Cucurbitacin D Upregulates Fetal Hemoglobin Expression in K562 Cells and Human Erythroid Progenitors.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3833-3833
Author(s):  
Hongtao Xing ◽  
Siwei Zhang ◽  
H. Phillip Koeffler ◽  
Ming Chiu Fung

Abstract The search for novel therapeutic candidates causing reactivation of fetal hemoglobin (a2g2; HbF) to reduce the imbalance of globin gene expression is important in order to develop effective approach for the clinical management of sickle cell anemia and b-thalassemia. For the first time, we have identified cucurbitacin D (CuD), a naturally occurring oxygenated tetracyclic triterpenoid, as a molecular entity inducing g-globin gene expression and HbF synthesis in K562 cells and human erythroid progenitors from either peripheral blood or bone marrow. The upregulation of HbF induced by CuD was dose- and time- dependent. CuD was compared to hydroxyurea (HU), 5-azacytidine, amifostine, recombinant human erythropoietin (rhEPO), and sodium phenylbutyrate. At their optimal dosage, CuD (12.5 ng/mL) and HU (25.0 μg/mL) induced nearly 70% K562 cells to express total hemoglobin after 6 days culture, which was higher than the induction by Amifostine (30%), 5-azacytidine (36%), rhEPO (16%), sodium phenylbutyrate (23%) at their optimal concentrations and negative control (11%). Fetal hemoglobin ELISA showed that CuD (12.5 ng/mL) and 5-azacytidine (400 ng/mL) induced higher levels of fetal hemoglobin in K562 cells (15.4 ng/μL and 29.3 ng/μL, respectively), compared to HU (10.3 ng/μL), amifostine (7.8 ng/μL), rhEPO (10.9 ng/μL), sodium phenylbutyrate (9.9 ng/μL) at their optimal concentrations and negative control (5.3 ng/μL). CuD induced a significantly higher fetal cell percentage than HU in K562 cells (65% vs 37% maximum) and primary erythroid progenitors (36% vs 21% maximum) based on the immunofluorescence imaging and flow cytometry analysis. Real-time PCR results showed that the amount of γ-globin mRNA increased from 2.5-fold in CuD-optimal-treated cells (12.5 ng/mL, 48 hours) compared with 1.5-fold in HU-optimal-treated cells (25.0 μg/mL, 48 hours). Growth inhibition assay (MTT) demonstrated that CuD at its optimal γ-globin inducing dosage (12.5 ng/mL) inhibited proliferation of K562 by less than 10% of untreated control cells; while hydroxyurea at its optimal dosage (25.0 μg/mL) inhibited 80% of cell division. The in vitro therapeutic index (calculated by dividing the dose inhibiting 50% cell growth (IC50) by dose inducing 50% maximal HbF production (ED50)) of CuD was 40-fold greater than HU. Taken together, the results suggest that CuD has the potential to be a therapeutic agent for treatment of sickle cell anemia and b-thalassemia.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 645-645
Author(s):  
Inderdeep S Kalra ◽  
Md. M Alam ◽  
Betty S Pace

