Requirements for Co-Stimulation in T-Cell Dependent and T-Cell Independent Re-Stimulation of FVIII-Specific Memory B Cells

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 238-238 ◽  
Author(s):  
Aniko Ginta Pordes ◽  
Christina Hausl ◽  
Peter Allacher ◽  
Rafi Uddin Ahmad ◽  
Eva M Muchitsch ◽  
...  

Abstract Memory B cells specific for factor VIII (FVIII) are critical for maintaining FVIII inhibitors in patients with hemophilia A. They are precursors of anti-FVIII antibody-producing plasma cells and are highly efficient antigen-presenting cells for the activation of T cells. The eradication of FVIII-specific memory B cells will be a prerequisite for any successful new approach to induce immune tolerance in patients with FVIII inhibitors. Little is known about the regulation of these cells. Previously we showed that ligands for toll-like receptors (TLR) 7 and 9 are able to re-stimulate FVIII-specific memory B cells in the absence of T-cell help. However, alternative “helper cells” such as dendritic cells are essential for providing help to memory B cells under such conditions. Based on these findings, we asked which co-stimulatory interactions are required for the restimulation of memory B cells in the presence of dendritic cells and ligands for TLR and whether these co-stimulatory interactions are the same as those required for the restimulation of memory B cells in the presence of activated T cells. We used spleen cells from hemophilic mice treated with human FVIII to generate highly purified populations of memory B cells, CD4+ T cells and dendritic cells. The required purity was achieved by a combination of magnetic bead separation and fluorescence-activated cell sorting. The memory B cell compartment was specified by the expression of CD19 together with IgG and the absence of surface IgM and IgD. Memory B cells were cultured in the presence of FVIII to stimulate their differentiation into anti-FVIII antibody-producing plasma cells. Different combinations of CD4+ T cells, ligands for TLR 7 and 9 and dendritic cells were added to the memory-B-cell cultures. Blocking antibodies and competitor proteins were used to specify the co-stimulatory interactions required for the re-stimulation of memory B cells in the presence of either CD4+ T cells or dendritic cells and ligands for TLR 7 and 9. Our results demonstrate that the blockade of B7-1 and B7-2 as well as the blockade of CD40L inhibit the re-stimulation of FVIII-specific memory B cells and their differentiation into anti-FVIII antibody-producing plasma cells in the presence of T-cell help. Similar requirements apply for the re-stimulation of memory B cells in the presence of dendritic cells and ligands for TLR 7 or 9. Dendritic cells in the absence of ligands for TLR are not able to provide help for the re-stimulation of memory B cells, which indicates that dendritic cells need to be activated. Furthermore, ligands for TLR 7 or 9 were not able to re-stimulate memory B cells in the complete absence of dendritic cells. Based on these results we conclude that dendritic cells activated by ligands for TLR 7 or 9 can substitute for activated CD4+ T cells in providing co-stimulatory help for memory-B-cell re-stimulation. CD40-CD40L interactions seem to be the most important co-stimulatory interactions for the re-stimulation of memory B cells, not only in the presence of activated CD4+ T cells but also in the presence of ligands for TLR and dendritic cells.

2004 ◽  
Vol 199 (4) ◽  
pp. 593-602 ◽  
Author(s):  
Barbara J. Hebeis ◽  
Karin Klenovsek ◽  
Peter Rohwer ◽  
Uwe Ritter ◽  
Andrea Schneider ◽  
...  

