Stem Cells in Paediatric Leukaemia Are Resistant to Parthenolide.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1429-1429
Author(s):  
Charlotte Victoria Cox ◽  
Paraskevi Diamanti ◽  
Allison Blair

Abstract Abstract 1429 Poster Board I-452 The concept of cancer stem cells as developmentally early cells that are capable of continued growth and expansion in haematopoietic malignancies and solid tumours has been substantiated in recent years. Consequently these cells may be responsible for disease maintenance and relapse. Acute lymphoblastic leukaemia (ALL) is the most common paediatric cancer with survival rates around 80-85%. However, a significant proportion of patients relapse, often with disease that is highly refractory to further therapeutic intervention. Leukaemia stem cells have been described in childhood ALL that can proliferate to initiate and sustain the disease in vivo. In addition these leukaemia stem cells have also been shown to be refractory to commonly used clinical agents. Therefore it is important to investigate ALL stem cells to understand their biological properties and to identify the most appropriate agents that are capable of eradicating these cells. The sesquiterpene lactone Parthenolide (PTL) has been shown to induce apoptosis in malignant cells by inducing oxidative stress and inhibiting NF-κB activity. Importantly PTL has been shown to be effective against stem cell populations in acute myeloid leukaemia and in chronic lymphocytic leukaemia with minimal effect on normal haemopoietic cells. In this study we have attempted to assess the effects of PTL on stem cell populations in paediatric ALL. Primary cells from 20 childhood ALL cases from mixed prognostic subgroups were used in this investigation. Cells from B-ALL cases were sorted on the basis of expression of CD34/CD19, while CD34/CD7 antigens were used to sort cells from T-ALL cases. Sorted and unsorted populations were co-cultured with and without PTL at 7.5μM and 10μM for 18-24 hours. Subsequently cell viability and apoptosis were determined by flow cytometry using Annexin V and PI staining. Antibodies against phosphorylated IKKα and IKKβ were used to assess NF-κB activity in treated and untreated cells. The functional ability of the treated cells was assessed in some cases using long-term in vitro and in vivo assays. Both concentrations of PTL resulted in a significant reduction in viability in unsorted ALL cells (28±4% and 23±5% respectively). Similar results were observed with CD34+/CD19+, CD34+/CD7+ and CD34- subfractions, with viability reduced to 14-39%. In contrast the phenotypically primitive CD34+/CD19- (85±11% viable) and CD34+/CD7- (83±5% viable) populations were significantly more resistant to 10μM PTL than unsorted cells and other sorted populations (P≤0.002). FISH analyses were performed at the end of the time-course and confirmed that leukaemia cells were surviving PTL treatment. It was not possible to detect phosphorylated IKKα/β in the CD34+/CD19- and CD34+/CD7- populations, in cases examined to date, suggesting NF-kB may not be active in these subpopulations. Of note PTL treatment seemed to have minimal effect on the long-term proliferative ability of ALL cells. There were no significant differences in the absolute cell numbers generated in cultures of PTL treated CD34+/CD19- or CD34+/CD7- cells compared to untreated cells at all time points assayed up to the end of culture at week 6 (P≥0.23). Interestingly, similar results were observed with the unsorted cells and all other sorted populations. From week 3 of culture there was no difference in the absolute cell counts when growth from treated and untreated cells was compared (P>0.47), albeit they proliferated to a much lesser extent than the phenotypically primitive populations. In addition PTL treated cells were capable of engrafting NOD/SCID mice. The levels of leukaemia engraftment obtained using PTL treated unsorted (0.2-5% CD45+), CD34+/CD19- (2-10% CD45+) and CD34+/CD7- (1.5-9% CD45+) populations were similar to their respective untreated controls. These data demonstrate that while PTL showed promising effects on the bulk leukaemia cells, the effects on CD34+/CD19- B-ALL cells and CD34+/CD7- T-ALL cells were insignificant. This may be due in part to lack of NF-kB activity in leukaemia stem cells. However, the functional capacity of every ALL population evaluated in vitro was not significantly impaired by the short course of PTL treatment. These findings further highlight the importance of evaluating new therapeutic agents on leukaemia stem cell populations in addition to the bulk leukaemia and the significance of investigating the functional capacity of drug treated cells. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3489-3489
Author(s):  
Ross Kinstrie ◽  
Dimitris Karamitros ◽  
Nicolas Goardon ◽  
Heather Morrison ◽  
Richard E Clark ◽  
...  