Abstract Abstract 645 Kruppel-like factors (KLFs) are a family of Cys2His2 zinc-finger DNA binding proteins that regulate gene expression through CACCC/GC/GT box binding in various gene promoters. The CACCC element is also critical for developmental regulation of the human γ-globin and β-globin genes; therefore studies to identify transcription factors that bind the CACCC element to alter gene expression are desirable. By microarray-based gene profiling, we identified two Kruppel-like factors, KLF4 and KLF12 whose expression levels decreased simultaneously with γ-globin silencing during in vitro erythroid maturation. Subsequent reverse transcription quantitative PCR (RT-qPCR) analysis confirmed KLF4 and KLF12 mRNA levels decreased 56-fold and 16-fold respectively in erythroid progenitors from day 7 to day 28 with over 90% γ-globin gene silencing. The effects of known fetal hemoglobin inducers hemin (50μM) and sodium butyrate (2mM) on KLF factor expression was tested in K562 cells. Hemin and sodium butyrate increased KLF4 3-fold (p<0.05) and 13-fold (p<0.01) respectively while KLF12 was only induced by butyrate. Likewise, hemin treatment of KU812 leukemia cells, which actively express γ-globin and β-globin, produced a 7-fold increase in KLF4 (p<0.05) while KLF12 levels were not changed suggesting KLF4 may be directly involved in γ-globin gene regulation. To characterize its role further siRNA-mediated loss of function studies were performed in K562 cells. A 60% knockdown of KLF4 expression produced 40% attenuation of γ-globin transcription (p<0.05). To confirm this effect, rescue experiments were performed as follows: K562 cells were treated with 100nM siKLF4 alone or in combination with the pMT3-KLF4 expression vector (10 and 20μg) for 48 hrs. The 40% knockdown of γ-globin expression produced by siKLF4 was rescued to baseline levels after enforced pMT3-KLF4 expression (p<0.05). To establish whether KLF4 directly stimulates γ-globin promoter activity, we performed co-transfection of pMT3-KLF4 and the Gγ-promoter (-1500 to +36) cloned into the pGL4.17 Luc2/neo vector; a dose-dependent increase in luciferase activity (2- to 5-fold; p<0.001) was observed. Furthermore, enforced expression of pMT3-KLF4 augmented endogenous γ-globin expression 2-fold (p<0.01). Collectively, these studies suggest that KLF4 acts as a trans-activator of γ-globin gene transcription. To address the physiological relevance of these findings, studies were extended to human primary erythroid cells grown in a two-phase liquid culture system. At day 11 when γ-globin gene expression was maximal, siKLF4 treatment produced a 60% decrease in γ/β-globin mRNA levels (p<0.001). By contrast, enforced pMT3-KLF4 expression enhanced γ/β-globin 1.5-fold at day 11 and day 28 (after γ-globin silencing); HbF levels were induced 1.5-fold (p<0.05) which was demonstrated by enzyme-linked immunosorbent assay. To gain insights into the molecular mechanism of KLF4-mediated γ-globin regulation, electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation assay (ChIP) were completed. Since CREB binding protein (CBP) is known to function as a co-activator for KLF1, 4 and 13, we also tested its role in γ-globin gene regulation. EMSA performed with K562 nuclear extract and a [γ-32P] labeled γ-CACC probe (-155 to -132 relative to the γ-globin cap site) produced three DNA-protein complexes; the addition of KLF4 or CBP antibody resulted in a marked decrease in intensity of all complexes suggesting these factors bind the γ-CACC element. ChIP assay demonstrated 10-fold and 20-fold chromatin enrichment with KLF4 and CBP antibody respectively (p<0.001) confirming in vivo binding at the γ-CACC region. Lastly, co-immunoprecipitation established protein-protein interaction between KLF4 and CBP in K562 cells. Future studies will investigate the role of CBP in KLF4-mediated γ-globin regulation which will provide molecular targets for fetal hemoglobin induction and treatment of sickle cell anemia and β-thalassemia. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 353-353 ◽  
Author(s):  
Kenneth R Peterson ◽  
Flavia C Costa ◽  
Halyna Fedosyuk ◽  
Renee Neades ◽  
Johana Bravo de los Rios ◽  
...  