Humoral immunity is maintained by long-lived plasma cells, constitutively secreting antibodies, and nonsecreting resting memory B cells that are rapidly reactivated upon antigen encounter. The activation requirements for resting memory B cells, particularly the role of T helper cells, are unclear. To analyze the activation of memory B cells, mice were immunized with human cytomegalovirus, a complex human herpesvirus, and tick-born encephalitis virus, and a simple flavivirus. B cell populations devoid of Ig-secreting plasma cells were adoptively transferred into T and B cell–deficient RAG-1−/− mice. Antigenic stimulation 4–6 d after transfer of B cells resulted in rapid IgG production. The response was long lasting and strictly antigen specific, excluding polyclonal B cell activation. CD4+ T cells were not involved since (a) further depletion of CD4+ T cells in the recipient mice did not alter the antibody response and (b) recipient mice contained no detectable CD4+ T cells 90 d posttransfer. Memory B cells could not be activated by a soluble viral protein without T cell help. Transfer of memory B cells into immunocompetent animals indicated that presence of helper T cells did not enhance the memory B cell response. Therefore, our results indicate that activation of virus-specific memory B cells to secrete IgG is independent of cognate or bystander T cell help.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1155-1155 ◽  
Author(s):  
Aniko Ginta Pordes ◽  
Christina Hausl ◽  
Peter Allacher ◽  
Rafi U. Ahmad ◽  
Bernhard Baumgartner ◽  
...  

Abstract Memory B cells are essential for maintaining FVIII inhibitors in patients with hemophilia A. Using the murine E-17 model of hemophilia A, we showed previously that re-exposure to FVIII re-stimulates memory B cells very rapidly and drives their differentiation into antibody-producing plasma cells. Furthermore, we presented evidence that the re-stimulation of FVIII-specific memory B cells is regulated by the dose of FVIII used. Low doses re-stimulate memory B cells whereas high doses of FVIII inhibit this process and prevent the differentiation into anti-FVIII antibody-producing plasma cells. Both the re-stimulation and the inhibition can be modulated by triggering toll-like receptors (TLR) 7 and 9 with specific ligands that are typically found in microbial components derived from viruses or bacteria. Re-stimulation of FVIII-specific memory B cells in the presence of TLR ligands can even be observed in the absence of CD4+ helper T cells that are otherwise absolutely essential for this process. Based on these previous observations we asked whether the re-stimulation of FVIII-specific memory B cells in the absence of CD4+ helper T cells requires interaction with alternative “helper” cells that provide co-stimulatory signals to memory B cells. To address this question we used spleen cells obtained from hemophilic mice treated with FVIII to generate highly purified populations of memory B cells, CD4+ T cells and dendritic cells. The required purity of the different cell populations was achieved by a combination of magnetic bead separation and multi-color flow cytometric cell sorting. The memory B cell compartment was specified by the expression of CD19 together with surface IgG and the absence of surface IgM and IgD. Memory B cells were single-cell sorted and cultivated in micro-well cultures in the presence of FVIII to stimulate the in vitro differentiation into anti-FVIII antibody- producing plasma cells. Different combinations of CD4+ T cells, ligands for TLR 7 or 9 and dendritic cells were added to the micro-well cultures to find out which of the additives were required for the re-stimulation and differentiation of memory B cells. Neither FVIII alone nor any combination of FVIII and ligands for TLR 7 and 9 were able to re-stimulate highly purified memory B cells to differentiate into anti-FVIII antibody-producing plasma cells. The re-stimulation strictly depended on the presence of additional cells that could provide co-stimulation. These additional cells could be either activated CD4+ T cells or, alternatively, plasmacytoid dendritic cells activated by ligands for TLR 7 or 9. Some re-stimulation in the presence of activated plasmacytoid dendritic cells was even observed in the complete absence of FVIII. Based on our results we conclude that plasmacytoid dendritic cells that are activated by TLR ligands such as those expressed by infectious agents can replace CD4+ T cells in triggering the re-stimulation of memory B cells and their differentiation into antibody-producing plasma cells. Our findings provide important new insights into the regulation of memory-B-cell re-stimulation that need to be considered in the development of new therapeutic strategies for treating patients with FVIII inhibitors. Furthermore, our findings underscore the importance of environmental factors in the regulation of FVIII inhibitor development.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 84-84
