.2 in tibia and lumbar vertebrae respectively, p=0.01 in both groups). We hypothesised that MSCs expressing OPG will prevent the increase in OCL and subsequent loss of trabecular bone. Infusion of unmanipulated MSC or MSCGPO had no effect on %OcPm or TBA in diseased animals. 1 x106 MSCOPG or MSCGPO were injected by tail vein 2, 3 and 4 weeks after KMS-12-BM injection. Another group received KMS-12-BM alone. All mice were culled at 6 weeks. Trabecular bone was increased in the tibia of tumour bearing mice treated with MSCOPG (mean TBA 1.4 +/− 0.5) compared to control animals receiving MSCGPO or tumour alone (mean TBA 0.6 +/− 0.2), p=0.03, with a trend showing a reduction of OCL in the tibia of the MSCOPG group (mean %OcPm 2.6+/− 1.0) vs. control group (mean %OcPm 4.2+/− 1.5, NS). Importantly in the lumbar vertebrae, OCL were reduced in the MSCOPG group (mean %OcPm 1.9 +/− 0.4) compared to control animals (mean %OcPm 3.5+/− 0.5), p<0.01. Conclusion: MSCs gene modified with OPG are able to increase TBA in the tibia and reverse OCL activation in a xenogeneic model of MM. Gene modified MSCs may have future potential in treating MM induced bone disease.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Xiaoyan Zhang ◽  
Yazhi Yang ◽  
Yang Yang ◽  
Huijun Chen ◽  
Huaijun Tu ◽  
...  

Although major advances have been achieved in the treatment of chronic myeloid leukemia (CML) by using tyrosine kinase inhibitors, patients relapse after withdrawal and need long-term medication. This reflects the CML clones have not been eliminated completely. The precise mechanisms for the maintenance of CML cells are not yet fully understood. The bone marrow microenvironment constitutes the sanctuary for leukemic cells. Mesenchymal stem cells (MSC) are an important component of the bone marrow microenvironment (BM). It plays an important role in the development and drug resistance of CML. Accumulating evidence indicates that exosomes play a vital role in cell-to-cell communication. We successfully isolated and purified exosomes from human bone marrow microenvironment-derived mesenchymal stem cells (hBMMSC-Exo) by serial centrifugation. In the present study, we investigated the effect of hBMMSC-Exo on the proliferation, apoptosis, and drug resistance of CML cells. The results demonstrated that hBMMSC-Exo had the ability to inhibit the proliferation of CML cells in vitro via miR-15a and arrest cell cycle in the G0/G1 phase. However, the results obtained from BALB/c nu/nu mice studies apparently contradicted the in vitro results. In fact, hBMMSC-Exo increased tumor incidence and promoted tumor growth in vivo. Further study showed the antiapoptotic protein Bcl-2 expression increased, whereas the Caspase3 expression decreased. Moreover, the in vivo study in the xenograft tumor model showed that hBMMSC-Exo promoted the proliferation and decreased the sensitivity of CML cells to tyrosine kinase inhibitors, resulting in drug resistance. These results demonstrated that hBMMSC-Exo supported the maintenance of CML cells and drug resistance in BM by cell-extrinsic protective mechanisms. They also suggested that hBMMSC-Exo might be a potential target to overcome the microenvironment-mediated drug resistance.


Blood ◽  
2006 ◽  
Vol 107 (5) ◽  
pp. 1878-1887 ◽  
Author(s):  
Yukari Muguruma ◽  
Takashi Yahata ◽  
Hiroko Miyatake ◽  
Tadayuki Sato ◽  
Tomoko Uno ◽  
...  