Abstract Abstract 353 Sickle cell disease (SCD) impacts one of 400 African-Americans born each year. Augmentation of fetal hemoglobin (HbF) levels is widely accepted as the most effective method for treating SCD, but hydroxyurea (HU) is currently the only approved drug that increases HbF. Thus, there is a need for the development of new therapies for this disease, including the identification of transcriptional activators that specifically up-regulate γ-globin (HbF). Developmental regulation of human β-like globin gene switching is controlled by several parameters, including cis- and trans-acting transcriptional determinants. Understanding the mechanisms underlying control of globin gene expression, particularly those involved in activation of γ-globin expression (HbF) is important for developing new treatments for SCD. Metal-responsive transcription factor-1 (MTF-1) is a key regulator of zinc metabolism in higher eukaryotes that controls the metal-inducible expression of metallothioneins and a number of other genes directly involved in the intracellular sequestration and efflux transport of zinc. Previous studies demonstrated that MTF-1 plays an essential role in liver development and that MTF-1-deficient mice display an anemic phenotype, suggesting a role for MTF-1 in hematopoiesis. In our study, when murine MTF-1 was expression was enforced, we observed a 5-fold increase in γ-globin expression in K562 cells. We also demonstrated increased γ-globin expression in adult blood from MTF-1 human β-globin locus yeast artificial chromosome (β-YAC) bi-transgenic (bigenic) mouse lines at the mRNA level by quantitative real-time RT-PCR (qPCR) and at the protein level by FACS analysis. Lastly, γ-globin gene expression was induced 12-fold in bone marrow cells (BMCs) derived from these bigenic mice compared to BMCs derived from β-YAC-only mice, and 3-fold after 6 hours of zinc treatment in β-YAC-only BMCs. Corroborative studies including zinc-deficient and zinc replete diets in β-YAC mice and erythroid-specific MTF-1 loss-of-function in loxP-flanked-MTF-1 LCR-β-globin promoter-Cre β-YAC mice further support a role for MTF-1 in g-globin gene expression. Chromatin immunoprecipitation (ChIP) analysis did not show recruitment of MTF-1 to any γ-globin gene-proximal metal response elements (MREs), the DNA motif that MTF-1 binds to control zinc metabolism genes. However, GATA-2 co-immunoprecipitated with MTF-1 in MTF-1 β-YAC BMCs, but not in β-YAC-only BMCs, suggesting that reactivation of γ-globin expression by MTF-1 might be mediated by a MTF-1-GATA-2 protein complex. ChIP experiments indicated that MTF-1 and GATA-2 co-occupy the same sites in the γ-globin promoter. Two of the stronger co-recruitment regions contain not only GATA sites, but also non-canonical MREs that vary by 1 or 2 bp from the canonical 7 bp MRE core. Interestingly, GATA-2 was induced 2-fold in adult blood of MTF-1 β-YAC mice, and also 3.5-fold in MTF-1 β-YAC BMCs treated with zinc for 6 hours. Our data suggest that activation of γ-globin by MTF-1 is mediated by protein-protein interaction with GATA-2 and that this multi-protein complex is targeted to GATA sites located in the γ-globin gene-promoters via binding of the GATA-2 protein. In a previous study we identified testis-specific protein Y-like 1 (TSPYL1) as a candidate gene involved in activation of γ-globin (de Andrade et al., 2006, Blood Cells, Mol. & Dis. 37:82). TSPYL1 mRNA level was increased 2–5 fold in deletional hereditary persistence of fetal hemoglobin (HPFH-2) subjects and decreased in a carrier of the Sicilian δβ-thalassemia trait. TSPYL1 is a transcription factor that is a member of the nucleosome assembly protein (NAP) family. TSPYL1 is not a DNA-binding protein; thus it exerts its effect through protein-protein interactions. When we enforced expression of human TSPYL1 in K562 cells an 11-fold induction of γ-globin expression was obtained. A reduction of γ-globin expression was observed following TSPYL1 knockdown in K562 cells. qPCR analysis of blood from TSPYL1 β-YAC bigenic mice showed that γ-globin expression was increased 4–12-fold. Taken together, our data strongly support the evidence that MTF-1 and TSPYL1 reactivate γ-globin expression in adult erythropoiesis. These two proteins represent potential new targets in strategies to reactivate γ-globin in hemoglobinopathies where higher levels of HbF would have beneficial effects. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2071-2071 ◽  
Author(s):  
Sara Gaudino ◽  
Raffaella Petruzzelli ◽  
Giovanni Amendola ◽  
Raffaele Sessa ◽  
Stella Puzone ◽  
...  