Author(s):  
Juan Chen ◽  
Jocelyn A. Schroeder ◽  
Xiaofeng Luo ◽  
Robert R. Montgomery ◽  
Qizhen Shi

Abstract Development of inhibitory antibodies (inhibitors) against FVIII is the significant complication in protein replacement therapy for hemophilia A (HA). Currently, immune tolerance induction (ITI) with aggressive infusion of high-dose FVIII represents the only effective therapeutic approach for eradication of FVIII inhibitors and results in restoration of normal FVIII pharmacokinetics in inhibitor patients. Whether the use of FVIII products containing VWF will affect the efficacy of the ITI is still a debated issue in the treatment of inhibitor patients. In this study, we explored the impact of VWF on FVIII immune responses in HA with pre-existing anti-F8 immunity using both in vitro and in vivomodels. Since the FVIII immune response is CD4+ T cell dependent, we first investigated how VWF affects FVIII-primed CD4+ T cells in response to FVIII restimulation. To address this question, we used a T cell proliferation assay. FVIIInull (F8null) mice were immunized with recombinant human FVIII (rhF8) to induce inhibitor development. Splenocytes from primed mice were labeled with CellTrace™ Violet and cultured with rhF8 with or without rhVWF. Four days later, cells were analyzed by FACS to assess the daughter (proliferated) cell population. The percentage of daughter CD4+ T cells (14.0±7.5%) in the condition cultured with 1 U/ml of rhF8 was significantly higher than without rhF8 (3.7±1.7%, n=6). The daughter cells further increased to 21.5±10.3% when cells were incubated with 10 U/ml of rhF8. However, when rhVWF was added to the culture media in addition to rhF8, percentages of daughter CD4+ T cells were significantly decreased in both the 1 U/ml and 10 U/ml rhF8 treatment groups (10.4±7.1% and 15. 8±8.4%, respectively). To further explore how VWF affects the FVIII immune response, we analyzed cytokine profiles in T cell culture supernants using a multiplex ELISA assay. The levels of IFNg and IL10 in the groups cultured with rhF8 in the presence of rhVWF were significantly lower than in the groups cultured with rhF8 only. The levels of TNFa, IL4, IL5, and IL12 in the groups cultured with rhF8 together with rhVWF were not significantly different than those in rhF8 groups without VWF. These results demonstrated that VWF significantly suppresses rhF8-primed CD4+ T cell proliferation in response to rhF8 restimulation and the inhibition is via the Th1 pathway. In a setting of pre-existing anti-F8 immunity, how FVIII-specific memory B cells respond to FVIII-restimulation and mature to antibody secreting cells (ASCs) is the critical pathway in terms of the clinical efficacy of FVIII infusion. To investigate how VWF affects memory B cell maturation upon FVIII restimulation, we used ELISPOT-based assay. Splenocytes from rhF8-primed HA mice were used as the source to prepare F8-specific memory B cell pools. CD138+ cells were depleted and the remaining cells were used as a pool of memory B cells. To stimulate the maturation of F8-specific memory B cells into ASCs, memory B cell pools from primed F8null mice were cultured with rhF8 with or without rhVWF for 6 days. After culture, newly formed ASCs were assessed by the ELISPOT assay. There were 54.4±19.5 ASCs/106 cells when cells from memory B cell pool were cultured with 0.05 U/ml rhF8. In contrast, there was only 15.6±1.6 ASCs/106cells after the cells were cultured with rhF8 together with rhVWF, indicating that memory B cell maturation is suppressed in the presence of rhVWF. We then used an in vivo model to further evaluate the impact of VWF on the immunogenicity of FVIII in HA with pre-existing immunity. Since we are unable to mimic the human ITI in F8null mice, we transferred memory B cells from rhF8-primed F8null splenocytes into immunocompromised F8null mice followed by rhF8 immunization in the presence or absence of rhVWF. Blood samples were collected one week after immunization for analysis. The inhibitor titer in animals that received rhF8-primed memory B cell pool followed by rhF8 immunization was 45.9±63.0 BU/ml (n=11), which was significantly higher than the titer in animals immunized with rhF8 together with rhVWF (23.9±38.4, P<.01). These results demonstrate that VWF suppressed the anti-F8 memory response in vivo. In summary, our ex vivo and in vivo data demonstrated that VWF attenuates F8-primed CD4+T cells and memory B cells in response to rhF8 restimulation, suggesting that infusion of FVIII together with VWF might reduce anti-F8 memory responses in HA with inhibitors. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 118 (46) ◽  
pp. e2108157118
Author(s):  
Kerstin Narr ◽  
Yusuf I. Ertuna ◽  
Benedict Fallet ◽  
Karen Cornille ◽  
Mirela Dimitrova ◽  
...  