Abstract Blast phase (BP)-CML remains the most critical area of unmet clinical need in the management of CML and novel, targeted therapeutic strategies are urgently needed. In the tyrosine kinase inhibitor (TKI) era, the rate of progression to BP is 1 to 1.5% per annum in the first few years after diagnosis, falling sharply when major molecular response is obtained. Around 10% of patients present with de novo BP-CML and despite the use of TKIs, median survival after the diagnosis of BP-CML is between 6.5 and 11 months.Therefore, improved understanding of the biology of BP-CML and novel therapies to prolong therapeutic responses are urgently sought. Studies of myeloid malignancies show that acquisition of tumor-associated mutations occurs principally in a step-wise manner. Initiating mutations usually originate in an hematopoietic stem cell (HSC) to give rise to preleukemic stem cell populations that expand through clonal advantage. Further mutation acquisition and/or epigenetic changes then lead to blast transformation and disruption of the normal immunophenotypic and functional hematopoietic hierarchy. At this stage, multiple leukemic stem cell (LSC) populations (also termed leukemia initiating cell populations) can be identified. We previously showed, in AML, that the CD34+ LSC populations were most closely related to normal progenitor populations, rather than stem cell populations, but had co-opted elements of a normal stem cell expression signature to acquire abnormal self-renewal potential (Goardon et al, Cancer Cell, 2011). CD34+CD38- LSCs were most commonly similar to an early multi-potent progenitor population with lympho-myeloid potential (the lymphoid-primed multi-potential progenitor [LMPP]). In contrast, the CD34+CD38+ LSCs were most closely related to the more restricted granulocyte-macrophage progenitor (GMP). In chronic phase CML, the leukemia-propagating population is the HSC, and the progenitor subpopulations do not have stem cell characteristics. To date, studies to isolate LSC populations in BP-CML have been limited, identifying the GMP subpopulation only as a possible LSC source (Jamieson et al, NEJM, 2004). Furthermore, in vivo LSC activity has not been assessed. We therefore set out to assess the LSC characteristics of different primitive progenitor subpopulations in myeloid BP-CML both in vitro and in vivo. We isolated different stem and progenitor cell subpopulations using FACS; HSC (Lin-CD34+CD38-CD90+ CD45RA-), multipotent progenitor (MPP; Lin-CD34+CD38-CD90-CD45RA-), LMPP (Lin-CD34+CD38-CD90-CD45RA+), common myeloid progenitor (CMP; Lin-CD34+CD38+CD45RA-CD123+), GMP (Lin-CD34+CD38+CD45RA+CD123+) and megakaryocyte erythroid progenitor (MEP; Lin-CD34+CD38+CD45RA-CD123-). The functional potential of these purified populations was examined in 13 patients by: (i) serial CFC replating assays to study progenitor self-renewal (n=10); (ii) In vivo xenograft studies using NSG mice with serial transplantation to identify populations with LSC potential (n=6). Our data conclusively demonstrate that functional LSCs are present in multiple immunophenotypic stem/progenitor subpopulations in myeloid BP-CML, including HSC, MPP, LMPP, CMP and GMP subpopulations. There was inter-patient variability in terms of both in vitro and in vivo functional properties. Fluorescence in situ hybridisation (FISH) was used to assess clonality in the different progenitor subpopulations and identify which populations contained cells with additional cytogenetic abnormalities (ACAs) with a view to improving our understanding of the clonal hierarchy. Interestingly, there were no significant differences in ACAs in the different progenitor subpopulations in the majority of samples studied, suggesting that clonal evolution tends to occur in the HSC compartment in myeloid BP-CML. Preliminary gene expression profiling studies of the different progenitor subpopulations, using Affymetrix Human Gene 1.0 ST Arrays, demonstrated highly variable gene expression, supporting the functional heterogeneity seen. Taken together, our results demonstrate that myeloid BP-CML is a very heterogeneous disorder with variable LSC populations. Further interrogation of these populations will likely identify novel therapies which will specifically target the LSC. Disclosures Copland: Bristol-Myers Squibb: Consultancy, Honoraria, Other, Research Funding; Novartis: Consultancy, Honoraria, Other; Ariad: Consultancy, Honoraria, Research Funding.



