Diverse Roles of Hepatocyte Growth Factor (HGF) in Normal Karyotype Acute Myeloid Leukemia (AML).

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3107-3107
Author(s):  
Ian McInnis ◽  
Theresa Hahn ◽  
Anasitasia Ioane ◽  
Ashleigh Lamson ◽  
Deepika Lal ◽  
...  

Abstract Abstract 3107 Poster Board III-44 Prior studies have demonstrated that hepatocyte growth factor (HGF) regulates proliferation and differentiation of normal hematopoietic progenitors. HGF activity occurs primarily via interactions with the c-met receptor, a tyrosine kinase receptor found on epithelial and some cancer cells. In solid tumors, HGF/c-met interactions mediate increased neoplastic invasion, metastases, and angiogenesis. However, in vitro, HGF has also been shown to mediate anti-tumor effects in leukemia cell line models. To better elucidate the role of HGF in acute leukemogenesis, we evaluated HGF and c-met gene expression in 91 normal karyotype acute myeloid leukemia (NK-AML) patient samples previously characterized for marrow angiogenesis (CD31+ microvessels), FLT-3/NPM-1 gene mutation, and pro-angiogenic factors and receptors (specifically vascular endothelial growth factors (VEGF-A and C) and their receptors). Median patient age was 66 years (range 21-87) with 49 women and 42 men. AML disease FAB subtypes M2 (37%) and M1 (36%) subtypes were most common. Median presenting white blood cell count (WBC) was 32,000/μL (range 0.43-555,000/μL) with marrow blasts of 70.6% (range 15-95.4%). Fourteen percent presented with extramedullary disease. Median OS was 9.4 months (95% CI 6.7 to 11.5 months), with median EFS of 8 months (95% CI 5.7 to 11.5 months) for all patients. Seventy-nine patients received cytarabine and anthracycline-based induction chemotherapy with 58% (n=46) achieving complete remission (CR). Marrow aspirate samples were evaluated by quantitative real-time polymerase chain reaction with levels expressed relative to normal bone marrow controls (set =1). We found that HGF gene expression was upregulated in most primary NK-AML patient samples, with 88% expressing higher HGF than normal bone marrow. Median HGF expression in AML samples was 7.73 fold higher than normal controls. Multivariate analysis including age, complete remission, marrow blasts, extramedullary disease, and expression of other angiogenic factors and receptors as covariables, showed high HGF expression to be significantly associated with both longer overall and event-free survival. Surprisingly, HGF gene expression was found to be negatively correlated with microvessel density and NPM-1 mutation and positively correlated with the VEGF receptor neuropilin-1 (NRP-1) which has been reported to function as co-mediator of HGF activity. No association between HGF and FLT-3 ITD mutation was noted. The majority of AML samples did not express the HGF receptor, c-met, suggesting that HGF function in AML occurs primarily via paracrine interactions with surrounding vascular and stromal cells and/or HGF/NRP-1 autocrine pathways. Further analysis confirmed no significant correlation between HGF and c-met gene expression in AML samples but did demonstrate a subset of NPM-1+ HGF+ AML samples (n=7) expressing high levels of both HGF and c-met (p=0.0005, r=0.96). To confirm whether HGF/c-met autocrine interactions contributed to leukemogenesis in these cells, we treated immunodeficient mice engrafted with an HGF+ c-met+ human AML cell line (HEL) with vehicle vs. a c-met tyrosine kinase inhibitor, and noted growth inhibitory effects following c-met blockade. Conclusions HGF gene expression was an independent predictive factor for improved clinical outcome and was associated with NRP-1 expression, lower microvessel density, and NPM-1 negative status in normal karyotype AML patients. A subset of AML samples was identified with high concordant HGF and c-met expression consistent with autocrine pathways. Inhibition of HGF/c-met interactions in a preclinical AML model exerted anti-tumor effects. Additional studies of the diverse roles of HGF in myeloid leukemogenesis are warranted. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 4509-4509
Author(s):  
Annalisa Di Ruscio ◽  
Francesco D’Alò ◽  
Francesco Guidi ◽  
Emiliano Fabiani ◽  
Giuseppe Leone ◽  
...  