Chronic viral infections subvert protective B cell immunity. An early type I interferon (IFN-I)–driven bias to short-lived plasmablast differentiation leads to clonal deletion, so-called “decimation,” of antiviral memory B cells. Therefore, prophylactic countermeasures against decimation remain an unmet need. We show that vaccination-induced CD4 T cells prevented the decimation of naïve and memory B cells in chronically lymphocytic choriomeningitis virus (LCMV)-infected mice. Although these B cell responses were largely T independent when IFN-I was blocked, preexisting T help assured their sustainability under conditions of IFN-I–driven inflammation by instructing a germinal center B cell transcriptional program. Prevention of decimation depended on T cell–intrinsic Bcl6 and Tfh progeny formation. Antigen presentation by B cells, interactions with antigen-specific T helper cells, and costimulation by CD40 and ICOS were also required. Importantly, B cell–mediated virus control averted Th1-driven immunopathology in LCMV-challenged animals with preexisting CD4 T cell immunity. Our findings show that vaccination-induced Tfh cells represent a cornerstone of effective B cell immunity to chronic virus challenge, pointing the way toward more effective B cell–based vaccination against persistent viral diseases.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Kristian Assing ◽  
Christian Nielsen ◽  
Marianne Jakobsen ◽  
Charlotte B. Andersen ◽  
Kristin Skogstrand ◽  
...  

Abstract Background Germinal center derived memory B cells and plasma cells constitute, in health and during EBV reactivation, the largest functional EBV reservoir. Hence, by reducing germinal center derived formation of memory B cells and plasma cells, EBV loads may be reduced. Animal and in-vitro models have shown that IL-21 can support memory B and plasma cell formation and thereby potentially contribute to EBV persistence. However, IL-21 also displays anti-viral effects, as mice models have shown that CD4+ T cell produced IL-21 is critical for the differentiation, function and survival of anti-viral CD8+ T cells able to contain chronic virus infections. Case presentation We present immunological work-up (flow-cytometry, ELISA and genetics) related to a patient suffering from a condition resembling B cell chronic active EBV infection, albeit with moderately elevated EBV copy numbers. No mutations in genes associated with EBV disease, common variable immunodeficiency or pertaining to the IL-21 signaling pathway (including hypermorphic IL-21 mutations) were found. Increased (> 5-fold increase 7 days post-vaccination) CD4+ T cell produced (p < 0.01) and extracellular IL-21 levels characterized our patient and coexisted with: CD8+ lymphopenia, B lymphopenia, hypogammaglobulinemia, compromised memory B cell differentiation, absent induction of B-cell lymphoma 6 protein (Bcl-6) dependent peripheral follicular helper T cells (pTFH, p = 0.01), reduced frequencies of peripheral CD4+ Bcl-6+ T cells (p = 0.05), compromised plasmablast differentiation (reduced protein vaccine responses (p < 0.001) as well as reduced Treg frequencies. Supporting IL-21 mediated suppression of pTFH formation, pTFH and CD4+ IL-21+ frequencies were strongly inversely correlated, prior to and after vaccination, in the patient and in controls, Spearman’s rho: − 0.86, p < 0.001. Conclusions To the best of our knowledge, this is the first report of elevated CD4+ IL-21+ T cell frequencies in human EBV disease. IL-21 overproduction may, apart from driving T cell mediated anti-EBV responses, disrupt germinal center derived memory B cell and plasma cell formation, and thereby contribute to EBV disease control.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 38-38
Author(s):  
Christina Hausl ◽  
Rafi U. Ahmad ◽  
Maria Sasgary ◽  
Christopher B. Doering ◽  
Pete S. Lollar ◽  
...  

