Different Hemoglobin Switching Pattern of β-Thalassemia Mutations at the Proximal and Distal Human β-Globin CACCC Box.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1780-1780
Author(s):  
Maria F. Marongiu ◽  
Susanna Porcu ◽  
Daniela Poddie ◽  
Dubravka Drabeck ◽  
Tom DeWit ◽  
...  

Abstract The CACCC box is duplicated in the β globin gene promoter of humans and other mammals. While the function of the proximal element as a binding site for EKLF has already been well established, the role of the distal element remains unclear The distal CACCC box has been previously reported not to bind EKLF in vitro. A minor role of the distal CACCC element in β globin gene promoter function is suggested by the observation that naturally occurring β thalassemia mutations affecting the proximal CACCC box are far more severe than those affecting the distal element. Nevertheless recent evidences demonstrate: that EKLF does indeed bind to the distal CACCC motif, although with low affinity. that the CCTCACCC is required for maximal stimulation of the β-globin gene by EKLF and that silent β-thalassemia due to mutations of the distal CACCC box affects the binding and responsiveness to EKLF of the β-globin gene promoter. Our interest in the function of the distal CACCC element springs from the observation that β thalassemia mutation affecting the distal box show an age related pattern of expression being more severe in the childhood than in the adulthood. In order to get light inside the role of this element in the function of the β globin gene and in the γ to β hemoglobin switching we have analyzed the effect of mutations at the proximal and distal element “in vivo”. We have engineered, by site specific mutagenesis, the β-101 (distal CACCC element) and β-87 (proximal CACCC element) mutations inside the “minilocus “ γ-β construct. The minilocus construct has been widely used to study hemoglobin switching in vivo. This construct contains the full β-globin Locus Control Region (LCR), the Aγ globin gene, the β-globin gene and the 3′ hypersensitive site (HS) of the β-globin cluster. Three mice transgenic lines have been produced. The pattern of g versus β-globin switching has been analyzed during the development by S1 analysis and real time PCR. We have dissected the yolk sac at 10 days post conception (pc) to asses the embryonic stage of erythopoiesis; the fetal liver at 12, 14 and 16 days pc to asses the fetal stage or erythropoiesis when the g to b competitive switching take place; and the adult blood. Our results indicated that neither the β-101 nor the β-87 thalassemia mutations affect the competitive silencing of the b-globin gene in the yolk sac. During the fetal liver stage of erythropoiesis, were both human g and b human transgenes are expressed, the pattern of γ-β hemoglobin switching is striking different for the two different constructs. The b-87 minilocus γ-β construct shows a delayed switching patter mainly due to the low activation of the mutated β globin gene. The impairment of the expression of the β-87 globin gene became more severe during the fetal development compared to the control line. On the other hand the β-101 minilocus γ-β construct shows a γ-β hemoglobin switching pattern which is anticipated respect to the control line. In addition the effect of the β-101 mutation became less severe during the fetal development. These results highlight a possible role of the distal CACCC element in hemoglobin switching and in particular in the early stage of β-globin activation.

1998 ◽  
Vol 18 (11) ◽  
pp. 6634-6640 ◽  
Author(s):  
Denise E. Sabatino ◽  
Amanda P. Cline ◽  
Patrick G. Gallagher ◽  
Lisa J. Garrett ◽  
George Stamatoyannopoulos ◽  
...  

ABSTRACT During development, changes occur in both the sites of erythropoiesis and the globin genes expressed at each developmental stage. Previous work has shown that high-level expression of human β-like globin genes in transgenic mice requires the presence of the locus control region (LCR). Models of hemoglobin switching propose that the LCR and/or stage-specific elements interact with globin gene sequences to activate specific genes in erythroid cells. To test these models, we generated transgenic mice which contain the human Aγ-globin gene linked to a 576-bp fragment containing the human β-spectrin promoter. In these mice, the β-spectrin Aγ-globin (βsp/Aγ) transgene was expressed at high levels in erythroid cells throughout development. Transgenic mice containing a 40-kb cosmid construct with the micro-LCR, βsp/Aγ-, ψβ-, δ-, and β-globin genes showed no developmental switching and expressed both human γ- and β-globin mRNAs in erythroid cells throughout development. Mice containing control cosmids with the Aγ-globin gene promoter showed developmental switching and expressed Aγ-globin mRNA in yolk sac and fetal liver erythroid cells and β-globin mRNA in fetal liver and adult erythroid cells. Our results suggest that replacement of the γ-globin promoter with the β-spectrin promoter allows the expression of the β-globin gene. We conclude that the γ-globin promoter is necessary and sufficient to suppress the expression of the β-globin gene in yolk sac erythroid cells.


