Reduction of Phosphatidylserine Exposure through Copper Chelation Leads to Reduced Fibrin Deposition After Laser Induced Vascular Injury In Vivo.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3049-3049
Author(s):  
Reema Jasuja ◽  
Hans-Ulrich Pauer ◽  
Regan T Baird ◽  
Bruce Furie ◽  
Barbara Furie

Abstract Abstract 3049 Poster Board II-1025 Colocalization and assembly of blood coagulation factors in the presence of negatively charged phospholipids leads to a 1,000-fold increase in the rate of thrombin generation compared to the solution reaction. We have established prothrombin fragment 1, the region of prothrombin containing the γ-carboxy-glutamic acid domain, as a probe for anionic phospholipids including phosphatidylserine. Prothrombin fragment 1 binds with high affinity to phosphatidylserine-containing membranes in vitro and identifies phosphatidylserine exposure relevant for the site of assembly of coagulation complexes in vivo. In order to determine the effect of phosphatidylserine exposure on thrombus formation during the laser injury model in vivo, we treated mice orally with the Cu2+ chelator tetrathiomolybdate for one week prior to study. This treatment has been shown to suppress phosphatidylserine exposure in rats (PNAS, 100: 6700-05, 2003). After copper chelator treatment, normal partial thromboplastin times (39 sec vs 42 sec, p=0.5) and whole blood counts in treated versus untreated mice were similar, suggesting that copper chelation did not affect the function of coagulation factors or total blood cell counts. Annexin V and Prothrombin fragment 1 were also used to measure phosphatidylserine exposure after thrombin (1 U/ml) stimulation of washed platelets using flow cytometric analysis. Platelets from untreated mice exhibited 2-fold increase in binding of both Annexin V and Prothrombin fragment 1 after thrombin stimulation; these values are similar to those previously reported. In contrast, the platelets of treated mice did not expose phosphatidylserine upon thrombin stimulation. Treatment with copper chelator did not affect platelet degranulation, as determined by surface exposure of P-selectin in flow cytometry. In addition, total phospholipid content and the ratio of outer to inner membrane phospholipids was not affected by treatment with copper chelator, suggesting that any reduction in detection of phosphatidylserine was due to reduction in exposure on the cell surface in response to an appropriate stimulus rather than reduced biosynthesis. Fluorescently conjugated Prothrombin fragment 1 or fluorescently conjugated antibody directed against phosphatidylserine were used as probes to follow the kinetics of phosphatidylserine exposure after the laser injury of cremaster muscle arterioles of a living mouse using high speed fluorescence intravital microscopy. Endogenous platelets were labeled with a fluorescently conjugated Fab fragment of an anti-CD41 antibody and fibrin deposition was measured using a fluorescently conjugated antibody that recognizes fibrin but not fibrinogen. We observed a 42% reduction (median of 18 thrombi, p=0.02) in Prothrombin fragment 1 binding and a 60% reduction (median of 27 thrombi, p=0.0002) in anti-phosphatidylserine binding after laser injury compared to untreated animals (n=58 thrombi). The accumulation of platelets during thrombus formation was not affected by the treatment when compared to untreated mice (p=0.4). On the other hand, fibrin deposition was reduced by 64% in treated mice (median of 38 thrombi, p=0.001) when compared to untreated animals (39 of thrombi). These data suggest that suppression of phosphatidylserine exposure reduces assembly of coagulation complexes resulting in a suboptimal concentration of thrombin for full fibrin generation but sufficient thrombin to activate platelets to yield a normal platelet thrombus. This emphasizes the importance of the exposure of anionic phospholipids as the surface for the colocalization of the coagulation complexes in vivo. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3526-3526 ◽  
Author(s):  
Laurence Panicot-Dubois ◽  
Christophe Dubois ◽  
Barbara C. Furie ◽  
Bruce Furie ◽  
Dominique Lombardo