Hematopoiesis is maintained by specific interactions between both hematopoietic and nonhematopoietic cells. Whereas hematopoietic stem cells (HSCs) have been extensively studied both in vitro and in vivo, little is known about the in vivo characteristics of stem cells of the nonhematopoietic component, known as mesenchymal stem cells (MSCs). Here we have visualized and characterized human MSCs in vivo following intramedullary transplantation of enhanced green fluorescent protein-marked human MSCs (eGFP-MSCs) into the bone marrow (BM) of nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice. Between 4 to 10 weeks after transplantation, eGFP-MSCs that engrafted in murine BM integrated into the hematopoietic microenvironment (HME) of the host mouse. They differentiated into pericytes, myofibroblasts, BM stromal cells, osteocytes in bone, bone-lining osteoblasts, and endothelial cells, which constituted the functional components of the BM HME. The presence of human MSCs in murine BM resulted in an increase in functionally and phenotypically primitive human hematopoietic cells. Human MSC-derived cells that reconstituted the HME appeared to contribute to the maintenance of human hematopoiesis by actively interacting with primitive human hematopoietic cells.


PLoS ONE ◽  
2011 ◽  
Vol 6 (10) ◽  
pp. e26241 ◽  
Author(s):  
Soraya Carrancio ◽  
Belen Blanco ◽  
Carlos Romo ◽  
Sandra Muntion ◽  
Natalia Lopez-Holgado ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Pegah Nammian ◽  
Seyedeh-Leili Asadi-Yousefabad ◽  
Sajad Daneshi ◽  
Mohammad Hasan Sheikhha ◽  
Seyed Mohammad Bagher Tabei ◽  
...  

Abstract Introduction Critical limb ischemia (CLI) is the most advanced form of peripheral arterial disease (PAD) characterized by ischemic rest pain and non-healing ulcers. Currently, the standard therapy for CLI is the surgical reconstruction and endovascular therapy or limb amputation for patients with no treatment options. Neovasculogenesis induced by mesenchymal stem cells (MSCs) therapy is a promising approach to improve CLI. Owing to their angiogenic and immunomodulatory potential, MSCs are perfect candidates for the treatment of CLI. The purpose of this study was to determine and compare the in vitro and in vivo effects of allogeneic bone marrow mesenchymal stem cells (BM-MSCs) and adipose tissue mesenchymal stem cells (AT-MSCs) on CLI treatment. Methods For the first step, BM-MSCs and AT-MSCs were isolated and characterized for the characteristic MSC phenotypes. Then, femoral artery ligation and total excision of the femoral artery were performed on C57BL/6 mice to create a CLI model. The cells were evaluated for their in vitro and in vivo biological characteristics for CLI cell therapy. In order to determine these characteristics, the following tests were performed: morphology, flow cytometry, differentiation to osteocyte and adipocyte, wound healing assay, and behavioral tests including Tarlov, Ischemia, Modified ischemia, Function and the grade of limb necrosis scores, donor cell survival assay, and histological analysis. Results Our cellular and functional tests indicated that during 28 days after cell transplantation, BM-MSCs had a great effect on endothelial cell migration, muscle restructure, functional improvements, and neovascularization in ischemic tissues compared with AT-MSCs and control groups. Conclusions Allogeneic BM-MSC transplantation resulted in a more effective recovery from critical limb ischemia compared to AT-MSCs transplantation. In fact, BM-MSC transplantation could be considered as a promising therapy for diseases with insufficient angiogenesis including hindlimb ischemia.


2018 ◽  
Vol 106 ◽  
pp. 1126-1134 ◽  
Author(s):  
Wenbo Zhang ◽  
Chao Huang ◽  
Aijun Sun ◽  
Liang Qiao ◽  
Xi Zhang ◽  
...  

2001 ◽  
Vol 169 (1) ◽  
pp. 12-20 ◽  
Author(s):  
Jizong Gao ◽  
James E. Dennis ◽  
Raymond F. Muzic ◽  
Magnus Lundberg ◽  
Arnold I. Caplan

2019 ◽  
Vol 7 (1) ◽  
pp. 362-372 ◽  
Author(s):  
Shuhao Liu ◽  
Yang Liu ◽  
Libo Jiang ◽  
Zheng Li ◽  
Soomin Lee ◽  
...  

BMP-2-induced migration of BMSCs can be inhibited by silencing CDC42 in vitro and in vivo.


Sign in / Sign up

Export Citation Format

Share Document