Reduction in Factor VIII Inhibitors Mediated through Tolerogenic Antigen Presentation by immature Dendritic Cells.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 762-762
Author(s):  
Mohammad Qadura ◽  
Andrea Labelle ◽  
Kirsten Walker ◽  
Kathleen Pratt ◽  
Maha Othman ◽  
...  

Abstract Inhibitory antibodies are a major complication of factor VIII (FVIII) treatment in patients with hemophilia A. Hemophilic patients with inhibitors face major challenges in terms of their bleeding treatments and the cost of these therapies. The use of tolerogenic immunotherapy prior to protein replacement therapy represents a novel strategy to prevent the initiation of an immune response directed against FVIII. Dendritic cells (DCs) are professional antigen presenting cells (APCs) that play a central role in initiating and directing T−cells towards either immunity or tolerance. We isolated myeloid immature dendritic cells (iDCs) from murine bone marrow and pulsed the cells with FVIII protein or the C2 domain of FVIII (FVIII−iDCs/C2−iDCs) under a non−inflammatory environment and in the presence or absence of anti−inflammatory and immunosuppressive agents such as dexamethasone (Dex) and andrographolide (Andro). One million pulsed−iDCs were infused into a group of five hemophilic Balb/c mice on a weekly basis for three weeks through tail vein injection (iv). Anti−FVIII antibody levels were monitored by functional Bethesda assay after a subsequent challenge with four weekly IV FVIII (2 IU/ml) or C2 (125 ng) injections. Flow cytometry assessment of DC maturation markers indicated that the DCs retained their immature state after pulsing with FVIII or the C2 domain in the presence of Andro or Dex. In vitro proliferation and cytokine release studies using naïve hemophilic mouse CD−4+ T cells and FVIII−iDCs or C2−iDCs in the presence/absence of Dex or Andro showed that the pulsed−iDCs are tolerogenic and result in a marked reduction in the secretion of inflammatory cytokines. We then studied the tolerogenic potential of FVIII−iDCs and C2−iDCs in vivo. We infused pulsed−iDCs that were cultured in the presence or absence of Dex/Andro into naïve hemophilic mice. We observed a 20% and 70% reduction in the levels of FVIII inhibitors in mice that received FVIII−iDCs or C2−iDCs respectively after FVIII or C2 challenges in comparison to control mice that only received FVIII or C2 challenges. Mice that received FVIII−iDCs were re−challenged with 2 IU of FVIII 10 weeks after the last of the four consecutive FVIII challenges. Our results indicate that these mice still showed a 25% reduction in the levels of FVIII inhibitors after the re−challenge suggesting that iDCs were able to induce a tolerogenic memory response against FVIII. The in vivo studies for FVIII pulsed iDCs in the presence of Andro are still in progress. In aggregate, these studies indicate that the administration of immature DCs pulsed with FVIII or the C2 domain of FVIII can significantly reduce the immune response to FVIII following subsequent IV challenges. However, this immunotherapeutic strategy does not completely abolish the anti−FVIII response, suggesting that additional supplementary approaches will be necessary to prevent the development of this treatment−related complication.

2016 ◽  
Vol 213 (6) ◽  
pp. 887-896 ◽  
Author(s):  
Samuele Calabro ◽  
Antonia Gallman ◽  
Uthaman Gowthaman ◽  
Dong Liu ◽  
Pei Chen ◽  
...  

