Preliminary Studies on the Role of a Small GTPase, RhoA and Its Regulation in Imatinib Resistance

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 4243-4243
Author(s):  
Song Zhang ◽  
Qingfeng Du ◽  
Hongqian Zhu ◽  
Rong Li ◽  
Zhi Liu ◽  
...  

Abstract Imatinib has impressive response rates and good tolerability quickly led to its adoption as frontline therapy for all patients with chronic-phase CML (chronic myeloid leukemia), but the therapeutic effect of imatinib is poor in the blast crisis, and imatinib resistance has become a major problem in CML. The possible mechanisms of imatinib resistance include the amplification of BCR-ABL fusion gene and its expression increase, the point mutant of BCR-ABL kinase domain and the effects of other tyrosine kinases such as Src, Hck and Lyn and so on. However, the second-generation tyrosine kinase inhibitors (such as nilotinib and dasatinib), which were developed to overcome imatinib resistance resulting from the point mutant or the activation of other tyrosine kinases, even can not prevent all patients with CML progression to drug resistance. So there would be the other potential factor in imatinib resistance. Our previous studies generated a new imatinib-resistant BCR/ABL-positive cell line, K562-R. The 50% inhibitory concentration of imatinib was 15-fold higher in K562-R than in the wild-type K562. The expression of RhoA gene is up-regulated in K562-R by microarray analyses. RhoA, a small GTPase (24KD), has been found overexpression in breast, colon, head and neck squamous cell carcinoma, bladderand testicular cancer, lung and gastric cancer. It plays an important role in the initiation as well as the progression of human cancer, but the potential role of RhoA related to imatinib resistance has yet been unknown. In this study, we firstly detect the biologic characteristic of K562-R cells with RhoA down-expression by RNA interference. When K562-R cells were transfected with 150nM siRNA-RhoA for 48 hours, the percentage of apoptotic K562-R cells is respectively 12.82% by AnnexinV-PI assay and 9.0% by Hoechst 33258 staining and both have significant increase, cell cycle analysis found significant G0/G1 arrest, the expression of CD29 increase and that of CD71 and GPA have no difference. Secondly, The K562-R cells were treated with three selective inhibitors, including PD98059 (Ras/MAPK inhibitor), LY294002 (PI3K/AKT inhibitor) and AG490(JAK/STAT inhibitor) for 2,4 and 8 hours and the expression of RhoA were analyzed by Western-Blotting. The expression of RhoA is arrested in the K562-R cells treated with PD98059 and AG490 and no different with LY294002. These results indicate that RhoA would be an important target in the down-stream of multi-signal pathways related to imatinib resistance and the potential function of RhoA in imatinib resistance involve in increasing of cell proliferation, resistance to cell apoptosis and changes of cell adhesion.

2004 ◽  
Vol 200 (12) ◽  
pp. 1681-1687 ◽  
Author(s):  
Tomoharu Yasuda ◽  
Masaki Shirakata ◽  
Atsushi Iwama ◽  
Asuka Ishii ◽  
Yasuhiro Ebihara ◽  
...  

Dok-1 and Dok-2 are closely related rasGAP-associated docking proteins expressed preferentially in hematopoietic cells. Although they are phosphorylated upon activation of many protein tyrosine kinases (PTKs), including those coupled with cytokine receptors and oncogenic PTKs like Bcr-Abl, their physiological roles are largely unidentified. Here, we generated mice lacking Dok-1 and/or Dok-2, which included the double-deficient mice succumbed to myeloproliferative disease resembling human chronic myelogenous leukemia (CML) and chronic myelomonocytic leukemia. The double-deficient mice displayed medullary and extramedullary hyperplasia of granulocyte/macrophage progenitors with leukemic potential, and their myeloid cells showed hyperproliferation and hypo-apoptosis upon treatment and deprivation of cytokines, respectively. Consistently, the mutant myeloid cells showed enhanced Erk and Akt activation upon cytokine stimulation. Moreover, loss of Dok-1 and/or Dok-2 induced blastic transformation of chronic phase CML-like disease in mice carrying the bcr-abl gene, a cause of CML. These findings demonstrate that Dok-1 and Dok-2 are key negative regulators of cytokine responses and are essential for myeloid homeostasis and suppression of leukemia.


