Double Genetic Mutations in PML-Rara Fusion Gene Confirmed in a Patient Showing Resistance to All-Trans Retinoic Acid and Arsenic-Trioxide Therapy.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1743-1743 ◽  
Author(s):  
Emi Goto ◽  
Akihiro Tomita ◽  
Akihide Atsumi ◽  
Hitoshi Kiyoi ◽  
Tomoki Naoe

Abstract Abstract 1743 Poster Board I-769 Background Molecular targeting drugs, all-trans retinoic acid (ATRA)and arsenic trioxide (ATO), have major advances in the treatment of acute promyelocytic leukemia (APL). However, resistance to these drugs has been also observed in clinical practice. ATRA acts as a ligand for retinoic acid receptor alpha (RAR) and restores the aberrant transcription repression by PML-RARA fusion protein in APL cells. Previous reports demonstrate that amino-acids substitution, resulting from genetic mutations, in ligand binding domain (LBD) of RARA region of PML-RARA were closely related to drug resistance to ATRA therapy. In contrast, for ATO therapy, the molecular mechanisms of the effectiveness and also the resistance are still unclear. Here we identified a PML-RARA that holds double genetic missense mutations in RARA and PML regions, respectively, from an APL patient, who showed clinically resistance to ATRA and ATO therapy. These mutations were observed as his disease progression, and we are interested in the relationship between these mutations with drug resistance to ATRA and/or ATO. Aims Analyses of the molecular and clinical significance of the double missense mutations of PML-RARA for disease progression and resistance to ATRA and ATO therapy. Results Eight APL patients were treated with ATO in Nagoya University Hospital, Japan, during ∼5 years from Apr. 1, 2000 to Dec. 31, 2004. One out of 8 patients showed clinically ATO resistance. The patient showing ATO resistance firstly diagnosed as APL (M3 variant) from cytogenetic and chromosomal analyses, and complete remission was obtained after combination chemotherapy with ATRA. Molecular CR was confirmed by RT-PCR analysis, but after 3 month from the induction therapy, ATRA-resistant relapse was observed. After treatment with ATO therapy, response was observed, but the effectiveness was gradually decreased, resulting finally into the resistance. The patient died of disease progression. During his 7 years clinical course, leukemia cells were harvested repeatedly from his bone marrow and peripheral blood. RT-PCR using the total RNA from his tumor cells followed by DNA sequencing was performed, with the result of PML-RARA fusion gene with the bcr3 breakpoint in the intron 3 of PML. When using the tumor cells that were harvested at his terminal stage, a missense point mutation in the LBD of the RARA region of PML-RARA was confirmed. Furthermore, missense point mutation in the PML-B2 domain was also confirmed in the same cDNA clones. Interestingly, these mutations were not observed in the leukemia cells obtained at the onset. These mutations were analyzed in each sample that was obtained as his disease progressed, and some correlation between disease progression and/or the drug resistance and the timing of appearance of these two mutations were suggested. These mutated fusion transcripts were cloned into expression vectors, and we are now analyzing the function relating to the drug resistance and disease progression. Conclusions Double genetic missense mutations in the RARA-LBD and PML-B2 of PML-RARA were confirmed in ATRA and ATO resistant patient. These genetic mutations were confirmed in the leukemia cells during his disease progression, and the relationship between those mutations and drug resistances were suggested from the clinical features. Mutations in the PML-B2 domain has not been reported previously, thus, it may be important to show whether this type of mutations are related to the drug resistance, especially to ATO therapy. Disclosures Kiyoi: Novartis Pharma Co. Ltd.: Research Funding; Kyowa Hakko Kirin Co. Ltd.: Consultancy. Naoe:Kyowa Hakko Kirin Co., Ltd. : Research Funding; Chugai Pharmaceutical Co.,Ltd.: Research Funding; Wyeth K.K.: Research Funding.

