Large Scale Generation of Functional Megakaryocytes From Human Embryonic Stem Cells (hESCs) Under Stromal-Free Conditions.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2540-2540
Author(s):  
Feng Li ◽  
Shi-Jiang Lu ◽  
Qiang Feng ◽  
Robert Lanza

Abstract Abstract 2540 Poster Board II-517 Platelets collected from donors have very limited shelf life and are increasingly needed for transfusions. In contrast to donor dependent cord blood or bone marrow CD34+ stem cells, hESCs are a promising alternative source for continuous in vitro production of platelets under controlled conditions. Current procedures for in vitro generation of megakaryocytes/platelets from hESCs are not efficient and require undefined animal stromal cells. We have developed a novel system to generate megakaryocytes (MKs) from human ES cells under serum and stromal-free conditions. In the current system, hESCs are directed towards megakaryocytes through distinct steps including embryoid body formation and hemangioblast development (Lu et al, Nature Methods, 4:501–509, 2007). A transient bi-potential cell population expressing both CD41a and CD235a markers has been identified at the end of hemangioblast culture. These cells are capable of generating both MKs and erythroid cells as demonstrated by FACS sorting and CFU assays. TPO, SCF and IL-11 are used to further direct MK differentiation of hemangioblasts derived from human ES cells in suspension culture. Currently, up to 2.5×107 MKs (CD41a+) can be generated from 1×106 hESCs, which is approximately 10 times more efficient than recently reported methods (Takayama et al Blood, 111(11):5298–5306, 2008). Without further purification, >90% of live cells from the suspension cultures are CD41a+ and the majority of these cells are also CD42b+ (>70%). These in vitro derived MK cells have morphological characteristics of mature, polyploid MKs as shown by Giemsa staining and immunofluorescent staining of vWF in cytoplasmic granules. Importantly, proplatelet forming cells are constantly observed at the late stage of MK culture indicating that MKs generated in this system are able to undergo terminal differentiation under feeder-free conditions. Platelet-like particles are also detected in culture media by FACS. When plated on OP9 cells, these MKs generate functional platelets that are responsive to thrombin stimulation. In summary, we have established a novel system for the generation of platelet-producing MKs from human ES cells that is suitable for scale up and future preclinical and clinical studies. Disclosures: Li: Stem Cell & Regenerative Medicine International: Employment. Lu:Stem Cell & Regenerative Medicine International: Employment. Feng:Stem Cell & Regenerative Medicine International: Employment. Lanza:Stem Cell & Regenerative Medicine International/Advanced Cell Technology, Inc: Employment.

2007 ◽  
Vol 19 (1) ◽  
pp. 231
Author(s):  
S. Wang ◽  
X. Tang ◽  
Y. Niu ◽  
H. Chen ◽  
T. Li ◽  
...  

The rabbit, as a laboratory animal model, has several advantages in the study of human physiological disorders. In this study, stable putative pluripotent rabbit embryonic stem cells (rESCs) were derived from in vivo-fertilized and in vitro-cultured blastocysts. The rabbit ICMs were obtained by 0.05% trypsin–0.008% EDTA treatment and mechanical separation; the ES-like cell colonies seen several days later. ICM-derived outgrowths which were treated with 5 mg/mL-1 dispase, followed by 0.05% trypsin–0.008% EDTA, were mechanically disaggregated into small clumps and reseeded on MEFs. The putative ES cell lines maintained expression of pluripotent cells markers and normal XY karyotype for long periods of culture (>1 month). The putative rESCs expressed alkaline phosphatase, transcription factor Oct-4, stage-specific embryonic antigens (SSEA-1, SSEA-3, and SSEA-4), and tumor-related antigens (TRA-1-60 and TRA-1-81). The morphological characteristics of the putative ESCs are closer to those of human ESCs; their high speed of proliferation, however, is closer to that of mouse ESCs. Putative rabbit ESCs were induced to differentiate into many cell types including trophoblast cells, similar to primate ESCs, in vitro, and formed teratomas with derivatives of the 3 major germ layers in vivo when injected into SCID mice. Using RT-PCR measurement, but with some differences in ligands and inhibitors, and comparing with human and mouse ESCs, the putative rabbit ESCs expressed similar genes related to pluripotency (Oct-4, Nanog, SOX2, and UTF-1) and similar genes of FGF, WNT, and TGF signaling pathways related to the proliferation and self-renewal. Our further research work showed that TGF beta and FGF pathways cooperate to maintain pluripotency of rabbit ESCs similar to those of human ES cells.