Abstract Inhibitory antibodies against factor VIII (FVIII) are the major complication experienced by hemophilia A patients treated with FVIII products. The most effective therapy to eradicate these antibodies is elevated doses of FVIII over a prolonged period. Despite clinical practice in using such protocols, nothing is known about the immunological mechanisms that cause the down-modulation of FVIII-specific immune responses and the induction of long-lasting immune tolerance against FVIII. Understanding the underlying mechanisms, however, would facilitate designing new therapeutic strategies. The re-stimulation of FVIII-specific memory responses after each dose of FVIII is probably the most important event in the maintenance of FVIII inhibitors in patients. Therefore, the eradication of these memory responses should be an essential step in the down-modulation of inhibitory antibodies and the induction of immune tolerance. We used a murine model of hemophilia A to answer the question whether FVIII-specific memory responses are sensitive to increasing doses of FVIII. In particular, we were interested in the differential effects of FVIII on memory-B-cell and memory-T-cell responses. For the analysis of FVIII-specific memory responses, we re-stimulated FVIII-specific memory B- and T-cells obtained from spleens of hemophilic mice treated with four doses of human FVIII or eight doses of murine FVIII as described (Sasgary et al.: Thromb Haemost2002; 87:266–72; Hausl et al.: Blood2004; 104:115–22). Our results show dose-dependent effects of FVIII on the re-stimulation of FVIII-specific memory B cells in vitro. Physiological concentrations of FVIII below 100 ng/ml re-stimulate memory B cells and induce their differentiation into anti-FVIII antibody-secreting plasma cells. Supra-physiological concentrations above 100 ng/ml, however, inhibit memory-B-cell re-stimulation. The inhibition of memory-B-cell re-stimulation is irreversible and seems to be due to an induction of apoptosis that is at least partly mediated by Fas-dependent mechanisms. Furthermore, the inhibition appears to be initiated by triggering the B-cell receptor (BCR) without the requirement of an excessive cross-linking of the BCR. The activation of FVIII-specific T cells is not affected by increasing doses of FVIII. We conclude that the induction of apoptosis in FVIII-specific memory B cells might be the first step in the induction of immune tolerance in hemophilia A patients with FVIII inhibitors who receive high doses of FVIII. The eradication of memory B cells would prevent their differentiation into antibody-secreting plasma cells and, moreover, might lead to a deficiency of effective antigen-presenting cells required for the re-stimulation of FVIII-specific memory T cells. The induction of regulatory T cells rather than effector T cells could be the consequence of this deficiency.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1157-1157 ◽  
Author(s):  
Christina Hausl ◽  
Rafi U. Ahmad ◽  
Bernhard Baumgartner ◽  
Hans Peter Schwarz ◽  
Hartmut Ehrlich ◽  
...  

Abstract The elimination of FVIII-specific memory B cells is an essential step in the design of new therapeutic strategies for the induction of immune tolerance in hemophilia A with FVIII inhibitors. Using a mouse model of hemophilia A we recently reported that low dose FVIII stimulates the differentiation of FVIII-specific memory B cells into antibody-secreting plasma cells whereas high dose FVIII inhibits this process. The inhibition of memory-B-cell re-stimulation is irreversible and seems to be due to an induction of apoptosis. Further understanding of the complex interactions that lead to either re-stimulation and differentiation of memory B cells or inhibition and eradication of these cells requires appropriate technologies for single-cell analysis and functional studies. We established a new technology for single-cell analysis and cell sorting of FVIII-specific murine memory B cells. A combination of magnetic bead separation and multi-color flow cytometry enabled us to analyze and purify FVIII-specific memory B cells obtained from hemophilic mice treated with FVIII. In a first step, we depleted undesirable cell populations (IgM+, IgD+, CD11c+, F4/80+, Gr1+ and CD49b+ cells) from total spleen cells by magnetic bead separation. In a second step, we used multicolor flow cytometry to exclude CD4+ T cells and analyze the FVIII-specific memory B cell compartment. This compartment was specified by staining the specific B-cell receptor with FVIII and anti-IgG antibodies. Frequencies of cells in this compartment ranged from 0.1–0.5% of total spleen cells in animals treated with 4 intravenous doses of FVIII, given at weekly intervals. We could not detect any FVIII-specific memory B cells in naïve mice. By means of single cell sorting we isolated FVIII-specific memory B cells for further functional studies. We were able to cultivate FVIII-specific memory B cells in microwell cultures in vitro and differentiate them into antibody-secreting plasma cells. The re-stimulation and differentiation of single-cell sorted memory B cells was strictly dependent on the presence of activated CD4+ T cells. CD4+ T cells obtained from naïve mice did not support the memory response. Furthermore, the re-stimulation and differentiation of memory B cells in the presence of activated CD4+ T cells did not require additional dendritic cells for antigen presentation. Obviously, memory B cells provide sufficient antigen presentation to CD4+ T cells to enable them to trigger the memory response. Our approach for single-cell analysis and purification of FVIII-specific memory B cells provides a new tool for tracking memory B cell populations in vivo and for directly analyzing the regulation of memory B cell function. It opens the field for future studies which should elucidate signals and molecules involved in activation or inhibition and eradication of FVIII-specific memory B cells. These activities will eventually lead to the identification of targets for the design of new treatment strategies for patients with FVIII inhibitors.