Blood ◽  
1998 ◽  
Vol 92 (4) ◽  
pp. 1172-1183 ◽  
Author(s):  
Wei Ding ◽  
Yun-Ping Li ◽  
Lucio M. Nobile ◽  
George Grills ◽  
Ines Carrera ◽  
...  

Abstract This study evaluated whether relapse of acute promyelocytic leukemia (APL) patients from clinical remissions achieved and/or maintained with all-trans retinoic acid (RA) in combination with intensive chemotherapy is associated with leukemic cellular resistance to RA and with alterations in the PML-RAR fusion gene. We studied matched pretreatment and relapse specimens from 12 patients who received variable amounts of RA, primarily in nonconcurrent combination with daunorubicin and cytarabine (DA) on Eastern Cooperative Oncology Group (ECOG) protocol E2491, and from 8 patients who received DA only on protocol E2491. Of 10 RA-treated patients evaluable for a change in APL cell sensitivity to RA-induced differentiation in vitro, 8 showed diminished sensitivity at relapse, whereas, of 6 evaluable patients treated with DA alone, only 1 had marginally reduced sensitivity. From analysis of sequences encoding the principal functional domains of the PML and RAR portions of PML-RAR, we found missense mutations in relapse specimens from 3 of 12 RA-treated patients and 0 of 8 DA-treated patients. All 3 mutations were located in the ligand binding domain (LBD) of the RAR region of PML-RAR. Relative to normal RAR1, the mutations were Leu290Val, Arg394Trp, and Met413Thr. All pretreatment analyses were normal except for a C to T base change in the 3′-untranslated (UT) region of 1 patient that was also present after relapse from DA therapy. No mutations were detected in the corresponding sequences of the normal RAR or PML (partial) alleles. Minor additional PML-RAR isoforms encoding truncated PML proteins were detected in 2 cases. We conclude that APL cellular resistance occurs with high incidence after relapse from RA + DA therapy administered in a nonconcurrent manner and that mutations in the RAR region of the PML-RAR gene are present in and likely mechanistically involved in RA resistance in a subset of these cases. © 1998 by The American Society of Hematology.


Blood ◽  
1998 ◽  
Vol 92 (4) ◽  
pp. 1172-1183 ◽  
Author(s):  
Wei Ding ◽  
Yun-Ping Li ◽  
Lucio M. Nobile ◽  
George Grills ◽  
Ines Carrera ◽  
...  

This study evaluated whether relapse of acute promyelocytic leukemia (APL) patients from clinical remissions achieved and/or maintained with all-trans retinoic acid (RA) in combination with intensive chemotherapy is associated with leukemic cellular resistance to RA and with alterations in the PML-RAR fusion gene. We studied matched pretreatment and relapse specimens from 12 patients who received variable amounts of RA, primarily in nonconcurrent combination with daunorubicin and cytarabine (DA) on Eastern Cooperative Oncology Group (ECOG) protocol E2491, and from 8 patients who received DA only on protocol E2491. Of 10 RA-treated patients evaluable for a change in APL cell sensitivity to RA-induced differentiation in vitro, 8 showed diminished sensitivity at relapse, whereas, of 6 evaluable patients treated with DA alone, only 1 had marginally reduced sensitivity. From analysis of sequences encoding the principal functional domains of the PML and RAR portions of PML-RAR, we found missense mutations in relapse specimens from 3 of 12 RA-treated patients and 0 of 8 DA-treated patients. All 3 mutations were located in the ligand binding domain (LBD) of the RAR region of PML-RAR. Relative to normal RAR1, the mutations were Leu290Val, Arg394Trp, and Met413Thr. All pretreatment analyses were normal except for a C to T base change in the 3′-untranslated (UT) region of 1 patient that was also present after relapse from DA therapy. No mutations were detected in the corresponding sequences of the normal RAR or PML (partial) alleles. Minor additional PML-RAR isoforms encoding truncated PML proteins were detected in 2 cases. We conclude that APL cellular resistance occurs with high incidence after relapse from RA + DA therapy administered in a nonconcurrent manner and that mutations in the RAR region of the PML-RAR gene are present in and likely mechanistically involved in RA resistance in a subset of these cases. © 1998 by The American Society of Hematology.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 32-33
Author(s):  
Rafael Renatino-Canevarolo ◽  
Mark B. Meads ◽  
Maria Silva ◽  
Praneeth Reddy Sudalagunta ◽  
Christopher Cubitt ◽  
...  