2001 ◽  
Vol 21 (9) ◽  
pp. 3083-3095 ◽  
Author(s):  
Zhijun Duan ◽  
George Stamatoyannopoulos ◽  
Qiliang Li

ABSTRACT The duplicated CCAAT box is required for γ gene expression. We report here that the transcriptional factor NF-Y is recruited to the duplicated CCAAT box in vivo. A mutation of the duplicated CCAAT box that severely disrupts the NF-Y binding also reduces the accessibility level of the γ gene promoter, affects the assembly of basal transcriptional machinery, and increases the recruitment of GATA-1 to the locus control region (LCR) and the proximal promoter and the recruitment of transcription cofactor CBP/p300 to the LCR. These findings suggest that recruitment of NF-Y to the duplicated CCAAT box plays a role in the chromatin opening of the γ gene promoter as well as in the communication between the γ gene promoter and the LCR.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3650-3650
Author(s):  
Susanna Porcu ◽  
Maria F. Marongiu ◽  
Paola Mascia ◽  
Marco Melis ◽  
Daniela Poddie ◽  
...  

Abstract The δ globin gene is the second adult β-like globin gene in humans and codes for the δ globin chain which forms together with the α globin chain Hemoglobin A2 (HbA2). HbA2 represents less than 3% of the total hemoglobin in normal individuals and it is typically increased in β thalassemia carriers. The δ globin gene is highly homologous to the β globin gene since it derives from a common ancestor. In our previous work we (as well as others) have demonstrated, in vitro, that the creation of the β globin proximal CACCC box consensus sequence, the binding site of the trascription factor EKLF, on the δ globin gene promoter is sufficient to enhance its expression to a considerable extent. Here we show that the δ globin gene promoter can be activated “ in vivo” in a transgenic mice model. We have produced transgenic mice lines with a DNA construct in which the wild type (wt) β globin gene promoter and either the wt or the proximal CACCC box containing δ globin gene promoter are linked in cis to the second hypersensitive site (HS2) of the Locus Control Region (LCR). The order of the different elements in our construct mimic the organization of the human β globin cluster were the δ globin gene is situated 5′ to the β and relatively closer to the LCR. The δ and β globin gene promoter are respectively linked to two different luciferase reporter genes, fireflies and renilla. All the transgenic lines produced are multicopy as assessed by southern blotting. The level of the expression of the two reporter genes has been assessed in the fetal liver at day 14 post coitum (pc). We have analyzed 3 out of 5 independent transgenic lines bearing the CACCC containing δ globin gene promoter construct, and 2 independent lines bearing the control construct (wt δ globin gene promoter). For each transgenic line we have analyzed two different litters. Transgenic fetuses have been identified by PCR. Fetal liver samples have been lisated and the crude protein extracted has been assayed for the luciferase versus renilla activity. Taking into account the different activity of the two reporter enzymes the wt δ globin gene promoter activity is 13% (+/−0,5) that of the wt β globin gene promoter in fetal liver (n = 18). On the other hand the transgenic lines bearing the construct with the CACCC box containing δ globin gene promoter show an activation up to 82% (+/−19) in respect to the wt β promoter, on average (n = 32) The difference in expression between the wt and the CACCC box bearing δ globin gene promoter is highly significant (ttest = 3.8X10−7 ). This observation is a step forwards to possible gene therapy strategies for hemoglobinopathies based on the reactivation of the endogenous δ globin gene. The δ globin chain could represent in fact a valid substituted of the δ globin chain in beta thalassemia patients. It is also well known that HbA2 is a powerful antisickling agent which could benefit sickle cell patients. Current gene therapy strategies for the hemoglobinopathies focus on the trasduction of the hematopoietic stem cells by viral vectors or on the correction of the endogenous β globin gene by homologous recombination. An alternative approach could be to introduce into the hematopoietic stem cells of an engineered transcription factor able to enhance δ globin gene transcription.