Abstract Bile Salt Dependent Lipase (BSDL) is an enzyme secreted by pancreatic acinar cells. BSDL, in the presence of primary bile salts, participates in the hydrolysis of dietary lipid esters in the duodenum lumen. This 105 kDa N and O-glycosylated protein has been detected in the plasma of normal subjects. Recent in vitro and in vivo studies demonstrated that pancreatic BSDL reaches the blood via transcytosis through enterocytes. Other studies showed that pancreatic human BSDL is captured by human umbilical vein endothelial cells and induces the proliferation of smooth muscle cells in vitro at BSDL concentrations found in blood, suggesting that this enzyme may play a role in hemostasis and thrombosis. However the specific role of circulating BSDL is unknown. The goal of this study was to determine the possible involvement of circulating BSDL in thrombus formation. We investigated the participation of circulating mouse BSDL in thrombus formation using widefield intravital microscopy in the cremaster muscle of living mice. Thrombi were formed following laser injury of the vessel wall of an arteriole in the cremaster muscle. Pancreatic mouse BSDL, a 74 kDa glycoprotein, was detected using several antibodies directed against either the whole human BSDL (pAbL64, pAbL32) or a peptide based on a sequence in the N-terminal domain of BSDL (Ser326-Thr350; pAbAntipeptide). Mouse and human BSDL share about 80% sequence homology, the main difference localized in the C-terminal domain, which is truncated to the mouse BSDL compared with the human enzyme. All the antibodies are able to specifically recognize the mouse pancreatic BSDL. Using antibodies pAbL64, pAbL32, or pAbAntipeptide we observed specific accumulation of circulating mouse BSDL into the growing thrombus. The circulating BSDL co-localized with platelets present in the thrombus. These results suggest that circulating BSDL is involved in thrombus formation in vivo. In order to determine if BSDL plays a role in platelet activation and aggregation, we performed in vitro studies on human washed platelets. BSDL increased both the amount of phosphatidylserine exposure on the surface of platelets and the activation of αIIbβ3 induced by thrombin. These results indicate that this enzyme can amplify the activation of platelets in vitro. While BSDL alone cannot induce the aggregation of platelets, this enzyme significantly increases the amount of platelet aggregation induced by SFLLRN peptide or thrombin. Altogether, these data suggeste that circulating BSDL participates in the thrombus formation after laser injury of the arterial wall and can amplify both the activation of platelets and the phosphatidylserine exposure, increasing the thrombotic response after vessel injury. This mechanism may be operative in the development of venous thromboembolic disease in pancreatic cancer.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 691-691 ◽  
Author(s):  
Reema Jasuja ◽  
Jaehyung Cho ◽  
Bruce Furie ◽  
Barbara Furie

Abstract We have previously reported that protein disulfide isomerase is required in wild-type mice for platelet thrombus formation and fibrin generation in an in vivo laser injury model of thrombosis (Cho et al. J. Clin. Invest., 2008; 118:1123–31). Fibrin deposition after laser injury to the vessel wall in Par4−/− mice, lacking the G protein-coupled platelet thrombin receptor, is independent of platelets or requires minimal platelet activation or accumulation (Vandendries et al. Proc. Natl. Acad. Sci., 2007; 104:288–92). However, protein disulfide isomerase inhibitors have a dramatic effect on fibrin accumulation in Par4− mice, suggesting that these inhibitors may function by a platelet independent mechanism. Here, we compare the contributions of endothelium and platelet-derived protein disulfide isomerase to fibrin generation in the mouse laser injury model of thrombosis. In vitro studies using cultured human umbilical vein endothelial cells and human aortic endothelial cells show that protein disulfide isomerase can be secreted rapidly into the culture medium from these cells upon thrombin stimulation. Using intravital microscopy, we observe that protein disulfide isomerase is not detectable on the vessel wall prior to laser injury but can be detected on the injured cremaster arteriolar wall and in the developing thrombus very rapidly after laser induced injury in the live mouse. The median integrated fluorescence intensity for protein disulfide isomerase in wild-type mice was compared to wild-type mice injected with 10ug/g mouse of Integrilin, an inhibitor of platelet activation and platelet thrombus formation, and thus, an inhibitor of the contribution of platelet derived protein disulfide isomerase to thrombus formation. Protein disulfide isomerase expression was similar in both treated and untreated animals upto 30 seconds post-laser injury. After 30 seconds, the expression of protein disulfide isomerase in integrilin treated mice was significantly decreased compared to that in untreated mice, indicating that the initial protein disulfide isomerase was derived from the endothelium and later additional protein disulfide isomerase was derived from the platelets following their accumulation in the developing thrombus. Fibrin deposition, a measure of thrombin generation was comparable in wild-type mice that had been treated with Integrilin or treated with a control buffer, suggesting that endothelial-derived protein disulfide isomerase was sufficient for fibrin generation. The rate and amount of fibrin generation was indistinguishable in both groups. Furthermore, inhibition of the protein disulfide isomerase with the function blocking monoclonal antibody RL-90 (3ug/g mouse) eliminated any fibrin deposition in wild-type mice that had been treated with Integrilin. Taken together, these data indicate that endothelium-derived protein disulfide isomerase is necessary to support fibrin deposition in vivo in our laser injury model of thrombus formation. The initial protein disulfide isomerase expressed at the site of injury is derived from endothelial cells but platelets activated at the site of thrombus formation contribute, amplify and sustain protein disulfide isomerase expression.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 369-369 ◽  
Author(s):  
Reema Jasuja ◽  
Freda H. Passam ◽  
Daniel R Kennedy ◽  
Sarah H Kim ◽  
Lotte van Hessem ◽  
...  