Red blood cell (RBC) transfusion is a life-saving therapeutic tool. However, a major complication in transfusion recipients is the generation of antibodies against non-ABO alloantigens on donor RBCs, potentially resulting in hemolysis and renal failure. Long-lived antibody responses typically require CD4+ T cell help and, in murine transfusion models, alloimmunization requires a spleen. Yet, it is not known how RBC-derived antigens are presented to naive T cells in the spleen. We sought to answer whether splenic dendritic cells (DCs) were essential for T cell priming to RBC alloantigens. Transient deletion of conventional DCs at the time of transfusion or splenic DC preactivation before RBC transfusion abrogated T and B cell responses to allogeneic RBCs, even though transfused RBCs persisted in the circulation for weeks. Although all splenic DCs phagocytosed RBCs and activated RBC-specific CD4+ T cells in vitro, only bridging channel 33D1+ DCs were required for alloimmunization in vivo. In contrast, deletion of XCR1+CD8+ DCs did not alter the immune response to RBCs. Our work suggests that blocking the function of one DC subset during a narrow window of time during RBC transfusion could potentially prevent the detrimental immune response that occurs in patients who require lifelong RBC transfusion support.


2003 ◽  
Vol 90 (10) ◽  
pp. 607-610 ◽  
Author(s):  
François Mach

SummaryIn the last decades, substantial progress has been made in understanding the relationship between lipid disorders and prevention of cardiac ischemic disease. Statins competitively inhibit 3-hydroxyl-3-methylglutaryl coenzyme A (HMG-CoA) reductase, an enzyme crucial to cholesterol biosynthesis. Statins have long been thought to exert their benefits by reducing cholesterol synthesis, but the fact that mevalonate is the precursor of isoprenoids that regulate diverse cellular functions has led investigators to examine pleiotropic effects for these agents. Statins have never been shown to be involved in the immune response, although two clinical trials have suggested that in heart transplant patients, statin therapy has beneficial effects on the incidence of cardiac rejection, coronary vasculopathy, and survival.Major Histocompatibility Complex class II (MHC-II) molecules, which affect the immune response and organ rejection after transplantation, may be induced by the pro-inflammatory cyto-kine interferon gamma (IFN-γ). Recently, it has been demonstrated that statins repress the induction of MHC-II by IFN-γ in vitro, and thus may suggest a potential role for statins as immunosuppressive agents in vivo. Indeed, two recent in vivo studies performed on different animal models provide further evidence that statin-treatment positively influence immunological disorders.This publication was partially financed by Serono Foundation for the Advancement of Medical Science.Part of this paper was originally presented at the 2nd International Workshop on New Therapeutic Targets in Vascular Biology from February 6-9, 2003 in Geneva, Switzerland.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3228-3228
Author(s):  
Yukio Kondo ◽  
Kinya Ohata ◽  
Shinji Nakao