Blood ◽  
2006 ◽  
Vol 109 (1) ◽  
pp. 343-352 ◽  
Author(s):  
Stuart T. Fraser ◽  
Joan Isern ◽  
Margaret H. Baron

Abstract Primitive erythroblasts (EryPs) are the first hematopoietic cell type to form during mammalian embryogenesis and emerge within the blood islands of the yolk sac. Large, nucleated EryPs begin to circulate around midgestation, when connections between yolk sac and embryonic vasculature mature. Two to 3 days later, small cells of the definitive erythroid lineage (EryD) begin to differentiate within the fetal liver and rapidly outnumber EryPs in the circulation. The development and maturation of EryPs remain poorly defined. Our analysis of embryonic blood at different stages reveals a stepwise developmental progression within the EryP lineage from E9.5 to E12.5. Thereafter, EryDs are also present in the bloodstream, and the 2 lineages are not easily distinguished. We have generated a transgenic mouse line in which the human ϵ-globin gene promoter drives expression of green fluorescent protein exclusively within the EryP lineage. Here, we have used this line to characterize changes in cell morphology and surface-marker expression as EryPs mature and to track EryP numbers and enucleation throughout gestation. This study identifies previously unrecognized synchronous developmental stages leading to the maturation of EryPs in the mouse embryo. Unexpectedly, we find that EryPs are a stable cell population that persists through the end of gestation.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 643-643
Author(s):  
Jian Xu ◽  
Vijay G. Sankaran ◽  
Erica B. Esrick ◽  
Benjamin L. Ebert ◽  
Stuart H. Orkin

Abstract Abstract 643 Persistence of fetal hemoglobin (HbF) in adults ameliorates severity of sickle cell disease and β-thalassemia. The transcriptional repressor BCL11A is a newly identified critical mediator of hemoglobin switching and HbF silencing. Previously we showed that BCL11A knockout mice with a human β-globin gene cluster transgene (β-locus mice) fail to silence mouse embryonic globins and human fetal (γ-) globins in adult erythroid cells of the fetal liver. The ratio of human fetal to adult globin RNA in the fetal liver of BCL11A knockout mice is inverted compared to controls, such that γ constitutes >90% of the β-like human expression at embryonic day (E)14.5 and >75% at E18.5. These findings provide compelling evidence that BCL11A controls hemoglobin switching in vivo. These BCL11A-null mice are postnatally lethal. Thus, the extent to which developmental silencing of HbF expression is dependent on BCL11A in adult animals cannot be assessed. Here we examined by formal genetics the contribution of BCL11A to HbF silencing through conditional inactivation of BCL11A in β-locus mice. Mice harboring erythroid-specific inactivation of BCL11A develop normally. As in the conventional knockout, the hemoglobin switching fails to occur in the fetal liver, such that γ constitutes >80% of the β-like human globins. After birth, the level of γ-globin is maintained persistently and contributes 43% in newborns, 25% in 4-week-old young adults, and 12% in 30-week-old adults. Even at this late time, the level of γ-globin is >500-fold that of control mice. The viability of these mice, taken together with ostensibly normal red cell production, indicates that BCL11A has few, if any, non-critical globin targets. To determine if loss of BCL11A in the adult reactivates γ-globin genes that were previously silenced developmentally, we conditionally inactivated BCL11A through induction of Mx1-Cre. Acute loss of BCL11A in adult bone marrows leads to persistent reactivation of γ-globin (>500-fold derepression compared to controls). Thus, BCL11A is required in vivo to maintain HbF silencing in adults. Gradual silencing of γ-globin in BCL11A-null adults suggests the presence of additional silencing pathways in the mouse trans-acting environment. In support of this hypothesis, we observed that the levels of DNA methylation at the γ-globin promoters are substantially decreased in BCL11A-null erythroid precursors from E14.5 fetal livers (40%), bone marrows of young (59%) and old (66%) mice. The levels are >80% in control mice at all ages. Loss of DNA methylation at γ-promoters indicates that developmental silencing of HbF is impaired upon loss of BCL11A. The gradual increase of DNA methylation indicates that the γ-globin genes are subject to epigenetic silencing in the absence of BCL11A in the mouse trans-acting environment. Histone deacetylases (HDACs) are potential molecular targets mediating HbF induction. By high-resolution ChIP-chip analysis, we demonstrate that HDAC1 occupies the γ-globin genes in primary human adult erythroid precursors. Administration of a HDAC inhibitor (Vorinostat) to BCL11A conditional knockout mice leads to further elevation of HbF, suggesting that the combination of BCL11A downregulation and HDAC inhibition may provide a strategy for efficient HbF augmentation. Collectively, these findings provide important insight into the role of BCL11A in HbF silencing in adults and new clues for target-based therapeutics in patients with hemoglobin disorders. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1770-1770
Author(s):  
Himanshu Bhatia ◽  
Jennifer Hallock ◽  
Lauren Sterner ◽  
Toru Miyazaki ◽  
Ann Dean ◽  
...  