Abstract Abstract 369 Protein disulfide isomerase (PDI) is a prototypical member of a large family of oxidoreductases that catalyze posttranslational disulfide exchange necessary for proper protein folding. Despite having an ER retention sequence, PDI has been identified at cellular locations outside the ER. PDI is secreted from platelets and endothelial cells upon agonist stimulation or vascular injury. Secreted PDI is essential for platelet thrombus formation and fibrin generation in vivo. Inhibition of PDI with a non specific thiol inhibitor bacitracin A or a specific inhibitory anti-PDI antibody RL90 leads to decreased thrombus formation and fibrin generation in vivo in the laser injury model of thrombosis in mice (Cho J. et al, 2008, J. Clin. Invest. 118:1123; Jasuja R. et al, 2010 Blood116:4665). We screened a 5000 compound library of known bioactive compounds using an insulin reduction assay with turbidimetric end point to identify potent and selective small molecule inhibitors of PDI. The screen identified 18 inhibitory compounds representative of 13 separate chemical scaffolds, including 3 flavonols. Rutin, a glycoside of the flavonol quercetin, was the most effective inhibitor and inhibited PDI reductase activity with an IC50 of 6.1 μM. Inhibition of PDI by rutin was confirmed in an additional fluorescence-based reductase assay using oxidized glutathione coupled to di-eosin (Di-E-GSSG). Rutin specifically inhibited PDI activity and did not affect reductase activity of other thiol isomerases ERp57, ERp72, ERp5, thioredoxin or thioredoxin reductase. PDI inhibition by rutin was fully and rapidly reversible, indicating that rutin does not covalently bind PDI. Evaluation of rutin binding to immobilized PDI using surface plasmon resonance indicated a KD of 2.8 μM. Quercetin-3-glucuronide, an abundant metabolite of rutin found in plasma, demonstrated an IC50 of 5.9 μM (3.5–10.1 μM, 95% confidence interval). Isoquercetin, hyperoside, and datiscin, other flavonols with a 3-O-glycosidic linkage also inhibited PDI reductase activity. Metabolites of rutin that lack a 3-O-glycoside such as tamarixetin, isorhamnetin, diosmetin, or quercetin did not inhibit PDI reductase activity, whether or not they are hydroxylated or methoxylated at the 3' and 4' positions on ring B of the flavonol backbone. Activation of washed human platelets induced by 50 μM AYPGKF, a PAR4 agonist, was reversibly inhibited by rutin in a dose-dependent manner. Rutin effectively blocked fibrin generation from laser activated human umbilical vein endothelial cells bathed in plasma with an IC50of approximately 5 μM and 95 % reduction in fibrin formation at 10 μM rutin (P<0.001). Intravenous infusion of rutin prior to vessel wall injury in a mouse laser injury model of thrombosis showed a dose dependent inhibition of both platelet thrombus formation and fibrin generation in vivo. Platelet thrombus size was reduced by 71% at 0.1 mg/kg and fibrin deposition was inhibited by 68% with an intravenous dose of 0.3 mg/kg. Orally administered rutin also demonstrated antithrombotic activity. However, diosmetin, a non derivatizable form of flavonol that cannot under glycosylation at position 3 of the C ring did not affect platelet thrombus size or fibrin deposition. Infused exogenous recombinant PDI can overcome the inhibitory effect of rutin on thrombus formation. These results indicate that PDI is the relevant antithrombotic target of rutin in vivo. Rutin is well tolerated at concentrations higher than that required to inhibit PDI activity in vivo. Thus, targeting extracellular PDI for antiplatelet and anticoagulant therapy may be a viable approach to prevent thrombosis in a setting of coronary artery disease, stroke and venous thromboembolism. Disclosures: No relevant conflicts of interest to declare.


