HCD122, an Antagonist Human Anti-CD40 Monoclonal Antibody, Enhances Efficacy of CHOP in Tumor Xenograft Model of Human Diffuse Large B-Cell Lymphoma.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 528-528 ◽  
Author(s):  
Mohammad Luqman ◽  
Ssucheng J. Hsu ◽  
Matthew Ericson ◽  
Sha Klabunde ◽  
Seema Kantak

Abstract HCD122 (formerly known as CHIR-12.12), is a fully human anti-CD40 monoclonal antibody (mAb) currently in Phase I clinical trials for treatment of chronic lymphocytic leukemia (CLL) and multiple myeloma (MM). An IgG1 antibody selected for its potency as an antagonist of the CD40 signaling pathway, HCD122 both inhibits CD40/CD40L-stimulated growth of lymphoma cells ex vivo, and mediates highly effective Antibody Dependent Cell-mediated Cytotoxicity (ADCC) in vitro. As a single agent, HCD122 exhibits potent anti-tumor activity in vivo, in preclinical models of MM, Hodgkin’s lymphoma, Burkitt’s lymphoma, mantle cell lymphoma and diffused large B-cell lymphoma (DLBCL). Although several therapeutic antibodies approved for treatment of Non-Hodgkin’s Lymphoma have clinical activity as single agents, combining these antibodies with standard-of-care chemotherapeutic regimens such as CHOP (cytoxan, vincristine, doxorubicin and prednisone) is proving optimal for both increasing response rates and extending survival, and antibodies currently in clinical development are likely to be used in combination therapies in the future. Therefore the studies reported here examine the effects of combining HCD122 with CHOP, the standard for treatment of high grade NHL, in in vitro and in vivo models of DLBCL. In the xenograft RL model of DLBCL, HCD122 administered intraperitoneally weekly at 1 mg/kg as a single agent, or in combination with CHOP (H-CHOP), and CHOP alone all significantly reduced tumor growth at day 25 when compared to treatment with huIgG1 control antibody (P<0.001). However, tumor growth delay (time to reach tumor size of 500 mm3) was significantly longer for H-CHOP (17.5 days), than for CHOP (8 days) or HCD122 (6 days) (p < 0.001). No toxicity was observed with the H-CHOP combination. Interestingly, at the end of the study (day 35), reduction in tumor growth was significantly greater in the treatment group that received H-CHOP than the groups that received either 10 mg/kg Rituxan plus CHOP (R-CHOP) (p < 0.05) or CHOP alone (p < 0.001). These data show that in this model, treatment with the combination H-CHOP results in greater anti-tumor efficacy than with either modality alone or R-CHOP. We have observed that in vitro, exposure to CD40 Ligand (CD40L) results in aggregation of DLBCL cells, and postulate that interfering with the ability of cancer cells to adhere and interact with each other and their microenvironment may potentiate the effect of chemotherapeutics. To elucidate the mechanism by which the combination of HCD122 and CHOP enhanced efficacy in vivo, we developed an in vitro system to examine the effects of HCD122 on the expression of adhesion molecules in the RL and SU-DHL-4 cell lines. In these studies, HCD122 inhibited CD40L-induced expression of CD54, CD86 and CD95 in both cell lines, as well as aggregation of SU-DHL-4 cells. The combined effect of each of the components of CHOP with HCD122 in three-dimensional spheroid cultures is currently under investigation. These data provide a therapeutic rationale for combination of HCD122 with CHOP in DLBCL clinical trials.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2406-2406 ◽  
Author(s):  
Milena Pervan ◽  
Jeffrey Calimlim ◽  
Dan Matso ◽  
Jonathan W. Said ◽  
William H. McBride ◽  
...  