Multiple myeloma (MM) is an incurable cancer of bone marrow-resident plasma cells, which evolves from a premalignant state, MGUS, to a form of active disease characterized by an initial response to therapy, followed by cycles of therapeutic successes and failures, culminating in a fatal multi-drug resistant cancer. The molecular mechanisms leading to disease progression and refractory disease in MM remain poorly understood. To address this question, we have generated a new database, consisting of 1,123 MM biopsies from patients treated at the H. Lee Moffitt Cancer Center. These samples ranged from MGUS to late relapsed/refractory (LR) disease, and were comprehensively characterized genetically (844 RNAseq, 870 WES, 7 scRNAseq), epigenetically (10 single-cell chromatin accessibility, scATAC-seq) and phenotypically (537 samples assessed for ex vivo drug resistance). Mutational analysis identified putative driver genes (e.g. NRAS, KRAS) among the highest frequent mutations, as well as a steady increase in mutational load across progression from MGUS to LR samples. However, with the exception of KRAS, these genes did not reach statistical significance according to FISHER's exact test between different disease stages, suggesting that no single mutation is necessary or sufficient to drive MM progression or refractory disease, but rather a common "driver" biology is critical. Pathway analysis of differentially expressed genes identified cell adhesion, inflammatory cytokines and hematopoietic cell identify as under-expressed in active MM vs. MGUS, while cell cycle, metabolism, DNA repair, protein/RNA synthesis and degradation were over-expressed in LR. Using an unsupervised systems biology approach, we reconstructed a gene expression map to identify transcriptomic reprogramming events associated with disease progression and evolution of drug resistance. At an epigenetic regulatory level, these genes were enriched for histone modifications (e.g. H3k27me3 and H3k27ac). Furthermore, scATAC-seq confirmed genome-wide alterations in chromatin accessibility across MM progression, involving shifts in chromatin accessibility of the binding motifs of epigenetic regulator complexes, known to mediate formation of 3D structures (CTCF/YY1) of super enhancers (SE) and cell identity reprograming (POU5F1/SOX2). Additionally, we have identified SE-regulated genes under- (EBF1, RB1, SPI1, KLF6) and over-expressed (PRDM1, IRF4) in MM progression, as well as over-expressed in LR (RFX5, YY1, NBN, CTCF, BCOR). We have found a correlation between cytogenetic abnormalities and mutations with differential gene expression observed in MM progression, suggesting groups of genetic events with equivalent transcriptomic effect: e.g. NRAS, KRAS, DIS3 and del13q are associated with transcriptomic changes observed during MGUS/SMOL=>active MM transition (Figure 1). Taken together, our preliminary data suggests that multiple independent combinations of genetic and epigenetic events (e.g. mutations, cytogenetics, SE dysregulation) alter the balance of master epigenetic regulatory circuitry, leading to genome-wide transcriptional reprogramming, facilitating disease progression and emergence of drug resistance. Figure 1: Topology of transcriptional regulation in MM depicts 16,738 genes whose expression is increased (red) or decreased (green) in presence of genetic abnormality. Differential expression associated with (A) hotspot mutations and (B) cytogenetic abnormalities confirms equivalence of expected pairs (e.g. NRAS and KRAS, BRAF and RAF1), but also proposes novel transcriptomic dysregulation effect of clinically relevant cytogenetic abnormalities, with yet uncharacterized molecular role in MM. Figure 1 Disclosures Kulkarni: M2GEN: Current Employment. Zhang:M2GEN: Current Employment. Hampton:M2GEN: Current Employment. Shain:GlaxoSmithKline: Speakers Bureau; Amgen: Speakers Bureau; Karyopharm: Research Funding, Speakers Bureau; AbbVie: Research Funding; Takeda: Honoraria, Speakers Bureau; Sanofi/Genzyme: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Janssen: Honoraria, Speakers Bureau; Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Adaptive: Consultancy, Honoraria; BMS: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau. Siqueira Silva:AbbVie: Research Funding; Karyopharm: Research Funding; NIH/NCI: Research Funding.