2006 ◽  
Vol 27 (5) ◽  
pp. 1745-1757 ◽  
Author(s):  
Julio Castaño ◽  
Guiomar Solanas ◽  
David Casagolda ◽  
Imma Raurell ◽  
Patricia Villagrasa ◽  
...  

ABSTRACT p120-catenin is an adherens junction-associated protein that controls E-cadherin function and stability. p120-catenin also binds intracellular proteins, such as the small GTPase RhoA. In this paper, we identify the p120-catenin N-terminal regulatory domain as the docking site for RhoA. Moreover, we demonstrate that the binding of RhoA to p120-catenin is tightly controlled by the Src family-dependent phosphorylation of p120-catenin on tyrosine residues. The phosphorylation induced by Src and Fyn tyrosine kinases on p120-catenin induces opposite effects on RhoA binding. Fyn, by phosphorylating a residue located in the regulatory domain of p120-catenin (Tyr112), inhibits the interaction of this protein with RhoA. By contrast, the phosphorylation of Tyr217 and Tyr228 by Src promotes a better affinity of p120-catenin towards RhoA. In agreement with these biochemical data, results obtained in cell lines support the important role of these phosphorylation sites in the regulation of RhoA activity by p120-catenin. Taken together, these observations uncover a new regulatory mechanism acting on p120-catenin that contributes to the fine-tuned regulation of the RhoA pathways during specific signaling events.


Oncotarget ◽  
2016 ◽  
Vol 7 (10) ◽  
pp. 11033-11055 ◽  
Author(s):  
Cécile Naudin ◽  
Clément Chevalier ◽  
Serge Roche

2001 ◽  
pp. 151-159 ◽  
Author(s):  
N E Hynes ◽  
K Horsch ◽  
M A Olayioye ◽  
A Badache

ErbB receptor tyrosine kinases (RTKs) and their ligands have important roles in normal development and in human cancer. Among the ErbB receptors only ErbB2 has no direct ligand; however, ErbB2 acts as a co-receptor for the other family members, promoting high affinity ligand binding and enhancement of ligand-induced biological responses. These characteristics demonstrate the central role of ErbB2 in the receptor family, which likely explains why it is involved in the development of many human malignancies, including breast cancer. ErbB RTKs also function as signal integrators, cross-regulating different classes of membrane receptors including receptors of the cytokine family. Cross-regulation of ErbB RTKs and cytokines receptors represents another mechanism for controlling and enhancing tumor cell proliferation.


2019 ◽  
Author(s):  
Mark A. McLean ◽  
Andrew G. Stephen ◽  
Stephen G. Sligar

ABSTRACTKRAS4b is a small GTPase involved in cellular signaling through receptor tyrosine kinases. Activation of KRAS4b is achieved through the interaction with nucleotide exchange factors while inactivation is regulated by through interaction with GTPase activating proteins. The activation of KRAS4b only occurs after recruitment of the regulatory proteins to the plasma membrane thus making the role of the phospholipid bilayer an integral part of the activation mechanism. The phospholipids, primarily with anionic head groups, interact with both the membrane anchoring hypervariable region and the G-domain, thus influencing the orientation of KRAS at the membrane surface. The orientation of the G-domain at the membrane surface is believed to play a role in the regulation of KRAS activation. Much of the research has focused on the role of phosphatidyl serine but little has been done regarding the important signaling lipid phosphatidylinositol-4,5-bisphosphate (PIP2). We report here the use of fluorescence anisotropy decay, atomic force microscopy, and molecular dynamic simulations to show that the presence of PIP2 in the bilayer promotes the interaction of the G-domain with the bilayer surface. The stability of these interactions significantly alters the dynamics of KRAS4b bound to the membrane indicating a potential role for PIP2 in the regulation of KRAS4b activity.