Abstract Aberrantly expressed self-antigens in leukemic cells are a kind of leukemia-associated-antigens (LAAs). Although such self-antigen-derived LAAs potentially induce high avidity CTLs in patients with leukemia, these CTLs usually do not persist in the patients because they undergo apoptosis upon encountering with leukemic cells. In allogeneic stem cell transplant (allo-SCT) recipients with leukemia, LAAs-specific high avidity CTL may be elicited from donor-derived naive T cells that are sensitized by residual leukemic cells. Cyclin-dependent kinase 2 (CDK2) is a cell cycle regulator protein that is aberrantly expressed by leukemia cells. We previously reported that two CDK2-derived peptides (CDK2 158-166, CDK2 178-186) avidly bound to HLA-A24 molecule to elicit each peptide-specific CTLs from HLA identical donor of a AML patient, and CDK2-specific CD8 + T cells preferentially killed the recipient AML cells which aberrantly expressed CDK2 protein (Blood.108 (11): a3173. 2006). When we assessed cryopreserved PBMCs obtained before and after allo-SCT from 16 HLA-A24+ patients (6 AML, 1 MDS, 1 CML, 2 ALL, 4 NHL and 2 RCC) using CDK2 158/A24 and CDK2 178/A24 pentamers, small populations (0.1–1.0%) of CDK2 158 and CDK2 178-specific CTL were detectable in 6 patients after SCT but not before SCT. All of the 6 patients had MRD at the time of SCT and achieved molecular CR after SCT. None of the 3 patients relapsed after SCT did not show CDK2 immunity. There is no relationship between the appearance of CDK2-specific CTLs and the development of GvHD (Figure). Leukemic myeloid dendritic cells (mDC) are known to present in vivo in patients with leukemia, and be able to trigger a protective antileukemic immune response by allogeneic T-cells. We hypothesized that residual circulating leukemic mDCs may sensitize donor-derived T cells by cross-presenting CDK2-peptides early after allo-SCT and elicit high avidity CTLs specific to leukemic cells. mDCs subset was identified with by three-color staining using mAbs against CD85k, CD33, CD14 and CD16. Circulating mDCs represented 5.4% of PBMCs in a patient with CML-CP at diagnosis. Leukemic mDCs from the patient were purified with CD1c mAb-conjugated maginetic beads and were assessed for their ability to stimulate allogeneic T cells to acquire specific cytotoxicity against CDK2-peptides. The purity of the mDCs as determined by flow cytometry was 92% of living isolated cells. Naive CD8 + T cells isolated from healthy individual were cultured with the leukemic mDCs for 12 days and subjected to pentamers staining. After the coculturing, the proportion of CDK2 158/A24 and CDK2 178/A24 pentamers + CD8 T cells increased 0.6% to 2.2% and 0.6% to 2.6%, respectively. These data suggest that CDK2-specific CTLs can be induced from donor-derived T cells due to in vivo sensitization of donor T cells by residual leukemic mDCs and this may be a mechanism responsible for the generation of CDK2-specific CTLs in allo-SCT recipients with MRD without vaccination of CDK2-peptides. Vaccination with CDK2-peptides after allo-SCT may be useful in both enhancing CDK2-specific immunity in patients with MRD and in generating CDK2 immunity in those without MRD. Figure: An immune response to CDK2 is associated with GvL and MRD at the time of allo-SCT, but not with GvHD. Figure:. An immune response to CDK2 is associated with GvL and MRD at the time of allo-SCT, but not with GvHD.


Blood ◽  
2002 ◽  
Vol 100 (1) ◽  
pp. 174-177 ◽  
Author(s):  
Madhav V. Dhodapkar ◽  
Ralph M. Steinman

Abstract Regulatory T cells (TRs) can suppress the function of other effector T cells in the setting of autoimmunity, transplantation, and resistance to tumors. The mechanism for the induction of TRs has not been defined. We previously reported that an injection of immature dendritic cells (DCs) pulsed with influenza matrix peptide (MP) led 7 days later to antigen-specific silencing of effector T-cell function in the blood of 2 healthy human subjects. Here, we found that interferon-γ–producing effectors return by 6 months. Importantly, in mixing experiments, CD8+ T cells from the sample obtained 7 days after injection could suppress MP-specific effectors obtained before injection and those in recovery samples. This suppression or regulation was specific for the immunizing peptide (MP) and cell-dose dependent, and it required contact between the 2 samples. These data show the capacity of immature DCs to induce antigen-specific regulatory CD8+ T cells in humans.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1909-1909
Author(s):  
Adham S Bear ◽  
Meghan M Turnis ◽  
Xiao-Tong Song ◽  
Russell Cruz ◽  
An Lu ◽  
...  