Abstract Chemotherapy-resistant diffuse large B-cell lymphomas (DLBCL) pose an unresolved clinical problem and most patients die of their disease within months. The goal of this study was to test a novel, non-chemotherapy containing regimen for Non Hodgkin’s lymphomas, including DLBCL, by combining the proteasome inhibitor bortezomib (PS-341, VELCADE®) with radio-immunotherapy using ibritumomab tiuxetan (Zevalin™). Previously, we have shown that the combination of bortezomib and rituximab is an active and at least additive regimen in an in vitro and in vivo DLBCL model. These data supported an ongoing clinical trial using this combination in patients with low grade NHL. In addition, Pervan et al. identified the proteasome as a novel, sensitive target for ionizing radiation (Mol Cancer Res. 2005 (7):381–90), providing further rationale for this combination study. The combination treatment was evaluated in vivo in a SCID diffuse large B-cell lymphoma model. Bortezomib treatment did not alter the CD20 expression levels of SUDHL-16 cells in vitro. MMT assays showed an additive effect of bortezomib and gamma radiation on SUDHL-16 cell proliferation. In preliminary experiments, we identified the maximal tolerated dose of ibritumomab tiuxetan in our mouse model as 50 μCi/mouse. 2x106 SUDHL-16 cells injected s.q. in the flank resulted in local tumor growth within 4 weeks. When tumors became palpable, animals were stratified in 4 different treatment groups of 12 mice each. Mice received i.v. injections of either diluent, single agent bortezomib, single agent ibritumomab tiuxetan, or the combination of both. Ibritumomab tiuxetan was injected once i.v. at a dose of 20 μCi /mouse. Bortezomib was given i.v. as single dose of 0.01 mg/mouse. The combined treatment group received i.v. bortezomib as a radio-sensitizer 3 hrs prior to the injection of ibritumomab tiuxetan. All treatment schedules delayed tumor growth compared with controls. After 16 days of treatment, bortezomib reduced tumor progression by 52%, ibritumomab tiuxetan by 69%, and the combination treatment by 91%. Selected mice were sacrificed at day two and their tumors studied for potential immediate therapeutic effects. The Y90 content of tumors and normal tissues was measured and demonstrated targeting of Y90 to the xenograft. The tumors of the control and treatment groups did not differ by microscopic morphological appearance. In situ Tunel assays did not reveal increased apoptosis at treatment day two. In summary, bortezomib as a radio-sensitizer in combination with ibritumomab tiuxetan is an active and at least additive regimen in an in vivo DLBCL model.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2519-2519 ◽  
Author(s):  
Ssucheng J. Hsu ◽  
Lin A. Esposito ◽  
Sharon L. Aukerman ◽  
Seema Kantak ◽  
Amer M. Mirza

Abstract CD40, a member of the tumor necrosis factor receptor family, is expressed in all human B-cell malignancies and engagement by the CD40 ligand (CD40L) is important for both cell proliferation and cell survival. CD40L has been shown to be co-expressed with CD40 in neoplastic B-cells from Chronic Lymphocytic Leukemia (CLL) and Non-Hodgkins Lymphoma (NHL), suggesting the importance of an autocrine CD40/CD40L loop in these malignancies. HCD122 (formerly known as CHIR-12.12) is a fully human, highly potent, IgG1 antagonist anti-CD40 monoclonal antibody (mAb) that blocks CD40/CD40L interactions in vitro and also mediates ADCC. Previous studies showed that HCD122 can mediate ADCC in vitro and has anti-proliferative and anti-tumor activities as a single agent in CLL, MM, and Burkitts Lymphoma in vitro and in vivo. In this study, the activity of HCD122 on a subtype of NHL, Diffuse Large B-Cell Lymphoma (DLBCL) was examined. The DLBCL derived cell lines, RL and SU-DHL-4, were selected for this study based upon in vivo characterization as well as their sensitivity to Rituximab as reported in the literature. These cell lines were subsequently confirmed for the expression of CD40 and CD20 by flow cytometry. The in vivo anti-tumor effects of HCD122 as single agent was demonstrated in these two xenograft models and was compared to Rituximab, an anti-CD20 antibody therapeutic currently approved for the treatment of relapsed or refractory, low-grade or follicular, NHL. HCD122 when administered intraperitoneally weekly at 1 mg/kg significantly reduced tumor growth with a tumor growth inhibition (TGI) of 85.5% (P<0.01) in the RL model. At the same dose and schedule in the RL model, TGI achieved with Rituximab was 31.7% (P>0.05). In the SU-DHL-4 model, an 85% TGI (P<0.01) was observed at the 1 mg/kg dose of HCD122. In comparison, Rituximab at this dose elicited a 57.6% TGI (P<0.05). Additionally, the downstream CD40/CD40L signal transduction pathways were also examined in order to elucidate the molecular mechanism underlying the HCD122-mediated effects in DLBCL. Taken together, these results support the clinical development of HCD122 for the treatment of DLBCL. Currently HCD122 is in Phase I trials for treatment of CLL and MM.