Abstract Abstract 2071 Impaired switching from fetal hemoglobin (HbF) to adult globin gene expression leads to hereditary persistence of fetal hemoglobin (HPFH) in adult life. This is of prime interest because elevated HbF levels ameliorate beta-thalassemia and sickle cell anemia. Fetal hemoglobin levels are regulated by complex mechanisms involving factors linked or not to the beta-globin gene locus. Recently, we reported an inverse relationship between Ggamma-globin gene (HBG2) and Cold Shock Domain Protein A (CSDA) expression levels. Based on mRNA differential display analysis, RNA interference and over-expression studies in K562 and primary erythroid cells we postulated that CSDA could contribute to regulate HBG2 expression. The putative mechanism by which CSDA modulates HBG2 expression was investigated in K562 cells by gene reporter assays on wild-type and mutant constructs of the HBG2 promoter region suspected to bind CSDA, providing experimental evidence that CSDA acts as repressor of HBG2 expression. Furthermore, chromatin immunoprecipitation (ChIP) analysis on K562 cells showed that CSDA interacts in vivo with this promoter region. In this way we were able to demonstrate that CSDA modulates HBG2 expression at least in part at the transcriptional level (Petruzzelli R et al, Br J Haematol 2010). The CSDA gene is located at position 12p13.1 and comprises 10 exons. The C-terminus (exons 6–9) is involved in protein-protein interactions. Alternative splicing of exon 6 results in two main isoforms, namely CSDA isoform a and isoform b, which show different C-terminal domains, potentially able to take part to specific protein complexes. We found that expression levels of CSDA isoform a were reduced in HPFH patients respect to isoform b. These findings suggested that isoform a could be much more involved in repression of HBG2 expression compared to isoform b. To identify putative CSDA interactors, we over-expressed these two FLAG-tagged CSDA isoforms in K562 cells. Western-blot analysis on proteins immunoprecipitated with a FLAG antibody revealed the presence of NF-kB p50 and p65 subunits and histone deacethylase 2 (HDAC2) only in samples co-immunoprecipitated with CSDA isoform a, but not with isoform b (Fig. 1). By ChIP assays with antibodies against p65, p50 and HDAC2, we demonstrated that both the NF-kB p50-p65 heterodimer and HDAC2 interact with the –200 bp region of the HBG2 promoter containing the CSDA binding site (Fig. 2). To examine the role of NF-kB and histone deacetylases on the transcriptional repression of HBG2 expression, we treated K562 cells with the proteasome inhibitor bortezomib which blocks the nuclear traslocation and transcriptional activity of the NF-kB p65-p50 complex or with the histone deacetylase inhibitor trichostatin A (TSA). Quantitative analysis by Real Time PCR showed that HBG2 expression increased following either bortezomib or TSA treatments. Furthermore, by ChIP analysis we were able to demonstrate that knock-down of CSDA abolished these interactions. To investigate if treatment with bortezomib or TSA affects the histone acetylation levels at the -200 bp region of the HBG2 promoter, we performed ChIP assays in K562 cells using an anti-acetyl-H3 antibody. Results indicated that both these drugs induces a considerable increase in H3 acetylation levels at the -200 bp region of the HBG2 promoter (Fig. 3). Taken altogether these data indicate that NF-kB and HDAC2 interact with CSDA to form a multiprotein complex which take part to the regulation of HBG2 expression by modulating local chromatin conformation. Furthermore, our study contributes to better define the role played by CSDA in fetal globin gene expression and shed novel light on the molecular mechanisms involved in globin gene switching. Disclosures: No relevant conflicts of interest to declare.


2000 ◽  
Vol 20 (20) ◽  
pp. 7662-7672 ◽  
Author(s):  
Wenlai Zhou ◽  
David R. Clouston ◽  
Xi Wang ◽  
Loretta Cerruti ◽  
John M. Cunningham ◽  
...  