Abstract Abstract 1909 Introduction: Cancer vaccines have shown promise in small animal models of cancer, but have thus far been disappointing in clinical settings. Successful induction of a systemic and long-term anti-tumor immune response following vaccination is dependent on delivery of tumor-associated antigens to lymphoid tissues, in combination with the activation of professional antigen presenting cells (APCs). Here we describe a novel live T cell vaccine (TCV) that delivers antigenic peptides to secondary lymph nodes while simultaneously activating endogenous dendritic cells (DCs) through transgenic expression of CD40L or bacterial flagellin (fliC). Methods: To generate TCVs, murine splenocytes were isolated from wild-type type C57BL/6 mice. Following activation with anti-CD3/anti-CD28 microbeads, splenocytes were transduced with pRV2011-luciferase-IRES-Thy1.1, pRV2011-CD40L-IRES-Thy1.1 or pRV2011-fliC-IRES-Thy1.1 retrovirus. Analysis of TCV migration to lymphoid organs was performed by bioluminescence imaging for firefly luciferase. Following transduction with CD40L and fliC molecules, TCVs were measured for transduction efficiency (Thy1.1) and transgene expression using FACS analysis of CD40L or by Western blot, respectively. TCVs were subsequently pulsed with MHC class I-restricted epitopes for ovalbumin257-264 (SIINFEKL) or Trp2180-188 (SVYDFFVWL) peptides and injected intravenously at a dose of 1×107 TCVs per vaccination. To test the protective effects of TCVs, C57BL/6 mice were immunized at days 0 and 14 and then challenged with either 5×105 B16-OVA (for TCV-SIIN) or parental B16.F10 (for TCV-SVYD) melanoma tumor cells. To examine the ability of TCVs to eliminate established tumors, mice received B16-OVA or B16.F10 tumor cells followed by vaccination with TCVs on days 3, 9 and 15. Immunological studies were performed on a subset of mice (n=5 per group) to analyze induction of tumor-specific T cells using tetramer and IFN-g ELIspot assays. In vivo activation of lymph node DCs was performed by FACS analysis for CD11c+ DC co-expressing CD86 and I-A/I-E mouse MHC class II antibodies. Results: Following activation, TCVs were efficiently transduced with retrovirus (>85% CD40L) or expressed high levels of fliC. Bioluminescent imaging showed that luciferase-expressing TCVs rapidly migrated to lymphoid organs including the spleen and cervical and inguinal lymph nodes demonstrating the capacity of TCVs to co-localize with professional APCs. Importantly, irradiation (30 Gy) of TCVs completely abrogated migration and persistence highlighting the requirement for live TCVs. Next we examined whether TCV-CD40L or TCV-fliC could induce a protective immune response against B16 tumors. Administration of TCV-fliC-SIIN (OVA) and TCV-CD40L-SIIN primed peptide-specific CD8+ T cells, and led to decreased tumor growth and increased survival in mice subsequently challenged with B16-Ova (p<0.05). This response corresponded with a statistically significant (p<.05) increase in SIIN-specific CD8+ T cells as measured by tetramer FACS analysis and IFN-g ELIspot assays. Vaccination of mice with established tumors showed similar tumor suppression with both TCV designs (p<05). As OVA is a xenogenic antigen, we next examined whether TCVs pulsed with Trp2 peptide (SVYD) could induce similar protective effects. While vaccination with SVYD-pulsed T cells alone (no gene modification) did not inhibit tumor growth, expression of CD40L or fliC by TCV pulsed with Trp2 peptide suppressed B16.F10 tumor proliferation and increased survival in mice with pre-established tumors (p<.05). As found in the B16.OVA experiments, immunological protection correlated with a dramatic increase in SVYD-specific CD8+ T cells in the spleen, tumor draining lymph nodes and tumor. Conclusions: The efficient delivery of tumor-associated antigens to lymphoid tissues by TCVs overcomes a major limitation of alternative vaccine strategies. Vaccination with peptide-pulsed TCVs primes antigen-specific T cell responses with anti-tumor capability, and endogenous DC maturation leads to the inhibition of established B16-Ova and B16-F10 tumors. This illustrates the role of endogenous DC as mediators of the vaccine response and demonstrates the effectiveness of using TCVs to deliver antigen in the context of DC activating molecules. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A806-A806
Author(s):  
Unnur Jóna Björgvinsdóttir ◽  
Laura Stentoft Carstensen ◽  
Anna Colliander ◽  
Ditte Elisabeth Jæhger ◽  
Gael Clergeaud Veiga ◽  
...  