2020 ◽  
Author(s):  
Su Yao ◽  
Tairan Guo ◽  
Fen Zhang ◽  
Yu Chen ◽  
Fangping Xu ◽  
...  

Abstract Background: F-box and WD repeat domain-containing 7 (Fbw7) is an ubiquitin ligase and tumor suppressor which targets a variety of oncogenic proteins for proteolysis. We previously reported that Fbw7 regulates apoptosis in diffuse large B-cell lymphoma (DLBCL) through Fbw7-mediated ubiquitination of Stat3. However, the mechanism by Fbw7-mediated tumor metabolism remains undefined. We examined the function of Fbw7 for tumor metabolism and progression in DLBCL.Methods: The effect of Fbw7 overexpression on Lactate Dehydrogenase A (LDHA)-related tumor metabolism was explored in activated B-cell (ABC) like DLBCL. And Fbw7-mediated expression of LDHA in DLBCL was detected by immunoprecipitation for protein interaction, ubiquitination assay, western blotting and mRNA qualitative analyses. In vitro and in vivo studies were done to measure the function of the Fbw7-mediated LDHA/lactate/miR-223 axis in DLBCL progression.Results: We demonstrated that the ubiquitin-ligase Fbw7 played a key role in LDHA-related metabolism. As LDHA and its catalytic lactate were critical for tumor growth and progression in ABC-DLBCL, our results demonstrated that Fbw7 could interact with LDHA to trigger its ubiquitination and degradation, and lactate negatively regulated Fbw7 via inducing the expression of miR-223, which targeted Fbw7 3’-UTR to inhibit its expression. In vivo and in vitro studies revealed that miR-223 promoted tumor growth and that the effects of miR-223 on tumor growth were primarily related to the inhibition of Fbw7-mediated LDHA’s ubiquitination. Conclusions: Our study uncovers a positive functional loop consisting of a Fbw7-mediated LDHA/lactate/miR-223 axis, which may support the future ABC-DLBCL therapy by targeting LDHA-related inhibition.


2020 ◽  
Vol 52 (4) ◽  
pp. 401-410
Author(s):  
Mengyu Xi ◽  
Wan He ◽  
Bo Li ◽  
Jinfeng Zhou ◽  
Zhijian Xu ◽  
...  

Abstract Diffuse large B-cell lymphoma (DLBCL) is the most common category and disease entity of non-Hodgkin lymphoma. Osalmide and pterostilbene are natural products with anticancer activities via different mechanism. In this study, using a new synthetic strategy for the two natural products, we obtained the compound DCZ0801, which was previously found to have anti-multiple myeloma activity. We performed both in vitro and in vivo assays to investigate its bioactivity and explore its underlying mechanism against DLBCL cells. The results showed that DCZ0801 treatment gave rise to a dose- and time-dependent inhibition of cell viability as determined by CCK-8 assay and flow cytometry assay. Western blot analysis results showed that the expression of caspase-3, caspase-8, caspase-9 and Bax was increased, while BCL-2 and BCL-XL levels were decreased, which suggested that DCZ0801 inhibited cell proliferation and promoted intrinsic apoptosis. In addition, DCZ0801 induced G0/G1 phase arrest by downregulating the protein expression levels of CDK4, CDK6 and cyclin D1. Furthermore, DCZ0801 exerted an anti-tumor effect by down-regulating the expressions of p-PI3K and p-AKT. There also existed a trend that the expression of p-JNK and p-P38 was restrained. Intraperitoneal injection of DCZ0801 suppressed tumor development in xenograft mouse models. The preliminary metabolic study showed that DCZ0801 displayed a rapid metabolism within 30 min. These results demonstrated that DCZ0801 may be a new potential anti-DLBCL agent in DLBCL therapy.