2017 ◽  
Vol 117 (03) ◽  
pp. 543-555 ◽  
Author(s):  
Harmanpreet Kaur ◽  
Kathryn Corscadden ◽  
Jerry Ware ◽  
Maha Othman

SummaryPlatelet defects due to hyper-responsive GPIbα causing enhanced VWF interaction, counter-intuitively result in bleeding rather than thrombosis. The historical explanation of platelet/VWF clearance fails to explain mechanisms of impaired haemostasis particularly in light of reported poor platelet binding to fibrinogen. This study aimed to evaluate the defects of platelets with hyper-responsive GPIbα and their contribution to impaired in vivo thrombosis. Using the PT-VWD mouse model, platelets from the hTgG233V were compared to control hTgWT mice. Platelets’ pro-coagulant capacity was evaluated using flowcytometry assessment of P-selectin and annexin V. Whole blood platelet aggregation in response to ADP, collagen and thrombin was tested. Clot kinetics using laser injury thrombosis model and the effect of GPIbα inhibition in vivo using 6B4; a monoclonal antibody, were evaluated. Thrombin-induced platelet P-selectin and PS exposure were significantly reduced in hTgG233V compared to hTgWT and not signifi-cantly different when compared to unstimulated platelets. The hTgG233V platelets aggregated normally in response to collagen, and had a delayed response to ADP and thrombin, when compared to hTgWT platelets. Laser injury showed significant impairment of in vivo thrombus formation in hTgG233V compared to hTgWT mice. There was a significant lag in in vitro clot formation in turbidity assay but no impairment in thrombin generation was observed using thromboelastography. The in vivo inhibition of GPIbα facilitated new – unstable – clot formation but did not improve the lag. We conclude platelets with hyper-responsive GPIbα have complex intrinsic defects beyond the previously described mechanisms. Abnormal signalling through GPIbα and potential therapy using inhibitors require further investigations.Supplementary Material to this article is available online at www.thrombosis-online.com.


Blood ◽  
1991 ◽  
Vol 77 (5) ◽  
pp. 1006-1012 ◽  
Author(s):  
AB Kelly ◽  
UM Marzec ◽  
W Krupski ◽  
A Bass ◽  
Y Cadroy ◽  
...  

Abstract To determine the role of thrombin in high blood flow, platelet- dependent thrombotic and hemostatic processes we measured the relative antithrombotic and antihemostatic effects in baboons of hirudin, a highly potent and specific antithrombin, and compared the effects of heparin, an antithrombin III-dependent inhibitor of thrombin. Thrombus formation was determined in vivo using three relevant models (homologous endarterectomized aorta, collagen-coated tubing, and Dacron vascular graft) by measuring: (1) platelet deposition, using gamma camera imaging of 111In-platelets; (2) fibrin deposition, as assessed by the incorporation of circulating 125I-fibrinogen; and (3) occlusion. The continuous intravenous infusion of 1, 5, and 20 nmol/kg per minute of recombinant hirudin (desulfatohirudin) maintained constant plasma levels of 0.16 +/- 0.03, 0.79 +/- 0.44, and 3.3 +/- 0.77 mumol/mL, respectively. Hirudin interrupted platelet and fibrin deposition in a dose-dependent manner that was profound at the highest dose for all three thrombogenic surfaces and significant at the lowest dose for thrombus formation on endarterectomized aorta. Thrombotic occlusion was prevented by all doses studied. In contrast, heparin did not inhibit either platelet or fibrin deposition when administered at a dose that maximally prolonged clotting times (100 U/kg) (P greater than .1), and only intermediate effects were produced at 10-fold that dose (1,000 U/kg). Moreover, heparin did not prevent occlusion of the test segments. Hirudin inhibited platelet hemostatic function in concert with its antithrombotic effects (bleeding times were prolonged by the intermediate and higher doses). By comparison, intravenous heparin failed to affect the bleeding time at the 100 U/kg dose (P greater than .5), and only minimally prolonged the bleeding time at the 1,000 U/kg dose (P less than .05). We conclude that platelet-dependent thrombotic and hemostatic processes are thrombin-mediated and that the biologic antithrombin hirudin produces a potent, dose-dependent inhibition of arterial thrombus formation that greatly exceeds the minimal antithrombotic effects produced by heparin.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 418-418
Author(s):  
Bruce S. Sachais ◽  
Tiffany Turrentine ◽  
Jeanine M. Dawicki-McKenna ◽  
Daniel J. Rader ◽  
M. Anna Kowalska