BackgroundTherapeutic cancer vaccines represent an intriguing approach to cancer immunotherapy and they have been widely explored for the last decade. As opposed to standard modalities, such as surgery and chemotherapy, an effective vaccine-based immune response may provide protection against metastatic disease. Peptide based vaccines can elicit a highly targeted immune response and include a simple, fast and cost-effective production due to recent developments in solid phase peptide synthesis. Recent development within the field of COVID-19 vaccines has highlighted the use of lipid nanoparticles as an effective drug delivery system for vaccination. Incorporation of peptide antigens into engineered micro- and nanoparticles enables induction of a potent T cell response, partly attributed to prolonged and improved antigen presentation by dendritic cells after particle internalization. Peptide-based vaccines are often based on delivery of high-affinity T cell model epitopes. However, the therapeutic relevance of vaccination with low-affinity epitopes is gaining increasing support following the observation that high-affinity epitopes can promote T cell exhaustion resulting from excessive T cell receptor stimulation. Here, we characterize and evaluate a novel lipid nanoparticle (LNP) vaccine platform that is suited for delivery of both high- and low-affinity epitopes in the setting of therapeutic cancer vaccination.MethodsLNPs were formulated to carry high- or low-affinity peptide epitopes from Ovalbumin (OVA) in conjunction with the TLR7 agonist 1V270. The peptides were anchored to the surface of the LNPs via a reducible DSPE-PEG2000 linker system. The therapeutic vaccine platform was evaluated in vivo both as a monotherapy and in combination with adoptive transfer of OT-I T cells in the syngeneic B16-OVA murine melanoma model.ResultsThe LNP vaccine promotes efficient antigen-release and ensures high, continuous antigen-presentation by antigen-presenting cells. While the LNPs can be administered via multiple routes, intratumoral vaccination favors enhanced particle uptake in dendritic cells in the tumor. Formulated with either high- or low-affinity epitopes, intratumorally delivered vaccine particles promote superior tumor-infiltration of adoptively transferred T cells, which translates into potent anti-tumor efficacy in vivo. Finally, we show that vaccination with both CD8+ and CD4+ epitopes can delay tumor growth and prolong survival in an antigen-dependent manner.ConclusionsThis study presents a versatile and multi-purpose LNP vaccine platform that ensures effective delivery of high- and low-affinity epitopes. Intratumoral administration promotes vaccine particle uptake by intratumoral dendritic cells, which is followed by T cell infiltration and anti-tumor efficacy in vivo.Ethics ApprovalAll animal procedures were approved by the Danish National Animal Experiments Inspectorate.


2006 ◽  
Vol 80 (4) ◽  
pp. 1826-1836 ◽  
Author(s):  
Allison T. Thiele ◽  
Tina L. Sumpter ◽  
Joanna A. Walker ◽  
Qi Xu ◽  
Cheong-Hee Chang ◽  
...  

ABSTRACT Adenovirus (Ad) infection has been identified as predisposing hosts to the development of pulmonary disease through unknown mechanisms. Lung dendritic cells (DCs) are vital for initiating pulmonary immune responses; however, the effects of Ad infection on primary lung DC have not been studied. In contrast to the effects on bone marrow- and monocyte-derived DCs, the current study shows that Ad infection of murine BALB/c lung DCs in vitro and in vivo suppresses DC-induced T-cell proliferation. The effect of Ad on DCs was not due to a downregulation of major histocompatibility complex or costimulatory molecules. Analysis of the production of interleukin-12 (IL-12), alpha interferon (IFN-α), and IFN-γ by the Ad-infected DCs shows no significant differences over noninfected control lung DCs. Ad-induced suppression was not due to a deficiency of IL-2 or other DC-secreted factors and was dependent on viral protein synthesis, as UV irradiation of Ad abrogated the suppressive effect. Results suggest that Ad-infected DCs induce T cells to be nonresponsive to IL-2 during primary coculture, as the addition of IL-2 in secondary cultures recovered T-cell proliferation. In vivo studies supported in vitro results showing that Ad infection resulted in lung T cells with decreased proliferative ability. This study demonstrates that Ad infection induces local immunoincompetence by altering DC-T-cell interactions.