Blood ◽  
1995 ◽  
Vol 85 (4) ◽  
pp. 952-962 ◽  
Author(s):  
JC van der Loo ◽  
WA Slieker ◽  
D Kieboom ◽  
RE Ploemacher

Monoclonal antibody ER-MP12 defines a novel antigen on murine hematopoietic stem cells. The antigen is differentially expressed by different subsets in the hematopoietic stem cell compartment and enables a physical separation of primitive long-term repopulating stem cells from more mature multilineage progenitors. When used in two-color immunofluorescence with ER-MP20 (anti-Ly-6C), six subpopulations of bone marrow (BM) cells could be identified. These subsets were isolated using magnetic and fluorescence-activated cell sorting, phenotypically analyzed, and tested in vitro for cobblestone area-forming cells (CAFC) and colony-forming units in culture (CFU-C; M/G/E/Meg/Mast). In addition, they were tested in vivo for day-12 spleen colony-forming units (CFU-S-12), and for cells with long-term repopulating ability using a recently developed alpha-thalassemic chimeric mouse model. Cells with long-term repopulation ability (LTRA) and day-12 spleen colony-forming ability appeared to be exclusively present in the two subpopulations that expressed the ER-MP12 cell surface antigen at either an intermediate or high level, but lacked the expression of Ly- 6C. The ER-MP12med20- subpopulation (comprising 30% of the BM cells, including all lymphocytes) contained 90% to 95% of the LTRA cells and immature day-28 CAFC (CAFC-28), 75% of the CFU-S-12, and very low numbers of CFU-C. In contrast, the ER-MP12hi20- population (comprising 1% to 2% of the BM cells, containing no mature cells) included 80% of the early and less primitive CAFC (CAFC-5), 25% of the CFU-S-12, and only 10% of the LTRA cells and immature CAFC-28. The ER-MP12hi cells, irrespective of the ER-MP20 antigen expression, included 80% to 90% of the CFU-C (day 4 through day 14), of which 70% were ER-MP20- and 10% to 20% ER-MP20med/hi. In addition, erythroblasts, granulocytes, lymphocytes, and monocytes could almost be fully separated on the basis of ER-MP12 and ER-MP20 antigen expression. Functionally, the presence of ER-MP12 in a long-term BM culture did not affect hematopoiesis, as was measured in the CAFC assay. Our data demonstrate that the ER-MP12 antigen is intermediately expressed on the long-term repopulating hematopoietic stem cell. Its level of expression increases on maturation towards CFU-C, to disappear from mature hematopoietic cells, except from B and T lymphocytes.



2013 ◽  
Vol 87 (8) ◽  
pp. 4794-4794
Author(s):  
K. Palomares ◽  
F. Vigant ◽  
B. Van Handel ◽  
O. Pernet ◽  
K. Chikere ◽  
...  


Vox Sanguinis ◽  
1998 ◽  
Vol 74 (S2) ◽  
pp. 463-466
Author(s):  
G. Wagemaker


Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 154
Author(s):  
Hanluo Li ◽  
Federica Francesca Masieri ◽  
Marie Schneider ◽  
Alexander Bartella ◽  
Sebastian Gaus ◽  
...  

Hair follicle outer root sheath (ORS) is a putative source of stem cells with therapeutic capacity. ORS contains several multipotent stem cell populations, primarily in the distal compartment of the bulge region. However, the bulge is routinely obtained using invasive isolation methods, which require human scalp tissue ex vivo. Non-invasive sampling has been standardized by means of the plucking procedure, enabling to reproducibly obtain the mid-ORS part. The mid-ORS shows potential for giving rise to multiple stem cell populations in vitro. To demonstrate the phenotypic features of distal, middle, and proximal ORS parts, gene and protein expression profiles were studied in physically separated portions. The mid-part of the ORS showed a comparable or higher NGFR, nestin/NES, CD34, CD73, CD44, CD133, CK5, PAX3, MITF, and PMEL expression on both protein and gene levels, when compared to the distal ORS part. Distinct subpopulations of cells exhibiting small and round morphology were characterized with flow cytometry as simultaneously expressing CD73/CD271, CD49f/CD105, nestin, and not CK10. Potentially, these distinct subpopulations can give rise to cultured neuroectodermal and mesenchymal stem cell populations in vitro. In conclusion, the mid part of the ORS holds the potential for yielding multiple stem cells, in particular mesenchymal stem cells.