Abstract There is a presence of circulating, activated platelets in blood of patients with atherosclerosis, coronary disease and hypercholesterolemia. Upon activation, platelets release a large amount of platelet factor 4 (PF4), a platelet specific chemokine. Our laboratory has previously demonstrated several potentially proatherogenic properties of PF4 including alteration of LDL metabolism and cellular trafficking, and activation of NFkB, a proinflammatory transcription factor involved in atherosclerosis. We have also localized PF4 to human atherosclerotic lesions. However, to date, no direct in vivo evidence for the involvement of PF4 in atherogenesis. In the current study, we have bred PF4−/− mice onto two athero-susceptible backgrounds, WT-C57Bl/6(WT) and apoE−/−, to examine the importance of PF4 in atherogenesis. PF4−/− and PF4−/−apoE−/− (DKO) mice are viable and healthy, with no spontaneous bleeding disorders. In order to induce atherosclerosis, WT and PF4−/− mice were fed an atherogenic Paigen diet for 30 weeks (Study 1), while apoE−/− and DKO mice were fed a high fat Western style diet for 10 weeks (Study 2). Examination of lesions in the aortic roots of Study 1 animals demonstrated a 5-fold reduction in PF4−/− compared to WT mice (p = 0.008). Measurement of cholesterol levels demonstrated similar total and non-HDL cholesterol levels in WT and PF4−/− mice. However, HDL cholesterol was significantly increased in PF4−/− mice compared to WT (2.5-fold, p = 0.001). Examination of apoE−/− mice (Study 2) demonstrated similar changes, with DKO mice demonstrating a 2.7-fold reduction in aortic atherosclerosis (measured by the en face method; p = 0.03) and a 1.7-fold increase in HDL cholesterol (p = 0.02) compared to apoE−/− mice. Although platelet counts were increased by ~30% in mice lacking PF4, the activation state of the platelets in our mice at sacrifice (WT vs PF4−/− and apoE−/− vs DKO) were similar as measured by both p-selectin expression and annexin V binding. These data demonstrate, for the first time, that the platelet specific chemokine PF4 promotes atherosclerotic lesion development in vivo.


2007 ◽  
Vol 117 (4) ◽  
pp. 953-960 ◽  
Author(s):  
Christophe Dubois ◽  
Laurence Panicot-Dubois ◽  
Justin F. Gainor ◽  
Barbara C. Furie ◽  
Bruce Furie

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3512-3512
Author(s):  
Minh Hua ◽  
Leonardo Pasalic ◽  
Robert Lindeman ◽  
Philip Hogg ◽  
Vivien M Chen