2019 ◽  
Vol 116 (34) ◽  
pp. 16981-16986 ◽  
Author(s):  
Claudio Scuoppo ◽  
Jiguang Wang ◽  
Mirjana Persaud ◽  
Sandeep K. Mittan ◽  
Katia Basso ◽  
...  

To repurpose compounds for diffuse large B cell lymphoma (DLBCL), we screened a library of drugs and other targeted compounds approved by the US Food and Drug Administration on 9 cell lines and validated the results on a panel of 32 genetically characterized DLBCL cell lines. Dasatinib, a multikinase inhibitor, was effective against 50% of DLBCL cell lines, as well as against in vivo xenografts. Dasatinib was more broadly active than the Bruton kinase inhibitor ibrutinib and overcame ibrutinib resistance. Tumors exhibiting dasatinib resistance were commonly characterized by activation of the PI3K pathway and loss of PTEN expression as a specific biomarker. PI3K suppression by mTORC2 inhibition synergized with dasatinib and abolished resistance in vitro and in vivo. These results provide a proof of concept for the repurposing approach in DLBCL, and point to dasatinib as an attractive strategy for further clinical development in lymphomas.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3004-3004
Author(s):  
Yulian Xu ◽  
Lei Jiang ◽  
Rachel R. Fang ◽  
Jeff Xiwu Zhou ◽  
Herbert Morse

Abstract IRF8 is a transcription factor with a critical role in B lymphocyte development and biological functions. Although it has been reported that IRF8 is highly expressed in human diffuse large B-cell lymphoma (DLBCL) and the translocation of IRF8-IgH loci occurs in DLBCL, little information is available regarding the function and mechanisms for the role of IRF8 in DLBCL. In this study, by using several human DLBCL cell lines with shRNA-mediated decrease in IRF8 expression levels, we found that the loss of IRF8 significantly reduced the proliferation of lymphoma cells (Figure 1). Mechanistically, decreasing the levels of IRF8 led to a decrease in p38 and ERK phosphorylation (Figure 2), molecular events critical for B cell proliferation. Furthermore, using a xenograft lymphoma mice model, we found that the loss of IRF8 significantly inhibited the growth of lymphomas in vivo (n=5 for each group) (Figure 3). Analysis of public available data also suggested that the expression levels of IRF8 mRNA in human DLBCL tissues were inversely correlated patientsÕ overall survival time. Taken together, this study showed that IRF8 may play an oncogenic role in human DLBCL by promoting cell proliferation. Figure 1. Loss of IRF8 decreased the proliferation of DLBCL cells in vitro. Figure 1. Loss of IRF8 decreased the proliferation of DLBCL cells in vitro. Figure 2. Loss of IRF8 decreased the phosphorylation of p38 and ERK in DLBCL cells. Figure 2. Loss of IRF8 decreased the phosphorylation of p38 and ERK in DLBCL cells. Figure 3. Loss of IRF8 decreased the growth of DLBCL in vivo. Figure 3. Loss of IRF8 decreased the growth of DLBCL in vivo. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Author(s):  
Le Ma ◽  
Qiang Gong ◽  
Zelin Chen ◽  
Yu Wang ◽  
Xu Tan ◽  
...  

Abstract Background: The MYC-expressing diffuse large B-cell lymphoma (DLBCL) is one of the refractory lymphomas. The pathogenesis of MYC-expressing DLBCL is still unclear, and there is a lack of effective therapy. In this study, we have explored the clinical significance and the molecular mechanisms of transcription co-activator 4 (PC4) in MYC-expressing DLBCL.Methods: We investigated PC4 expression in 54 cases of DLBCL patients’ tissues and matched normal specimens, and studied the molecular mechanisms of PC4 in MYC-expressing DLBCL both in vitro and in vivo.Results: We reported for the first time that targeting c-Myc could induce autophagic cell death in MYC-expressing DLBCL cell lines. We next characterized that PC4 was an upstream regulator of c-Myc, and PC4 was overexpressed in DLBCL and was closely related to clinical staging, prognosis and c-Myc expression. Further, our in vivo and in vitro studies revealed that PC4 knockdown could induce autophagic cell death of MYC-expressing DLBCL. And inhibition of c-Myc mediated aerobic glycolysis and activation of AMPK / mTOR signaling pathway were responsible for the autophagic cell death induced by PC4 knockdown in MYC-expressing DLBCL. Through the CHIP, DLRTM and EMSA assay, we also found that PC4 exerted its oncogenic functions by directly binding to c-Myc promoters.Conclusions: PC4 exerts its oncogenic functions by directly binding to c-Myc promoters. Inhibition of PC4 can induce autophagic cell death of MYC-expressing DLBCL. Our study provides novel insights into the functions and mechanisms of PC4 in MYC-expressing DLBCL, and suggests that PC4 might be a promising therapeutic target for MYC-expressing DLBCL.