Abstract Persistence of fetal hemoglobin can ameliorate adult beta (β)-globin gene disorders. Since SCFAs can affect embryonic and fetal globin gene expression, we examined their role during development. Murine globin gene expression, β-type (embryonic βH1, and epsilon-y, εY, and adult βmajor), and alpha (α)-type (embryonic zeta, ζ, >α, adult α), were compared between wildtype (wt) and transgenic mice, in which a key enzyme for SCFA metabolism, PCCA, had been knocked out (PCCA−/−, (Miyazaki et al, 2001). E10.5 PCCA−/− yolk sac (n= 9), showed increased α, βH1 and ζ gene expression, at respectively 2-, 2.6- and 1.6-fold relative to wt (n=13, p<.05), and εY gene expression, at 1.7-fold (p=0.07). The embryonic-to-adult globin gene switch was modestly delayed in yolk sacs from E12.5 PCCA−/− (n=9) vs. wt (n=4) and E 14.5 PCCA−/− (n=6) vs. wt (n=6). % embryonic β-type globin gene expression (% βH1 and εY of total β globin) was 77±6 PCCA−/− and 74±3 wt at E12.5, p=n.s., and 42±13 PCCA−/− and 21±3 wt at E14.5, p<.05; % emvbryonic α-type expression (% ζ of total α) was 32±3 PCCA−/−, 25±1wt at E12.5, p<.05 and 7±2 PCCA−/− and 4±1 wt at E14.5, p<.05). Embryonic globin gene expression in E 12.5 and 14.5 fetal livers was not different between PCCA−/− and wt embryos. Cultures of pooled E14.5 wt fetal liver cells (FLCs, n=4 separate experiments), however, suggested that embryonic globin genes can be activated in FLCs. The percent of total β-type globin gene expression that was embryonic after culture with butyrate (1mM) was 11.6±2.6%, with propionate (2.5 mM) was 3.6±0.2%, and insulin/erythropoietin or basal media was 0.03±0.03% and 0.42±0.26% respectively (p<.05 relative to SCFAs). Dose-response with propionate (n=2 seaparate experiments) suggest inadequate endogenous propionate levels for activation in PCCA −/− fetal liver, as % embryonic β-type globin gene expression rose above basal levels only at concentrations of 1 to 5 mM (2.5 mM maximal) but not at <0.6 mM. We conclude that endogenous SCFAs, at levels achievable in vivo can activate embryonic globin gene expression during development in the murine yolk-sac. However, higher levels than achievable endogenously currently are necessary to produce this effect in murine fetal livers.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3630-3630
Author(s):  
Kenneth R. Peterson ◽  
Halyna Fedosyuk ◽  
Susanna Harju