2006 ◽  
Vol 177 (6) ◽  
pp. 3806-3813 ◽  
Author(s):  
Louis-Marie Charbonnier ◽  
Leonie M. van Duivenvoorde ◽  
Florence Apparailly ◽  
Céline Cantos ◽  
Wanda G. H. Han ◽  
...  

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 591-591
Author(s):  
Rui-Jun Su ◽  
Angela Epp ◽  
Xiaoping Wu ◽  
Neil Josephson

Abstract The development of anti-factor VIII (FVIII) inhibitory antibodies is currently the most significant complication of FVIII replacement therapy in the management of patients with hemophilia A. Infusion of in vitro generated tolerogenic dendritic cells (tDCs) loaded with foreign antigen has been shown to promote durable antigen-specific tolerance in vivo through mechanisms that involve the induction of regulatory T cells. In this study we evaluated the ability of tDCs transduced with a human B domain deleted FVIII transgene-expressing foamy virus (FV) vector to modulate the immune response to human FVIII in both naïve and pre-immunized hemophilia A mice. The tDCs were generated by flow sorting the population of CD11clowCD45RBhigh cells produced in culture of lineage negative bone marrow cells in RPMI1640/10%FBS supplemented with IL-10 and the neural peptides VIP and PACAP38. Expression of co-stimulatory molecules CD80 and CD86 and MHC Class II was negative or low on the generated tDCs and these cells remained un-activated even after stimulation with LPS or transduction by FV vectors. These tDCs produced low levels of IL-6 and TNF-α, and high level of IL-10. Furthermore, co-culture of the vector transduced tDCs with FVIII stimulated effector T cells (Teffs) resulted in decreased proliferation of Teffs and reduced secretion of IFN-γ and IL-2. In the cultures with the transduced tDCs there was also an increase in the number of apoptotic Teffs. Naïve Balb/c hemophilia A mice were treated with 2 weekly infusions of FVIII vector transduced tDCs (tDC-F8), control tDCs (tDCs-Ctrl), or no cells (Neg-Ctrl) prior to being challenged with four weekly intravenous doses of 0.2 μg rhFVIII. Following immunization the total cellularity and weights of spleens harvested from tDC-F8 mice were consistently half that of spleens from either tDC-Ctrl or Neg-Ctrl mice. Furthermore, inhibitor titers in tDC-F8 mice were 60–61% lower than either Neg-Ctrl or tDC-Ctrl mice (p &lt; 0.05 compared to both controls). The regulatory T cell related markers FOXP3, CD25, CD103, CTLA4 and GITR were all up-regulated on splenic CD4+ T cells from tDC-F8 mice and the CD4+ T cell proliferation response to FVIII stimulation in splenocytes from tDC-F8 mice was suppressed by approximately 90%. Moreover, the rate of apoptosis in splenic T cells from tDC-F8 mice was 33% higher than splenic T cells from either Neg-Ctrl or tDC-Ctrl mice. In pre-immunized mice, treatment with 4 weekly infusions of FVIII vector transduced tDCs lowered inhibitor titers by 54% compared to no treatment controls (p &lt; 0.05). In contrast, treatment with untransduced tDCs had no significant effect on the inhibitor titers of pre-immunized mice. Importantly, adoptive transfer of CD4+ T cells from tDC-8 mice produced suppression of the immune response to FVIII in subsequently immunized naïve secondary recipients.. In summary, these data indicate that FVIII vector transduced tDCs are useful in suppressing the immune response to FVIII in hemophilia A mice and suggest that regulatory T cells play a role in the induced immune modulation. More in vivo studies are in progress to confirm the durability of these effects. Future studies will also focus on isolating and characterizing the regulatory T cell populations induced by in vivo administration of transgene modified tDCs.


Sign in / Sign up

Export Citation Format

Share Document