2020 ◽  
Vol 25 (40) ◽  
pp. 4310-4317 ◽  
Author(s):  
Lichao Sun ◽  
Shouqin Ji ◽  
Jihong Xing

Background/Aims: Central pro-inflammatory cytokine (PIC) signal is involved in neurological deficits after transient global ischemia induced by cardiac arrest (CA). The present study was to examine the role of microRNA- 155 (miR-155) in regulating IL-1β, IL-6 and TNF-α in the hippocampus of rats with induction of CA. We further examined the levels of products of oxidative stress 8-isoprostaglandin F2α (8-iso PGF2α, indication of oxidative stress); and 8-hydroxy-2’-deoxyguanosine (8-OHdG, indication of protein oxidation) after cerebral inhibition of miR-155. Methods: CA was induced by asphyxia and followed by cardiopulmonary resuscitation in rats. ELISA and western blot analysis were used to determine the levels of PICs and products of oxidative stress; and the protein expression of NADPH oxidase (NOXs) in the hippocampus. In addition, neurological severity score and brain edema were examined to assess neurological functions. Results: We observed amplification of IL-1β, IL-6 and TNF-α along with 8-iso PGF2α and 8-OHdG in the hippocampus of CA rats. Cerebral administration of miR-155 inhibitor diminished upregulation of PICs in the hippocampus. This also attenuated products of oxidative stress and upregulation of NOX4. Notably, inhibition of miR-155 improved neurological severity score and brain edema and this was linked to signal pathways of PIC and oxidative stress. Conclusion: We showed the significant role of blocking miR-155 signal in improving the neurological function in CA rats likely via inhibition of signal pathways of neuroinflammation and oxidative stress, suggesting that miR-155 may be a target in preventing and/or alleviating development of the impaired neurological functions during CA-evoked global cerebral ischemia.


2020 ◽  
Vol 21 (9) ◽  
pp. 892-901 ◽  
Author(s):  
Ana Luiza Ataide Carneiro de Paula Gonzaga ◽  
Vitória Andrade Palmeira ◽  
Thomas Felipe Silva Ribeiro ◽  
Larissa Braga Costa ◽  
Karla Emília de Sá Rodrigues ◽  
...  

Background: Pediatric tumors remain the highest cause of death in developed countries. Research on novel therapeutic strategies with lesser side effects is of utmost importance. In this scenario, the role of Renin-Angiotensin System (RAS) axes, the classical one formed by angiotensinconverting enzyme (ACE), Angiotensin II and AT1 receptor and the alternative axis composed by ACE2, Angiotensin-(1-7) and Mas receptor, have been investigated in cancer. Objective: This review aimed to summarize the pathophysiological role of RAS in cancer, evidence for anti-tumor effects of ACE2/Angiotensin-(1-7)/Mas receptor axis and future therapeutic perspectives for pediatric cancer. Methods: Pubmed, Scopus and Scielo were searched in regard to RAS molecules in human cancer and pediatric patients. The search terms were “RAS”, “ACE”, “Angiotensin-(1-7)”, “ACE2”, “Angiotensin II”, “AT1 receptor”, “Mas receptor”, “Pediatric”, “Cancer”. Results: Experimental studies have shown that Angiotensin-(1-7) inhibits the growth of tumor cells and reduces local inflammation and angiogenesis in several types of cancer. Clinical trials with Angiotensin-( 1-7) or TXA127, a pharmaceutical grade formulation of the naturally occurring peptide, have reported promising findings, but not enough to recommend medical use in human cancer. In regard to pediatric cancer, only three articles that marginally investigated RAS components were found and none of them evaluated molecules of the alternative RAS axis. Conclusion: Despite the potential applicability of Angiotensin-(1-7) in pediatric tumors, the role of this molecule was never tested. Further clinical trials are necessary, also including pediatric patients, to confirm safety and efficiency and to define therapeutic targets.


Sign in / Sign up

Export Citation Format

Share Document