Abstract Although the human β-globin locus control region (LCR) functions as a holocomplex within an active chromatin hub, we provide evidence that within the aggregate hypersensitive site (HS) activation domain of the holocomplex, the individual HSs still mediate preferential activation of the globin genes during development. A 2.9 Kb deletion of 5′HS3 (Δ5′HS3) or a 234 bp deletion of the 5′HS3 core (Δ5′HS3c) in a 213 Kb human β-globin locus yeast artificial chromosome (β-YAC) abrogate ε-globin gene expression during primitive erythropoiesis in β-YAC transgenic mice, suggesting that 5′HS3 sequences of the LCR are involved directly in ε-globin gene activation. The reduction of ε-globin gene transcription in Δ5′HS3 or Δ5′HS3c β-YAC transgenics can be explained by two hypotheses. The first is site-specificity. The interaction between the LCR and the ε-globin gene promoter involves specific sequences of 5′HS3 and specific sequences of the ε-globin gene promoter. When 5′HS3 or its core is deleted, these interactions do not take place and ε-globin gene transcription is diminished. The second hypothesis is change in conformation of the LCR. Normally, in the embryonic stage, the LCR achieves a three-dimensional conformation that favors interaction with the first gene in the complex, the ε-globin gene. When 5′HS3 is deleted, an alternate conformation is assumed that decreases the chance that there will be an interaction between the LCR and the ε-globin gene. However, the LCR interacts with the next gene in order, the γ-globin gene. In Δ5′HS3c β-YAC mice, γ-globin gene expression is normal during primitive erythropoiesis, but is extinguished in the fetal stage of definitive erythropoiesis. These data suggest that a conformational change occurs in the Δ5′HS3c LCR during the switch from embryonic to definitive erythropoiesis, from one that supports γ-globin gene expression to one that does not. Alternately, the embryonic trans-acting environment may allow the mutant LCR to interact with and activate the γ-globin genes, but the fetal trans-acting environment may not support this interaction in the absence of the 5′HS3 core. To distinguish between these possibilities, β-YAC lines were produced in which the ε-globin gene was replaced with a second marked β-globin gene (βm), coupled to either an intact LCR, a 2.9 Kb 5′HS3 deletion or a 234 bp 5′HS3 core deletion. Δ5′HS3c Δε::βm β-YAC mice expressed βm-globin throughout development beginning at day 10 in the yolk sac. γ-globin was expressed in the embryonic yolk sac, but not in the fetal liver. Some wild-type β-globin was expressed in addition to βm-globin in adult mice. The γ-globin phenotype is consistent with published data on Δ5′HS3c β-YAC mice. Although ε-globin was not expressed in Δ5′HS3c β-YAC mice, βm-globin was expressed in Δ5′HS3c Δε::βm β-YAC embryos, demonstrating that the 5′HS3 core was necessary for ε-globin expression during embryonic erythropoiesis, but not for βm-globin expression. A similar phenotype was observed in Δ5′HS3 Δε::βm β-YAC mice, except βm-globin expression was higher in the day 10 yolk sac and γ-globin expression continued into the fetal liver stage of definitive erythropoiesis consistent with results published on Δ5′HS3 β-YAC mice. These data support a site specificity model of LCR HS-globin gene interaction.


Development ◽  
1992 ◽  
Vol 116 (4) ◽  
pp. 1041-1049 ◽  
Author(s):  
A. Leder ◽  
A. Kuo ◽  
M.M. Shen ◽  
P. Leder

Murine erythropoiesis begins with the formation of primitive red blood cells in the blood islands of the embryonic yolk sac on day 7.5 of gestation. By analogy to human erythropoiesis, it has been thought that there is a gradual switch from the exclusive expression of the embryonic alpha-like globin (zeta) to the mature adult form (alpha) in these early mouse cells. We have used in situ hybridization to assess expression of these two globin genes during embryonic development. In contrast to what might have been expected, we find that there is simultaneous expression of both zeta and alpha genes from the very onset of erythropoiesis in the yolk sac. At no time could we detect expression of embryonic zeta globin mRNA without concomitant expression of adult alpha globin mRNA. Indeed, adult alpha transcripts exceed those of embryonic zeta in the earliest red cell precursors. Moreover, the pattern of hybridization reveals co-expression of both genes within the same cells. Even in the fetal liver, which supersedes the yolk sac as the major site of murine fetal erythropoiesis, there is a brief co-expression of zeta and alpha genes followed by the exclusive expression of the adult alpha genes. These data indicate an important difference in hematopoietic ontogeny between mouse and that of human, where zeta expression precedes that of alpha. In addition to resolving the embryonic expression of these globin genes, our results suggest that the embryonic alpha-like globin gene zeta may be physiologically redundant, even during the earliest stages of embryonic development.


Blood ◽  
1996 ◽  
Vol 87 (6) ◽  
pp. 2513-2517 ◽  
Author(s):  
K Hamamura ◽  
H Matsuda ◽  
Y Takeuchi ◽  
S Habu ◽  
H Yagita ◽  
...  

Hematopoiesis requires specific interactions with the microenvironments, and VLA-4 has been implicated in these interactions based on in vitro studies. To study the role of VLA-4 in hematopoiesis in vivo, we performed in utero treatment of mice with an anti-VLA-4 monoclonal antibody. Although all hematopoietic cells in fetal liver expressed VLA-4, the treatment specifically induced anemia. It had no effect on the development of nonerythroid lineage cells, including lymphoids and myeloids. In the treated liver almost no erythroblast was detected, whereas the erythroid progenitors, which give rise to erythroid colonies in vitro, were present. These results indicate that VLA-4 plays a critical role in erythropoiesis, while it is not critical in lymphopoiesis in vivo.


Sign in / Sign up

Export Citation Format

Share Document