2021 ◽  
Vol 11 ◽  
Author(s):  
Emma Laporte ◽  
Annelies Vennekens ◽  
Hugo Vankelecom

The pituitary gland has the primordial ability to dynamically adapt its cell composition to changing hormonal needs of the organism throughout life. During the first weeks after birth, an impressive growth and maturation phase is occurring in the gland during which the distinct hormonal cell populations expand. During pubertal growth and development, growth hormone (GH) levels need to peak which requires an adaptive enterprise in the GH-producing somatotrope population. At aging, pituitary function wanes which is associated with organismal decay including the somatopause in which GH levels drop. In addition to these key time points of life, the pituitary’s endocrine cell landscape plastically adapts during specific (patho-)physiological conditions such as lactation (need for PRL) and stress (engagement of ACTH). Particular resilience is witnessed after physical injury in the (murine) gland, culminating in regeneration of destroyed cell populations. In many other tissues, adaptive and regenerative processes involve the local stem cells. Over the last 15 years, evidence has accumulated that the pituitary gland houses a resident stem cell compartment. Recent studies propose their involvement in at least some of the cell remodeling processes that occur in the postnatal pituitary but support is still fragmentary and not unequivocal. Many questions remain unsolved such as whether the stem cells are key players in the vivid neonatal growth phase and whether the decline in pituitary function at old age is associated with decreased stem cell fitness. Furthermore, the underlying molecular mechanisms of pituitary plasticity, in particular the stem cell-linked ones, are still largely unknown. Pituitary research heavily relies on transgenic in vivo mouse models. While having proven their value, answers to pituitary stem cell-focused questions may more diligently come from a novel powerful in vitro research model, termed organoids, which grow from pituitary stem cells and recapitulate stem cell phenotype and activation status. In this review, we describe pituitary plasticity conditions and summarize what is known on the involvement and phenotype of pituitary stem cells during these pituitary remodeling events.



2012 ◽  
Vol 87 (4) ◽  
pp. 2094-2108 ◽  
Author(s):  
K. Palomares ◽  
F. Vigant ◽  
B. Van Handel ◽  
O. Pernet ◽  
K. Chikere ◽  
...  


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2113-2113
Author(s):  
Peter Kurre ◽  
Ponni Anandakumar ◽  
Vladimir A. Lesnikov ◽  
Hans-Peter Kiem

Abstract Most gene transfer models using Moloney murine leukemia virus (MLV) - derived vectors to target hematopoietic repopulating cells require progenitor cell enrichment and extended ex vivo culture for efficient long-term marking. Both may result in qualitative, and/or quantitative, loss of stem cells thereby limiting gene transfer rates in vivo. This can be a critical obstacle in candidate applications with exhausted autologous stem cell pools, such as Fanconi Anemia. Among the advantages of HIV-derived lentivirus vectors is their ability to transduce non dividing cells, permitting shortened ex vivo culture durations while maintaining gene transfer to long-term repopulating cells. We have previously reported long-term gene transfer rates of 12–40% after VSV-G/ lentivirus vector transduction of murine stem cells by targeting unseparated marrow cells after reduced prestimulation and a single 12 hour vector exposure (Kurre et al., Mol. Ther. 2004 Jun;9(6):914–22). We herein report studies showing maintenance of gene transfer efficiency in this model at drastically reduced ex vivo vector exposure times. In initial in vitro experiments we studied cytokine support, vector particle density, and minimum exposure duration requirements for efficient gene transfer to unseparated marrow cells. We determined that fibronectin fragment support was critical in maintaining minimum gene transfer efficiencies, even during brief 1, or 3-hour exposures. In an effort to extend these in vitro findings targeting a mixed leukocyte population and explore the feasibility in vivo, we next performed repopulation experiments in myeloablated murine recipients. Unseparated marrow cells harvested from donor animals were depleted of red blood cells, washed and immediately transduced on fibronectin fragment in the presence of murine stem cell factor. Following a 1 hour exposure to lentivector (VSV-G/RRLsin-cPPThPGK-EGFPwpre), cells were washed repeatedly, resuspended and injected into myeloablated recipients (n=10). Animals showed ready hematopoietic reconstitution and demonstrated average GFP marking of 31% (range: 17–41.2%) in peripheral blood 20 weeks after transplantation. Gene marking in secondary recipients 9 weeks after reconstitution (n=15, 3 recipient animals per donor) persisted at 29% on average (range 14.9–66%). Results also demonstrate transduction of granulocytes, B- and T-lymphocytes, as well as stable long-term GFP expression in primary and secondary animals. Copy number determination by real-time PCR in marrow cells from primary recipients shows an average of 4 proviral copies (range 2.1–8.1) per GFP-expressing cell. Our studies confirm that HIV-derived lentivirus vectors are ideally suited for the transduction of murine long-term repopulating cells. We hypothesize that ultra-short transduction actively preserves stem cell content in the inoculum. Moreover, this protocol represents an ideal platform for subsequent in vivo selection to achieve complete phenotype correction and high-level therapeutic chimerism required for some applications. We anticipate that our strategy may prove particularly useful in situations where the target stem cell quantity is greatly limited and cells are of poor ex vivo viability.