Author(s):  
Su-Chun Zhang ◽  
Xue-Jun Li ◽  
M Austin Johnson ◽  
Matthew T Pankratz

Cell therapy has been perceived as the main or ultimate goal of human embryonic stem (ES) cell research. Where are we now and how are we going to get there? There has been rapid success in devising in vitro protocols for differentiating human ES cells to neuroepithelial cells. Progress has also been made to guide these neural precursors further to more specialized neural cells such as spinal motor neurons and dopamine-producing neurons. However, some of the in vitro produced neuronal types such as dopamine neurons do not possess all the phenotypes of their in vivo counterparts, which may contribute to the limited success of these cells in repairing injured or diseased brain and spinal cord in animal models. Hence, efficient generation of neural subtypes with correct phenotypes remains a challenge, although major hurdles still lie ahead in applying the human ES cell-derived neural cells clinically. We propose that careful studies on neural differentiation from human ES cells may provide more immediate answers to clinically relevant problems, such as drug discovery, mechanisms of disease and stimulation of endogenous stem cells.


2009 ◽  
Vol 390 (10) ◽  
Author(s):  
Komal Loya ◽  
Reto Eggenschwiler ◽  
Kinarm Ko ◽  
Malte Sgodda ◽  
Francoise André ◽  
...  

Abstract In regenerative medicine pluripotent stem cells are considered to be a valuable self-renewing source for therapeutic cell transplantations, given that a functional organ-specific phenotype can be acquired by in vitro differentiation protocols. Furthermore, derivatives of pluripotent stem cells that mimic fetal progenitor stages could serve as an important tool to analyze organ development with in vitro approaches. Because of ethical issues regarding the generation of human embryonic stem (ES) cells, other sources for pluripotent stem cells are intensively studied. Like in less developed vertebrates, pluripotent stem cells can be generated from the female germline even in mammals, via parthenogenetic activation of oocytes. Recently, testis-derived pluripotent stem cells were derived from the male germline. Therefore, we compared two different hepatic differentiation approaches and analyzed the generation of definitive endoderm progenitor cells and their further maturation into a hepatic phenotype using murine parthenogenetic ES cells, germline-derived pluripotent stem cells, and ES cells. Applying quantitative RT-PCR, both germline-derived pluripotent cell lines show similar differentiation capabilities as normal murine ES cells and can be considered an alternative source for pluripotent stem cells in regenerative medicine.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4264-4264
Author(s):  
Jin-Young Baek ◽  
Yun-Hee Rhee ◽  
Kwang-Yul Cha ◽  
Hyung-Min Chung

Abstract Prolonged propagation of human embryonic stem (ES) cells is currently achieved by co-culture with primary or immortalized mouse embryonic fibroblast (MEF) cells. In order to replace the heterologous with homologous co-culture systems, an attempt was made using mononuclear cells derived from human fetal liver. Human fetal liver-derived mesenchymal-like stem cells (FL-MLSC) can be maintained for the prolonged period of time. They showed the characteristics of mesenchymal stem cells in various aspects. They retained a normal diploid karyotype and growth characteristics over the successive culture. Human ES cells cultured on human FL-MLSC cells up to 8 passages displayed the unique morphology and molecular markers characteristic for undifferentiated human ES cells as cultured on MEF cells. Alkaline phosphatase activity was detected in human ES cells co-cultured on human FL-MLSC. Immunocytochemical analyses showed that expressions of stage-specific embryonic antigen-3, -4 and Oct-4 were not altered on human ES cells cultured on human FLDSC. Reverse-transcriptase PCR analyses showed that similar expressions of Oct-4 and Nanog genes, markers for undifferentiated ES cells, were also observed in human ES cells cultured on both human FL-MLSC and MEF cells. Furthermore, human ES cells cultured on human FL-MLSC retained unique differentiation potentials in culture when allowed to form embryoid body. Results of this study suggest that human FL-MLSC can support the maintenance of human ES cell in vitro.