Author(s):  
Jiarui Liu ◽  
Yang Han ◽  
Shunfeng Hu ◽  
Yiqing Cai ◽  
Juan Yang ◽  
...  

Exosomes, nanometer-sized membranous vesicles in body fluids, have emerged as promising non-invasive biomarkers for cancer diagnosis. However, the function of exosomes in diffuse large B-cell lymphoma (DLBCL) remains elusive. This study aimed to investigate the role of exosomal miR-107 in lymphomagenesis and explore its clinical significance. In this study, decreased exosomal miR-107, miR-375-3p, and upregulated exosomal miR-485-3p were detected in the plasma of DLBCL patients and showed potential diagnostic value. Downregulated miR-107 expression was associated with advanced Ann Arbor stage, high IPI score, LDH, and β2-MG level in DLBCL patients. Overexpression of miR-107 by miR-107 Agomir significantly abrogated cell proliferation, induced apoptosis, and inhibited cell invasion in vitro, and repressed tumor growth in vivo. Moreover, the downregulation of miR-107 went in the opposite direction. The target genes of miR-107 were mainly enriched in the PI3K-Akt, Hippo, and AMPK signaling pathways. Notably, upregulated 14-3-3η (YWHAH) was suppressed by miR-107 in DLBCL, suggesting that miR-107 may restrain tumorigenesis by targeting 14-3-3η. In summary, this study unveils the function of miR-107 in lymphomagenesis, highlighting its potential as a diagnostic and prognostic indicator and as a new therapeutic target in the management of DLBCL.


2021 ◽  
Author(s):  
Yajing Xing ◽  
Weikai Guo ◽  
Min Wu ◽  
Jiuqing Xie ◽  
Dongxia Huang ◽  
...  

Abstract Background: The transcription factor B cell lymphoma 6 (BCL6) is an oncogenic driver of diffuse large B cell lymphoma (DLBCL) and mediates lymphomagenesis through transcriptional repression of its target genes by recruiting corepressors to its N-terminal broad-complex/tramtrack/bric-a-brac (BTB) domain. Blocking the protein-protein interactions of BCL6 and its corepressors has been proposed as an effective approach for the treatment of DLBCL. However, BCL6 inhibitors with excellent drug-like properties are rare. Hence, the development of BCL6 inhibitors is worth pursuing. Methods: We screened our internal chemical library by luciferase reporter assay and Homogenous Time Resolved Fluorescence (HTRF) assay and a small molecule compound named WK500B was identified. The binding affinity between WK500B and BCL6 was evaluated by surface plasmon resonance (SPR) assay and the binding mode of WK500B and BCL6 was predicted by molecular docking. The function evaluation and anti-cancer activity of WK500B in vitro and in vivo was detected by immunofluorescence assay, Real-Time Quantitative PCR, cell proliferation assay, cell cycle assay, cell apoptosis assay, enzyme-linked immunosorbent assay (ELISA), germinal centre (GC) formation mouse model and mouse xenograft model. Results: WK500B engaged BCL6 inside cells, blocked BCL6 repression complexes, reactivated BCL6 target genes, killed DLBCL cells and caused apoptosis as well as cell cycle arrest. In animal models, WK500B inhibited germinal centre formation and DLBCL tumor growth without toxic and side effects. Moreover, WK500B showed favourable pharmacokinetics and presented superior druggability compared to other BCL6 inhibitors. Conclusions: WK500B showed strong efficacy and favourable pharmacokinetics and presented superior druggability compared to other BCL6 inhibitors. So, WK500B is a promising candidate that could be developed as an effective orally available therapeutic agent for DLBCL.


Sign in / Sign up

Export Citation Format

Share Document