ABSTRACT The stage selector protein (SSP) is a heteromeric complex involved in preferential expression of the human γ-globin genes in fetal-erythroid cells. We have previously identified the ubiquitous transcription factor CP2 as a component of this complex. Using the protein dimerization domain of CP2 in a yeast two-hybrid screen, we have cloned a novel gene, NF-E4, encoding the tissue-restricted component of the SSP. NF-E4 and CP2 coimmunoprecipitate from extract derived from a fetal-erythroid cell line, and antiserum to NF-E4 ablates binding of the SSP to the γ promoter. NF-E4 is expressed in fetal liver, cord blood, and bone marrow and in the K562 and HEL cell lines, which constitutively express the fetal globin genes. Enforced expression of NF-E4 in K562 cells and primary erythroid progenitors induces endogenous fetal globin gene expression, suggesting a possible strategy for therapeutic intervention in the hemoglobinopathies.


Biomolecules ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 755
Author(s):  
Nur Atikah Zakaria ◽  
Md Asiful Islam ◽  
Wan Zaidah Abdullah ◽  
Rosnah Bahar ◽  
Abdul Aziz Mohamed Yusoff ◽  
...  

Thalassemia, an inherited quantitative globin disorder, consists of two types, α– and β–thalassemia. β–thalassemia is a heterogeneous disease that can be asymptomatic, mild, or even severe. Considerable research has focused on investigating its underlying etiology. These studies found that DNA hypomethylation in the β–globin gene cluster is significantly related to fetal hemoglobin (HbF) elevation. Histone modification reactivates γ-globin gene expression in adults and increases β–globin expression. Down-regulation of γ–globin suppressor genes, i.e., BCL11A, KLF1, HBG-XMN1, HBS1L-MYB, and SOX6, elevates the HbF level. β–thalassemia severity is predictable through FLT1, ARG2, NOS2A, and MAP3K5 gene expression. NOS2A and MAP3K5 may predict the β–thalassemia patient’s response to hydroxyurea, a HbF-inducing drug. The transcription factors NRF2 and BACH1 work with antioxidant enzymes, i.e., PRDX1, PRDX2, TRX1, and SOD1, to protect erythrocytes from oxidative damage, thus increasing their lifespan. A single β–thalassemia-causing mutation can result in different phenotypes, and these are predictable by IGSF4 and LARP2 methylation as well as long non-coding RNA expression levels. Finally, the coinheritance of β–thalassemia with α–thalassemia ameliorates the β–thalassemia clinical presentation. In conclusion, the management of β–thalassemia is currently limited to genetic and epigenetic approaches, and numerous factors should be further explored in the future.


Blood ◽  
2015 ◽  
Vol 126 (16) ◽  
pp. 1930-1939 ◽  
Author(s):  
Aline Renneville ◽  
Peter Van Galen ◽  
Matthew C. Canver ◽  
Marie McConkey ◽  
John M. Krill-Burger ◽  
...  

Key Points EHMT1/2 inhibition increases human γ-globin and HbF expression, as well as mouse embryonic β-globin gene expression. EHMT1/2 inhibition decreases H3K9Me2 and increases H3K9Ac at the γ-globin gene locus in adult human erythroid cells.


Blood ◽  
1997 ◽  
Vol 90 (1) ◽  
pp. 421-427 ◽  
Author(s):  
Delia C. Tang ◽  
David Ebb ◽  
Ross C. Hardison ◽  
Griffin P. Rodgers

Abstract Hemoglobin A2 (HbA2 ), which contains δ-globin as its non–α-globin, represents a minor fraction of the Hb found in normal adults. It has been shown recently that HbA2 is as potent as HbF in inhibiting intracellular deoxy-HbS polymerization, and its expression is therefore relevant to sickle cell disease treatment strategies. To elucidate the mechanisms responsible for the low-level expression of the δ-globin gene in adult erythroid cells, we first compared promoter sequences and found that the δ-globin gene differs from the β-globin gene in the absence of an erythroid Krüppel-like factor (EKLF ) binding site, the alteration of the CCAAT box to CCAAC, and the presence of a GATA-1 binding site. Second, serial deletions of the human δ-globin promoter sequence fused to a luciferase (LUC) reporter gene were transfected into K562 cells. We identified both positive and negative regulatory regions in the 5′ flanking sequence. Furthermore, a plasmid containing a single base pair (bp) mutation in the CCAAC box of the δ promoter, restoring the CCAAT box, caused a 5.6-fold and 2.4-fold (P &lt; .05) increase of LUC activity in transfected K562 cells and MEL cells, respectively, in comparison to the wild-type δ promoter. A set of substitutions that create an EKLF binding site centered at −85 bp increased the expression by 26.8-fold and 6.5-fold (P &lt; .05) in K562 and MEL cells, respectively. These results clearly demonstrate that the restoration of either an EKLF binding site or the CCAAT box can increase δ-globin gene expression, with potential future clinical benefit.