Cancers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1313 ◽  
Author(s):  
Marta Sobas ◽  
Maria Carme Talarn-Forcadell ◽  
David Martínez-Cuadrón ◽  
Lourdes Escoda ◽  
María J. García-Pérez ◽  
...  

It has been suggested that 1–2% of acute promyelocytic leukemia (APL) patients present variant rearrangements of retinoic acid receptor alpha (RARα) fusion gene, with the promyelocytic leukaemia zinc finger (PLZF)/RARα being the most frequent. Resistance to all-trans-retinoic acid (ATRA) and arsenic trioxide (ATO) has been suggested in PLZF/RARα and other variant APLs. Herein, we analyze the incidence, characteristics, and outcomes of variant APLs reported to the multinational PETHEMA (Programa para el Tratamiento de Hemopatias Malignas) registry, and we perform a systematic review in order to shed light on strategies to improve management of these extremely rare diseases. Of 2895 patients with genetically confirmed APL in the PETHEMA registry, 11 had variant APL (0.4%) (9 PLZF-RARα and 2 NPM1-RARα), 9 were men, with median age of 44.6 years (3 months to 76 years), median leucocytes (WBC) 16.8 × 109/L, and frequent coagulopathy. Eight patients were treated with ATRA plus chemotherapy-based regimens, and 3 with chemotherapy-based. As compared to previous reports, complete remission and survival was slightly better in our cohort, with 73% complete remission (CR) and 73% survival despite a high relapse rate (43%). After analyzing our series and performing a comprehensive and critical review of the literature, strong recommendations on appropriate management of variant APL are not possible due to the low number and heterogeneity of patients reported so far.


Blood ◽  
1993 ◽  
Vol 81 (2) ◽  
pp. 475-481 ◽  
Author(s):  
C Labbaye ◽  
J Zhang ◽  
JL Casanova ◽  
M Lanotte ◽  
J Teng ◽  
...  

Abstract Retinoic acid is known to induce differentiation of human myeloid leukemia cells in vitro. Recently, all-trans retinoic acid has been used to induce remissions in patients with acute promyelocytic leukemia, probably through differentiation of the leukemia cells. Myeloblastin (mbn) is a protease that has been identified in the human leukemia cell line HL-60. Downregulation of this protease can inhibit proliferation and induce differentiation of HL-60-derived leukemia cells. Here we have investigated the regulation of mbn messenger RNA (mRNA) expression in two human leukemia cell lines, HL-60 and NB4, treated with all-trans retinoic acid. Under this treatment, downregulation of mbn mRNA was observed in both cell lines, but was considerably delayed in NB4 cells that carry the t(15;17) translocation characteristic of acute promyelocytic leukemia. We have found that multiple mechanisms were involved in the control of mbn mRNA expression. These mechanisms were different in HL-60 and NB4 cells. Our results show that in HL-60 cells, all-trans retinoic acid rapidly decreased transcription of mbn. In contrast, in the t(15;17)-positive NB4 cells treated with all-trans retinoic acid, upregulation of mbn mRNA expression was followed by a late downregulation, both achieved via posttranscriptional mechanisms.


Sign in / Sign up

Export Citation Format

Share Document