2015 ◽  
Vol 27 (1) ◽  
pp. 251
Author(s):  
E. Kim ◽  
C.-K. Lee ◽  
S.-H. Hyun

Pigs are significant as a disease model in translational research. However, authentic porcine embryonic stem cells (ESC) have not yet been established showing limited capacities until now. In this study, a total of 7 primed ESC lines were derived from porcine embryos of various origins, including in vitro-fertilized (IVF), parthenogenetic activation (PA), and nuclear transfer (iPS-NT) from a donor cell with induced pluripotent stem cells (iPSC). We observed typical morphology, intensive alkaline phosphatase activity, and normal karyotype in all pESC lines. Also, the expression of pluripotency markers such as OCT4, Sox2, NANOG, SSEA4, TRA 1–60, and TRA 1–81 was shown in our pESC. We investigated expression of key markers of lineage commitment to confirm the differentiation potentials of the 7 cell lines to formation of EB and all 3 germ layers, such as AFP (endoderm), DESMIN (mesoderm), and CRABP2 (ectoderm) by RT-PCR and Cytokeratin 17 (endoderm), Desmin (mesoderm), and Vimentin (ectoderm) by immunofluorescence analysis. We also examined the XIST gene expression and nuclear H3K27me3 foci from all female cell lines for analysing epigenetic characteristics. Furthermore, we classified 2 colony types (normal and transformed colony) and 3 subpopulations of ES cells composed of transformed colonies with intrinsic morphological characteristics: petaloid rapidly self-renewing cells, small spindle-shaped cells, and large flattened cells. This result will help to approach the goal for establishing authentic naive pluripotent stem cells in pigs and it will make possible sophisticated genetic manipulation to create ideal animal models for preclinical research and studies of human diseases.This work was supported, in part, by a grant from the National Research Foundation of Korea Grant Government (NRF-2012R1A1A4A01004885, NRF-2013R1A2A2A04008751), Republic of Korea.


2017 ◽  
Vol 6 (1) ◽  
pp. 1-7
Author(s):  
Andrzej K. Ciechanowicz

Regenerative medicine is focusing on searching for stem cells, which can be efficiently and safely used for regeneration of damaged tissues and organs. Pluripotent stem cells would be ideal for this purpose. It is because they have the ability to differentiate into cells of all three germ layers (ecto-, meso- and endoderm). One of the sources of their isolation are embryos. For many years, they are made unsuccessful attempts to use of very controversial embryonic stem cells that are isolated from embryos. So strong ethical controversy forced scientists to look for other, undoubted ethically, sources of pluripotent stem cells. Induced pluripotent stem cells are proposed, as a more promising alternative to cells isolated from embryos. Unfortunately, both embryonic stem cells and induced pluripotent stem cells tend to genetic instability leading to the formation of teratomas. In parallel studies scientists try to use of stem cells isolated from adult tissues (e.g. bone marrow cells or adipose tissue) in the regeneration of parenchymal organs. Unfortunately, there is no convincing evidence for most of these cells that can regenerate damaged parenchymal organs. Regenerative medicine more frequently is employed in the otorhinolaryngological therapies. More and more researchers’ efforts are put into the development of an effective method of stimulation (in vitro) of pluripotent stem cells isolated from adult tissue for differentiation of the renewable progenitor stem cells which can keep their potential after transplantation into the recipient (e.g. in the treatment of imbalances or hearing loss). Moreover, there are promising methods for employing of the stem cells potential in tissue engineering as they are more effectively introduced as a clinical therapies.


Blood ◽  
2006 ◽  
Vol 107 (4) ◽  
pp. 1265-1275 ◽  
Author(s):  
Abby L. Olsen ◽  
David L. Stachura ◽  
Mitchell J. Weiss

Embryonic stem (ES) cells exhibit the remarkable capacity to become virtually any differentiated tissue upon appropriate manipulation in culture, a property that has been beneficial for studies of hematopoiesis. Until recently, the majority of this work used murine ES cells for basic research to elucidate fundamental properties of blood-cell development and establish methods to derive specific mature lineages. Now, the advent of human ES cells sets the stage for more applied pursuits to generate transplantable cells for treating blood disorders. Current efforts are directed toward adapting in vitro hematopoietic differentiation methods developed for murine ES cells to human lines, identifying the key interspecies differences in biologic properties of ES cells, and generating ES cell-derived hematopoietic stem cells that are competent to repopulate adult hosts. The ultimate medical goal is to create patient-specific and generic ES cell lines that can be expanded in vitro, genetically altered, and differentiated into cell types that can be used to treat hematopoietic diseases.