Blood ◽  
1982 ◽  
Vol 59 (4) ◽  
pp. 738-746 ◽  
Author(s):  
BL Tonkonow ◽  
R Hoffman ◽  
D Burger ◽  
JT Elder ◽  
EM Mazur ◽  
...  

Abstract The human leukemia cell line, K562, produces embryonic and fetal hemoglobins and glycophorin A, proteins normally associated only with erythroid cells. Hemoglobin accumulation is enhanced by exposure of the cells to 0.05 mM hemin. We have examined K562 cells before and after exposure to hemin to determine whether expression of these erythroid proteins was shared by all cells or confined to specific subpopulations. Globin gene expression was examined by quantitation of globin mRNA sequences, using a 3H-globin cDNA molecular hybridization probe. Constitutive cells produced globin mRNA, the content of which was increased 3–4-fold by hemin. Cell-to-cell distribution of globin mRNA was determined by in situ hybridization of 3H-globin cDNA to constitutive and hemin-treated K562 cells. Virtually all cells in the culture exhibited grain counts above background, indicating globin gene expression by all cells, rather than a confined subpopulation. Virtually all hemin-treated cells had 3–5-fold higher grain counts, indicating uniformly increased globin gene expression. The glycophorin content of K562 cells was estimated by fluorescence-activated cell sorting (FACS) of cells labeled with fluorescein-labeled antiglycophorin antiserum. The vast majority of constitutive cells contained glycophorin, but exhibited to apparent increase in glycophorin accumulation after hemin exposure. Thus, glycophorin and globin genes exhibited differential responses to hemin. These differences could reflect normal differences in the patterns of specialized gene expression in stem cells. Alternatively, different aberrations of gene expression could be occurring in response to the determinants of the neoplastic properties of K562.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2702-2702 ◽  
Author(s):  
Laure Moutouh de Parseval ◽  
Helen Brady ◽  
Dominique Verhelle ◽  
Laura G. Corral ◽  
Emilia Glezer ◽  
...  

Abstract Clinical trial results have demonstrated that lenalidomide (Revlimid®) reduces or even eliminates the need for red blood cell transfusions in some anemic myelodysplastic patients. We have examined whether lenalidomide and Actimid™, members of a new class of immunomodulatory drugs (IMiDs®), which are currently under evaluation for the treatment of hematological cancers could regulate erythropoiesis and hemoglobin synthesis. For this purpose, we used an in vitro culture model to differentiate human erythroid progenitors from bone marrow or peripheral blood CD34+ cells. We demonstrate that lenalidomide and AztimidTM modulate erythropoiesis and increase proliferation of immature erythroid cells. In addition to the regulation of erythroid differentiation, lenalidomide and ActimidTM are potent inducers of fetal hemoglobin. Unlike other inducers of fetal hemoglobin such as 5-aza-cytidine that are cytotoxic, IMiDs® promoted survival of erythroblast cultured with known cytotoxic drug. Gene expression profiling of erythroid differentiated cells showed that IMiDs® regulate specific erythroid transcription factors and genes that participate in hemoglobin synthesis, and genes invoved in cell cycle and cellular differentiation. Globin gene expression is controlled by IMiDs® during erythroid differentiation by inducing fetal hemoglobin synthesis. Our results support the hypothesis that IMiDs® restore effective erythropoiesis in myelodysplastic patients and protect erythroid cells from the cytotoxic effect of chemotherapeutic agents. In conclusion, IMiDs® may represent an interesting new therapy for cancer-related anemia and β-hemoglobinopathies.


Sign in / Sign up

Export Citation Format

Share Document