2014 ◽  
Vol 83 (1) ◽  
pp. 48-56 ◽  
Author(s):  
Rebecca A. Elsner ◽  
Christine J. Hastey ◽  
Nicole Baumgarth

CD4 T cells are crucial for enhancing B cell-mediated immunity, supporting the induction of high-affinity, class-switched antibody responses, long-lived plasma cells, and memory B cells. Previous studies showed that the immune response toBorrelia burgdorferiappears to lack robust T-dependent B cell responses, as neither long-lived plasma cells nor memory B cells form for months after infection, and nonswitched IgM antibodies are produced continuously during this chronic disease. These data prompted us to evaluate the induction and functionality ofB. burgdorferiinfection-induced CD4 TFHcells. We report that CD4 T cells were effectively primed and TFHcells induced afterB. burgdorferiinfection. These CD4 T cells contributed to the control ofB. burgdorferiburden and supported the induction ofB. burgdorferi-specific IgG responses. However, while affinity maturation of antibodies against a prototypic T-dependentB. burgdorferiprotein, Arthritis-related protein (Arp), were initiated, these increases were reversed later, coinciding with the previously observed involution of germinal centers. The cessation of affinity maturation was not due to the appearance of inhibitory or exhausted CD4 T cells or a strong induction of regulatory T cells.In vitroT-B cocultures demonstrated that T cells isolated fromB. burgdorferi-infected but notB. burgdorferi-immunized mice supported the rapid differentiation of B cells into antibody-secreting plasma cells rather than continued proliferation, mirroring the induction of rapid short-lived instead of long-lived T-dependent antibody responsesin vivo. The data further suggest thatB. burgdorferiinfection drives the humoral response away from protective, high-affinity, and long-lived antibody responses and toward the rapid induction of strongly induced, short-lived antibodies of limited efficacy.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4478-4478
Author(s):  
Anushruti Sarvaria ◽  
Ahmad Khoder ◽  
Abdullah Alsuliman ◽  
Claude Chew ◽  
Takuya Sekine ◽  
...  