Abstract Strong agonist stimulation generates a platelet subpopulation characterized by phosphatidylserine (PS) exposure, loss of mitochondrial membrane potential and high fibrinogen retention. This population is proposed to be procoagulant, dependent on formation of the mitochondrial permeability transition pore (mPTP) with a distinct role from activated aggregratory platelets. These platelets have features of necrosis. The functional relevance of necrotic platelets in vivo is unknown due to lack of a suitable marker for these platelets. We show that a novel small molecule cellular necrosis marker, GSAO1, labels a procoagulant platelet subpopulation with features of necrosis and use it to explore the functional role of these platelets. We demonstrated using flow cytometry analysis of washed human platelets that fluorescently tagged GSAO labels a subpopulation of P-selectin positive platelets after thrombin and collagen stimulation with features of necrosis: high annexin V binding, calcein loss and dependence on exogenous calcium. This population is not dependent on the intrinsic apoptosis pathway as there was no change with pancaspase inhibition using ZVADFMK prior to dual agonist stimulation (p=0.567, n=5). In contrast, inhibition of mPTP formation through cyclophilin-D inhibition with cyclosporine A significantly inhibited GSAO+ve platelet generation (p<0.001, n=5), confirming dependence on the mitochondrial necrosis pathway. Mass spectrometry analysis of biotin-GSAO labelled proteins from platelets after streptavidin pull down identified thromboxane A synthase (TBXAS-1) as the major binding ligand after dual stimulation. Binding to TBXAS-1 was abrogated by dithiol alkylation, showing the mechanism of retention of GSAO in necrotic platelets is via covalent cross linking of closely-spaced cysteine thiols in the ligand. This allows persistent signal from the probe within the necrotic platelet with no evidence of washout. GSAO+ve platelets correlated with procoagulant potential as measured by peak and endogenous thrombin potential in the calibrated automated thrombogram (CAT) assay. Linear regression analysis showed a significant relationship between % change in GSAO+ve platelets and % change in peak thrombin after treatment with cyclosporine A or in absence of exogenous calcium (R2=0.648, p<0.01), indicating that GSAO identifies a procoagulant subpopulation. In contrast, no relationship was seen between P-selectin and peak thrombin values (R2=0.002). Inhibition of platelet activation by aspirin had no effect on the generation of GSAO+ve platelets indicating a potential uncoupling between platelet activation and necrosis pathways. After establishing that the imaging compound does not affect platelet function and coagulation in vitro, or thrombus formation in vivo, we went on to investigate the presence of GSAO+ve necrotic platelets in thrombus formation in a collagen dependent (ferric chloride) and collagen independent (laser injury) murine model of thrombosis. Confocal intravital imaging of the cremaster arterioles with fluorescent GSAO and tagged-CD42b demonstrated GSAO+ve platelets in the occlusive platelet aggregate after initiation with 10% ferric chloride. The GSAO+ve aggregating platelets specifically colabeled with calcium sensing dye rhodamine 2 indicating high sustained intracellular calcium, consistent with a necrotic phenotype. There was no signal with active site replaced control GSCA. In contrast, the laser injury model showed minimal staining with GSAO three minutes post laser injury. Using a novel platelet necrosis marker, we are able to demonstrate that necrotic platelets are procoagulant and present in the occlusive ferric chloride model and not in the non-occlusive laser injury model of thrombosis. This suggests excess platelet necrosis may be a key driving factor underlying pathological occlusive thrombi. GSAO is a promising tool for understanding factors that potentiate platelet necrosis which may offer attractive anti-thrombotic targets. 1. Park D, Don AS, Massamiri T, et al. Noninvasive imaging of cell death using an hsp90 ligand. J Am Chem Soc. 2011;133(9):2832-2835. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2006 ◽  
Vol 108 (2) ◽  
pp. 510-514 ◽  
Author(s):  
Miroslava Požgajová ◽  
Ulrich J. H. Sachs ◽  
Lutz Hein ◽  
Bernhard Nieswandt

Platelet activation plays a central role in hemostasis and thrombosis. Many platelet agonists function through G-protein–coupled receptors. Epinephrine activates the α2A-adrenergic receptor (α2A) that couples to Gz in platelets. Although α2A was originally cloned from platelets, its role in thrombosis and hemostasis is still unclear. Through analysis of α2A-deficient mice, variable tail bleeding times were observed. In vitro, epinephrine potentiated activation/aggregation responses of wild-type but not α2A-deficient platelets as determined by flow cytometry and aggregometry, whereas perfusion studies showed no differences in platelet adhesion and thrombus formation on collagen. To test the in vivo relevance of α2A deficiency, mice were subjected to 3 different thrombosis models. As expected, α2A-deficient mice were largely protected from lethal pulmonary thromboembolism induced by the infusion of collagen/epinephrine. In a model of FeCl3-induced injury in mesenteric arterioles, α2A–/– mice displayed a 2-fold increase in embolus formation, suggesting thrombus instability. In a third model, the aorta was mechanically injured, and blood flow was measured with an ultrasonic flow probe. In wild-type mice, all vessels occluded irreversibly, whereas in 24% of α2A-deficient mice, the initially formed thrombi embolized and blood flow was reestablished. These results demonstrate that α2A plays a significant role in thrombus stabilization.


Blood ◽  
2009 ◽  
Vol 114 (5) ◽  
pp. 932-933 ◽  
Author(s):  
Walter H. A. Kahr

In this issue of Blood, Graham and colleagues demonstrate the importance of platelet dense granule secretion for in vivo platelet accumulation following laser injury, which is mediated by the SNARE protein Endobrevin/VAMP-8.


Sign in / Sign up

Export Citation Format

Share Document