Platelet-Targeted Expression of Coagulation Factor VIII (FVIII) Shows Efficacy for Using the Dog as a Large Animal Model for Gene Therapy of Hemophilia a

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3525-3525 ◽  
Author(s):  
David A. Wilcox ◽  
Lily M. Du ◽  
Sandra L. Haberichter ◽  
Paula M. Jacobi ◽  
Juan Fang ◽  
...  

Abstract In order to develop a large animal model for platelet-targeted gene therapy of Hemophilia A, we transduced normal canine bone marrow with a lentivirus vector under the transcriptional control of integrin αIIb gene promoter driving expression of human BDD-FVIII. Bone marrow was collected from normal dogs and transduced in the presence of recombinant canine c-SCF, c-IL-6, human h-TPO, and h-flt-3/flk-2 ligand differentiation factor. Immunofluorescence analysis using antibodies against human FVIII, and the megakaryocyte-specific marker integrin αIIb revealed synthesis of FVIII within tissue cultured megakaryocytes derived from lentivirus transduced bone marrow cells. This result appeared similar to synthesis, trafficking and storage of FVIII trafficked to α-granules of the murine “small animal” model for hemophilia A and human megakaryoyctes in vitro. To examine the effect of FVIII expression in platelets, in vivo, FVIII-transduced canine bone marrow was xenotransplanted into immune-compromised “NOD-SCID” mice treated with a sublethal dose (350 cGy) of irradiation. Flow cytometric analysis using antibodies specific for canine glycoproteins Ibα and integrin αIibβ3 revealed that circulating canine platelets comprised approximately 20–30% of the total platelet population in whole blood isolated from the mice within four weeks after xenotransplant. Immunofluorescence confocal microscopy detected a punctuate staining for FVIII that co-localized with a platelet α–granule protein, P-selectin, within a subpopulation of canine platelets isolated from murine whole blood. In contrast, FVIII was not detected in platelets from control samples. In addition, chromogenic analysis of platelets isolated from mice transplanted with FVIII-transduced bone marrow demonstrated the presence of a biologically active form of FVIII, FVIII:C at 2 mU/ml/lysate of 1×108 platelets. These results indicate that canine megakaryocytes are able to synthesize and store a biologically active form of FVIII that can be retained within progeny platelets. We speculate that dogs affected with hemophilia A should serve as an ideal “large animal” model to test if FVIII can undergo regulated release from platelets following physiologic hemostatic response to vessel injury. This raises the possibility of developing a locally inducible secretory pool of FVIII in platelets of patients with Hemophilia A following autologous transplantation of FVIII-transduced hematopoietic stem cells.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 195-195 ◽  
Author(s):  
Paris Margaritis ◽  
Elise Roy ◽  
Harre D. Downey ◽  
Shangzen Zhou ◽  
Elizabeth Merricks ◽  
...  

Abstract Despite its extensive use particularly in the management of hemophilic inhibitor patients, recombinant Factor VIIa (rhFVIIa) infusion has important limitations stemming from the nature of FVIIa itself, since its short half-life necessitates repeated injections and also carries high treatment costs. To overcome these, we have designed a gene transfer approach using a modified FVII transgene that is cleaved intracellularly and secreted in the active form, FVIIa. Using the human and murine analogue of this engineered transgene we have shown phenotypic correction of hemophilia B mice, following adeno-associated virus (AAV) - mediated, liver-directed gene delivery (Margaritis et al., 2004). In order to demonstrate efficacy in a large animal model of hemophilia, we cloned the canine Factor VII cDNA and generated the canine homologue of our modified transgene (cFVIIa). Recombinant cFVII zymogen and cFVIIa were purified and characterized in vitro in a clotting-based assay using canine reagents only (activated partial thromboplastin time [aPTT]). We found that cFVIIa had activity indistinguishable from rhFVIIa, while cFVII zymogen had negligible activity (5% rhFVIIa). In order to demonstrate in vivo efficacy, we produced 4 lots of an AAV8-based vector directing liver-specific expression of cFVIIa with similar vector titers (2–5 E13 vector genomes [vg]/ml). In hemophilia A (HA) or B (HB) mice, tail-vein delivery of 0.3 – 1.2 E12 vg/mouse (1.2 – 4.8 E13 vg/kg) resulted in long-term normalization of the hemophilic phenotype, demonstrating that cFVIIa can correct the defect in murine hemophilia. We proceeded to infuse 4 hemophilia dogs, with increasing vector doses: HB male (2.06 E13 vg/kg); HA male (6.25 E13 vg/kg); HA female (1.25 E14 vg/kg); HA male (1.25 E14 vg/kg). None of the dogs showed any adverse effects following vector delivery at any dose (the initial HB dog has been followed for almost 2 years [ongoing]). We followed the level of gene expression by clotting assays (prothrombin time [PT]/aPTT) and whole blood clotting time (WBCT). The initial dose of 2.06 E13 vg/kg resulted in a transient reduction in the PT/aPTT/WBCT. A considerable and sustained reduction in PT (18 sec, normal is ∼25 sec), aPTT (19 sec, normal is ∼30 sec, hemophilic is >40sec) and WBCT (25min, normal is ∼15min, hemophilic is >40min) was observed following administration of 6.25 E13 vg/kg in an HA male dog. Two more HA dogs were infused with 1.25 E14 vg/kg (male and female). The female HA dog exhibited only a modest decrease in aPTT (22sec), despite the vector dose increase, and a reduction in WBCT (30min), an observation that could be due to previously described gender-specific effects on gene expression. From preliminary and ongoing observations, the male HA dog infused also exhibited a decrease in WBCT. As an efficacy endpoint, the dogs exhibited a total of 3 bleeding episodes (none likely to be spontaneous, occurred in the lowest dose HB dog) in a cumulative time period of 38.5 months, compared to the expected 16 episodes (Brunetti-Pierri et al., 2005). In summary, our results demonstrate for the first time that gene transfer using a Factor VIII/Factor IX bypassing agent (canine FVIIa) can result in partial correction of the hemophilic phenotype in a large animal model of hemophilia.


2008 ◽  
Vol 86 (12) ◽  
pp. 1830-1836 ◽  
Author(s):  
Peter John Horton ◽  
Wayne J. Hawthorne ◽  
Stacey Walters ◽  
Tina Patel ◽  
Graeme J. Stewart ◽  
...  

2018 ◽  
Vol 39 (suppl_1) ◽  
Author(s):  
C Schmidt ◽  
F Wiedmann ◽  
C Beyersdorf ◽  
Z Zhao ◽  
I El-Battrawy ◽  
...  

2008 ◽  
Vol 86 (Supplement) ◽  
pp. 228
Author(s):  
P J. Horton ◽  
W J. Hawthorne ◽  
S Walters ◽  
T Patel ◽  
G J. Stewart ◽  
...  

2011 ◽  
Vol 3 (92) ◽  
pp. 92ra64-92ra64 ◽  
Author(s):  
S. T. Pleger ◽  
C. Shan ◽  
J. Ksienzyk ◽  
R. Bekeredjian ◽  
P. Boekstegers ◽  
...  

2014 ◽  
Vol 22 (3) ◽  
pp. 218-227 ◽  
Author(s):  
Roberta Targa STRAMANDINOLI-ZANICOTTI ◽  
André Lopes CARVALHO ◽  
Carmen Lúcia Kuniyoshi REBELATTO ◽  
Laurindo Moacir SASSI ◽  
Maria Fernanda TORRES ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document