The immunosuppressive function of IL10 producing regulatory B cells (Bregs) has been shown in several murine models of inflammation and autoimmune disease. However, there is a paucity of data regarding the existence of an equivalent regulatory B cell subset in healthy individuals and their potential role in the pathogenesis of chronic graft-versus-host disease (cGVHD) remains unknown. Here, we examined the functional regulatory properties of peripheral blood (PB)-derived human B cell subsets from healthy individuals. In addition, we carried out studies to explore their role in cGVHD, using B cells from patients following allogeneic stem cell transplantation (HSCT). We first determined whether human IL-10 producing B cells are enriched within any othe previously described human B cell subsets: CD19+IgM+CD27+ IgM memory, CD19+IgM-CD27+ switched memory, CD19+IgM+CD27- naive, and and transitional CD19+CD24hiCD38hi. Following in vitro stimulation with CD40 ligand, the majority of IL-10 producing B cells were found within the CD24hiCD38hi transitional and CD19+IgM+CD27+B cell subsets. We next assessed the regulatory properties of the PB-derived B cell subsets, by sort-purifying IgM memory (CD19+IgM+CD27+), switched memory (CD19+IgM-CD27+), naïve (CD19+IgM+CD27-) and transitional (CD19+CD24hiCD38hi) B cells from healthy controls, and cultured them 1:1 with autologous magnetic-bead purified CD4+ T cells. CD3/CD28 stimulated CD4+ T cells cultured with either CD19+IgM+CD27- naïve or CD19+IgM-CD27+ switched memory B cells proliferated to the same extent and produced equivalent amounts of IFN-γ to cultures containing CD4+ T cells alone. In contrast, culture of CD4+ T cells with IgM memory and transitional B cells significantly suppressed CD4+ T cell proliferation [median percent proliferating CD4+ T cells 52.5%; (33%-75%)] and 51% (25%-63%)], respectively when compared with CD3/CD28 stimulated CD4+ T cells (positive control) [89.5% (75%-92%], p=0.0001. The inhibitory effect of IgM memory and transitional B cells on CD4+ T cell proliferation was cell dose dependent with the highest suppression observed at a ratio of 1:1. These data suggest that human PB transitional and IgM memory B cells are endowed with regulatory function. We next examined if the in vitro suppressive effect of transitional and IgM memory B cells is mediated by regulatory T cells (Tregs). For this purpose, CD4+ T cells were depleted of CD127lo CD25hi CD4+ T cells by magnetic cell purification. B cell subsets were cultured with CD3/CD28 stimulated CD4+ CD25- T cells at a ratio of 1:1. IgM memory and transitional B cells were able to significantly suppress the proliferation and Th1 cytokine response by CD4+ CD25- T cells compared to cultures containing CD4+ CD25-T cells alone, indicating that the suppressive activity of Bregs is independent of Tregs. To further understand the underlying mechanims though which Bregs exert T-cell suppression, we used antibody blockade experiments and showed that this suppressive effect was mediated partially via the provision of IL-10, but not TGF-ß. Using transwell experiments, we further determined that the suppressive function of Bregs is also partly dependent on direct T cell/B cell contact. We next assessed whether the activity of Breg cells might be altered in patients with cGVHD. B cells from patients with cGVHD were refractory to CD40 stimulation and produced less IL-10 when compared to patients without cGVHD post-SCT and healthy controls, [1.02% (0.22-2.26) vs.1.72% (0.8-5.52) vs. 2.16 (1.3- 5.6), p=0.001]. Likewise, the absolute number of IL-10 producing B cells was significantly lower in cGvHD patients compared to patients without cGVHD and healthy controls (p=0.007), supporting both a qualitative and quantitative defect in IL-10 producing B cells in cGvHD. Our combined studies provide important new data defining the phenotype of B cell populations enriched in regulatory B cells in healthy humans and provide evidence for a defect in the activity of such cells in patients with cGVHD post-SCT. In association with previous reports showing defects in Treg cell activity in GVHD, our results suggest the existence of a broad range of deficiencies in immune regulatory cell function in cGvHD patients. * Both Anushruti Sarvaria and Ahmad K contributed equally. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 5289-5289 ◽  
Author(s):  
Georgiana Grigore ◽  
Martin Perez-Andres ◽  
Susana Barrena ◽  
Rosa Ana Rivas ◽  
Marcos González ◽  
...  