Blood ◽  
1995 ◽  
Vol 85 (6) ◽  
pp. 1472-1479 ◽  
Author(s):  
CL Li ◽  
GR Johnson

Murine bone marrow cells were fractionated by fluorescence-activated cell sorting into Rh123lo Lin- c-kit+ Ly6A+, Rh123hi Lin-c-kit+ Ly6A+, and Lin- c-kit+ Ly6A- populations within which most, if not all, of the hematopoietic activities of the marrow resided. The Rh123lo Lin- c- kit+Ly6A+ cells, which consist exclusively of small- or medium-sized lymphocyte-like cells, are highly enriched for long-term hematopoietic in vivo repopulating cells. The enrichment factor for these cells from the marrow was estimated as 2,000-fold. The Rh123hi Lin- c-kit+ Ly6A+ cells, although also highly enriched for day-12 spleen colony-forming units, were relatively depleted of long-term in vivo repopulation capacity. Most, if not all Lin- c-kit+ Ly6A- cells were Rb123hi. In contrast to both Rh123lo and Rh123hi Lin- c-kit+ Ly6A+ stem cell populations, the Lin- c-kit+ Ly6A- cells can be stimulated to proliferate in vitro in the presence of single cytokines, which is a characteristic of committed progenitor cells. No marked synergistic interactions between individual cytokines were observed with this cell population. Both Rh123hi Lin- c-kit+ Ly6A+ mature stem cell and Lin- c- kit+ Ly6A- progenitor cell populations displayed in vivo repopulation kinetics resembling those of the putative short-term hematopoietic repopulating cells.



Blood ◽  
1996 ◽  
Vol 88 (8) ◽  
pp. 2852-2858 ◽  
Author(s):  
R Pawliuk ◽  
C Eaves ◽  
RK Humphries

Recent assessment of the long-term repopulating activity of defined subsets of hematopoietic cells has offered new insights into the characteristics of the transplantable stem cells of this system; however, as yet, there is very little known about mechanisms that regulate their self-renewal in vivo. We have now exploited the ability to quantitate these cells using the competitive repopulating unit (CRU) assay to identify the role of both intrinsic (ontological) and extrinsic (transplanted dose-related) variables that may contribute to the regulation of CRU recovery in vivo. Ly5.1 donor cells derived from day-14.5 fetal liver (FL) or the bone marrow (BM) of adult mice injected 4 days previously with 5-fluorouracil were transplanted at doses estimated to contain 10, 100, or 1,000 long-term CRU into irradiated congenic Ly5.2 adult recipient mice. Eight to 12 months after transplantation, there was a complete recovery of BM cellularity and in vitro clonogenic progenitor numbers and a nearly full recovery of day-12 colony-forming unit-spleen numbers irrespective of the number or origin of cells initially transplanted. In contrast, regeneration of Ly5.1+ donor-derived CRU was incomplete in all cases and was dependent on both the origin and dose of the transplant, with FL being markedly superior to that of adult BM. As a result, the final recovery of the adult marrow CRU compartment ranged from 15% to 62% and from 1% to 18% of the normal value in recipients of FL and adult BM transplantation, respectively, with an accompanying maximum CRU amplification of 150-fold for recipients of FL cells and 15-fold for recipients of adult BM cells. Interestingly, the extent of CRU expansion from either source was inversely related to the number of CRU transplanted. These data suggest that recovery of mature blood cell production in vivo may activate negative feedback regulatory mechanisms to prematurely limit stem cell self-renewal ability. Proviral integration analysis of mice receiving retrovirally transduced BM cells confirmed regeneration of totipotent lymphomyeloid repopulating cells and provided evidence for a greater than 300-fold clonal amplification of a single transduced stem cell. These results highlight the differential regenerative capacities of CRU from fetal and adult sources that likely reflect intrinsic, genetically defined determinants of CRU expansion but whose contribution to the magnitude of stem cell amplification ultimately obtained in vivo is also strongly influenced by the initial number of CRU transplanted. Such findings set the stage for attempts to enhance CRU regeneration by administration of agents that may enable full expression of regenerative potential or through the expression of intracellular gene products that may alter intrinsic regenerative capacity.



Sign in / Sign up

Export Citation Format

Share Document