Author(s):  
Mayuko Kano ◽  
Hidetaka Suga ◽  
Hiroshi Arima

Abstract The hypothalamus and pituitary have been identified to play essential roles in maintaining homeostasis. Various diseases can disrupt the functions of these systems, which can often result in serious lifelong symptoms. The current treatment for hypopituitarism involves hormone replacement therapy. However, exogenous drug administration cannot mimic the physiological changes that are a result of hormone requirements. Therefore, patients are at a high risk of severe hormone deficiency, including adrenal crisis. Pluripotent stem cells (PSCs) self-proliferate and differentiate into all types of cells. The generation of endocrine tissues from PSCs has been considered as another new treatment for hypopituitarism. Our colleagues established a three-dimensional culture method for embryonic stem cells (ESCs). In this culture, the ESC-derived aggregates exhibit self-organization and spontaneous formation of highly ordered patterning. Recent results have shown that strict removal of exogenous patterning factors during early differentiation efficiently induces rostral hypothalamic progenitors from mouse ESCs. These hypothalamic progenitors generate vasopressinergic neurons, which release neuropeptides upon exogenous stimulation. Subsequently, we reported adenohypophysis tissue self-formation in three-dimensional cultures of mouse ESCs. The ESCs were found to differentiate into both non-neural oral ectoderm and hypothalamic neuroectoderm in adjacent layers. Interactions between the two tissues appear to be critically important for in vitro induction of a Rathke's pouch-like developing embryo. Various endocrine cells were differentiated from non-neural ectoderm. The induced corticotrophs efficiently secreted adrenocorticotropic hormone when engrafted in vivo, which rescued hypopituitary hosts. For future regenerative medicine, generation of hypothalamic and pituitary tissues from human PSCs is necessary. We and other groups succeeded in establishing a differentiation method with the use of human PSCs. Researchers could use these methods for models of human diseases to elucidate disease pathology or screen potential therapeutics.


2019 ◽  
Author(s):  
Aseda Tena ◽  
Yuxiang Zhang ◽  
Nia Kyritsis ◽  
Anne Devorak ◽  
Jeffrey Zurita ◽  
...  

ABSTRACTMild replication stress enhances appearance of dozens of robust recurrent genomic break clusters, termed RDCs, in cultured primary mouse neural stem and progenitor cells (NSPCs). Robust RDCs occur within genes (“RDC-genes”) that are long and have roles in neural cell communications and/or have been implicated in neuropsychiatric diseases or cancer. We sought to develop an in vitro approach to determine whether specific RDC formation is associated with neural development. For this purpose, we adapted a system to induce neural progenitor cell (NPC) development from mouse embryonic stem cell (ESC) lines deficient for XRCC4 plus p53, a genotype that enhances DNA double-strand break (DSB) persistence to enhance detection. We tested for RDCs by our genome wide DSB identification approach that captures DSBs genome-wide via their ability to join to specific genomic Cas9/sgRNA-generated bait DSBs. In XRCC4/p53-deficient ES cells, we detected 7 RDCs, which were in genes, with two RDCs being robust. In contrast, in NPCs derived from these ES cell lines, we detected 29 RDCs, a large fraction of which were robust and associated with long, transcribed neural genes that were also robust RDC-genes in primary NSPCs. These studies suggest that many RDCs present in NSPCs are developmentally influenced to occur in this cell type and indicate that induced development of NPCs from ES cells provides an approach to rapidly elucidate mechanistic aspects of NPC RDC formation.SIGNIFICANCE STATEMENTWe previously discovered a set of long neural genes susceptible to frequent DNA breaks in primary mouse brain progenitor cells. We termed these genes RDC-genes. RDC-gene breakage during brain development might alter neural gene function and contribute to neurological diseases and brain cancer. To provide an approach to characterize the unknown mechanism of neural RDC-gene breakage, we asked whether RDC-genes appear in neural progenitors differentiated from embryonic stem cells in culture. Indeed, robust RDC-genes appeared in neural progenitors differentiated in culture and many overlapped with robust RDC-genes in primary brain progenitors. These studies indicate that in vitro development of neural progenitors provides a model system for elucidating how RDC-genes are formed.


2000 ◽  
Vol 113 (1) ◽  
pp. 5-10 ◽  
Author(s):  
M.F. Pera ◽  
B. Reubinoff ◽  
A. Trounson

Embryonic stem (ES) cells are cells derived from the early embryo that can be propagated indefinitely in the primitive undifferentiated state while remaining pluripotent; they share these properties with embryonic germ (EG) cells. Candidate ES and EG cell lines from the human blastocyst and embryonic gonad can differentiate into multiple types of somatic cell. The phenotype of the blastocyst-derived cell lines is very similar to that of monkey ES cells and pluripotent human embryonal carcinoma cells, but differs from that of mouse ES cells or the human germ-cell-derived stem cells. Although our understanding of the control of growth and differentiation of human ES cells is quite limited, it is clear that the development of these cell lines will have a widespread impact on biomedical research.


Sign in / Sign up

Export Citation Format

Share Document