Abstract Introduction Management of B-cell chronic lymphocytic leukemia (CLL) is currently undergoing profound changes. Accordingly, new treatment options with an expected less toxicity than standard regimens are been explored. Recent results show that chemoimmunotherapy may improve the life expectancy of CLLpatients and has proven to be more efficient than chemotherapy alone in depleting malignant cells. Despite its efficacy, little is known about its precise immunomodulatory effects. Aim To evaluate the effects of chemoimmunotherapy with bendamustine plusrituximab (BR) on the distribution of normal residual leucocyte populations in peripheral blood (PB) from advanced-stage CLL patients, with special emphasis on maturation-associated B-cell subsets (immature, naïve, memory IgM/IgG/IgA and plasma cells). Material and Methods Distribution of PB neoplastic cells and residual normal immune cell subpopulations were analyzed in 72 CLL patients with advanced disease (Binet B/C), before therapy (M0) and after 1 course of BR (M1). The same analysis was repeated 3 months after completing treatment (M3) in 31/72 patients. PB leucocyte cell subsets were identified at each time-point by 8-color flow cytometry with monoclonal antibody reagents against CD3, CD4, CD5, CD8, TCRgd, CD19, CD20, CD27, CD38, CD45, CD56, sIgM, sIgA, sIgG, sIgLambda and sIgKappa. Results After the first BR course, absolute counts of all PB myeloid subsets were significantly decreased as compared to time M0, including neutrophils (2,744±1,830 vs 4,764±2,906 cells/uL, p<0.001), eosinophils (132±185 vs 215±245 cells/uL; p<0.001), basophils (37±28 vs 59±47 cells/uL, p<0.001), monocytes (334±280 vs 504±424 cells/uL, p=0.001) and dendritic cells (DCs, 41±40 vs 89±168 cells/uL, p=0.02), as well as NK cells (120±147 vs 550±599 cells/uL, p<0.001). At M3, all these populations remained decreased when compared to M0, but at similar levels to M1 (except for the absolute number of DCs, found to be increased vs. M1 -74±46 vs 41±40 cells/uL, p=0.008- and closer to M0). In turn, total T cells were reduced in M1 as compared to M0 values (818±655 vs 3,905±2,375 cells/uL, p<0.001), due to decreased numbers of CD4+ (424±376 vs 1,573±1,204 cells/uL, p<0.001), CD8+ (342±330 vs 1,334±1,218 cells/uL, p<0.001) and TCRgd (21±28 vs 141±289 cells/uL, p=0.001) T cells, leading to an increased CD4/CD8 ratio (1.8±1.3 vs 1.4±0.8, p=0.004). Also, decreased levels of CD4 (222±156 cells/uL), CD8 (501±544 cells/uL) and TCRgd (21±40 cells/uL) T cells were observed at time M3 vs. baseline values. No changes (p>0.05) were observed for CD8 and TCRgd for M3 vs. M1, while CD4+ T-cell numbers were significantly reduced (p=0.006), resulting in an inverted CD4/CD8 ratio (0.9±1.0 vs. 1.8±1.3, p=0.005) at the M3 time-point. As regards B cells, the absolute count of both neoplastic and normal B lymphocytes were significantly decreased at time M1 vs. M0 (3,363±9,353 vs 53,521±56,602 CLL cells/uL and 2±6 vs 58±107 normal B-cells/uL, p=0.006 and p<0.001, respectively). Within the normal residual B-cell compartment, we found significantly decreased numbers of immature (0.07±0.22 vs 6.55±21.64 cells/uL, p=0.01) and memory (1.3±14.7 vs 35.1±43.6 cells/uL, p<0.001) B cells -including sIgM (0.5±2.3 vs 14.5±24.8 cells/uL, p<0.001), sIgG (0.2±1.0 vs 11.5±17.2 cells/uL; p<0.001) and sIgA (0.6±3.1 vs 9.5±12.5 cells/uL, p<0.001) memory B cells-. At time M3, decreased (p<0.01) naïve (0.46±2.58 cells/uL) and memory B-cells (1.34±6.75 cells/uL), including IgM (0.46±2.58 cells/uL), IgG (0.34±1.69 cells/uL) and IgA (0.09±0.31 cells/uL), but not immature cells (2.28±8.84 cells/uL, p=0.9), were observed as compared to time M0. Differences did not reach statistical significance when comparing M3 vs. M1. The number of circulating plasma cells did not significantly vary during treatment. Conclusions All PB leucocyte subsets are affected by BR treatment in advanced-stage CLL. Interestingly, at time M3 the CD4+ T-cell subset continues to be decreased, while the other T-cell compartments seem to remain stable. Also, normal B cells are affected by BR treatment, and the depletion induced after one course therapy is maintained even three months after finishing BR therapy, except for immature B cells, that seem to be the first to recover in PB. Further studies will offer a more accurate insight into the biology of cell recovery during and after BR therapy in CLL patients. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document