Abstract The myeloid transcription factors C/EBPalpha and PU.1 play a pivotal role in normal hematopoiesis and alterations of their function are involved in the pathogenesis of Acute Myeloid Leukemia (AML). So far, different mechanisms have been shown to affect their function and are important in some AML subsets. However most AML patients do not apparently show any alteration of these transcription factors. Here, we investigated C/EBPalpha and PU.1 mRNA levels by real time RT-PCR in 109 AML patients and correlated these data to morphology, FLT3 mutations and cytogenetics. C/EBPalpha and PU.1 levels were expressed as percentage of 18S. Twelve normal bone marrow mononuclear cells, four CD34+ cells isolated from normal bone marrow samples and 8 peripheral blood granulocytes and monocytes, were used as controls. Heterogeneous PU.1 expression was observed in AML patients (median 0.657, range 0.004 – 24.148), while PU.1 levels were more homogeneous in normal bone marrows (median 1.5, range 0.328 – 4.737). In particular, 55 AML patients (50.5%) had PU.1 levels similar to controls, while 37 patients (33.9%) and 17 patients (15.6%) expressed PU.1 levels at levels lower and higher, than the control range, respectively. In the same way, also C/EBPalpha mRNA expression was variable (median 0.047, range 0.0002 – 1.858 in AML and median 0.064, range 0.008 – 0.138 in normal bone marrows). Fourty-five AML patients (41.%) displayed C/EBPalpha levels similar to the normal range, while 26 patients (23.8%) had lower and 37 (33.9%) higher C/EBPalpha expression. Looking at different AML subsets, we found low C/EBPalpha mRNA in patients carrying recurrent chromosomal abnormalities, such as t(8;21) and inv16, as previously reported. On the other hand, patients carrying 11q23 rearrangements showed higher PU.1 levels than normal controls. No association was found between C/EBPalpha and PU.1 levels and therapy-related AML, AML with normal karyotype, AML with multilineage dysplasia, and AML not otherwise characterized (including previous F.A.B. categories). Although experimental models showed that FLT3 internal tandem duplications (ITD) downregulate both transcription factors, we did not find any association between the presence of FLT3 ITD and D835 mutations and C/EBPalpha and PU.1 levels, both in the whole patient group and in patients with normal karyotype. We then analyzed expression of two PU.1 and C/EBPalpha target genes, the M-CSF and G-CSF receptors, in patients expressing high and low levels of these transcription factors. A direct correlation was found between C/EBPalpha and G-CSFR levels (Spearman r = 0.5; p=0.02, 95% C.I. 0.07 – 0.78), while there was a tendency to correlation between PU.1 and M-CSFR, that did not reach the statistical significance. Since mutations and post-trascriptional events may affect C/EBPalpha and PU.1 function, we analyzed protein expression of 18 patients by Western Blotting. PU.1 protein was expressed by all patients. The functional p42 C/EBPalpha isoform was absent in 2 patients that expressed only the 30 kDa isoform, and was undetectable in 5 of 18 patients. In conclusion, down regulation of PU1 mRNA was found in one third of AML patients, consistently with the oncosuppressive role recently described. On the other side, C/EBPalpha is down-regulated in specific AML subsets, with recurrent cytogenetic abnormalities, while mutations and post-translational events could affect C/EBPalpha expression in other patients.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2553-2553
Author(s):  
Kellie M. Demock ◽  
Joseph Marinaro ◽  
Ian McInnis ◽  
Laurie Ann Ford ◽  
Meir Wetzler ◽  
...  

Abstract Emerging data has shown that severe hypoxia in vitro selects for highly immature or therapy-resistant leukemia clones and may be a crucial component of leukemia stem cell niches. One mechanism utilized by normal cells to survive hypoxia is upregulation of hypoxia inducible factor-1α (HIF-1α), a master transcription factor that directly transactivates genes important for cellular responses to hypoxia including angiogenesis and anaerobic metabolic pathways. HIF-1α is rapidly degraded under normoxia but is stabilized and synthesized under hypoxia or following malignant transformation. Overexpression of HIF-1α protein is associated with increased patient (pt) mortality in multiple solid cancer types, and with worse clinical outcome in pediatric acute lymphoblastic leukemia; however, its role in acute myeloid leukemia (AML) is unknown. First, we examined the response of human AML cells in vitro to hypoxic stress. We found that in vitro exposure of human AML cell lines (HEL, HL60/VCR) with low baseline HIF-1α levels to hypoxia (≤1% O2, 5%CO2) resulted in significantly increased HIF-1α mRNA levels after 4 hours followed by increased HIF-1α protein and elevated VEGF-A and VEGFR-1 mRNA levels peaking at 8 hours. We then examined expression of HIF-1α and a related hypoxia factor, HIF-2α, in diagnostic marrow samples from 91 consecutive AML pts (46% male, 54% female) treated at our institute from 1995–2005. As karyotype is the most important prognostic factor in AML, we examined only normal karotype AML samples associated with intermediate prognosis. Median patient age was 66 years (range 21–87). Less than half (n=46, 49%) achieved complete remission (CR) following induction chemotherapy. Median overall survival (OS) was 9.6 months. HIF-1α and HIF-2α levels were measured by Q-PCR and expressed relative to normal bone marrow controls (level of mRNA expression=1). HIF-1α protein expression was also evaluated by immunohistochemistry (IHC) and qualified as nuclear vs. cytoplasmic. We found that HIF-1α mRNA levels were consistently higher in AML cells than normal bone marrow controls (median fold change 2.78; range 0.48–22.89), although HIF-1α protein levels was increased in only a minority of samples. In contrast, HIF-2α mRNA levels were consistently lower in AML samples than normal bone marrow (median 0.14; range 0.7–0.42). Univariate analysis demonstrated that age, CR, and nuclear HIF-1α protein expression by IHC (p=0.0081) impacted OS. Significant factors for event free survival (EFS) were age, CR, and cytoplasmic HIF-1α IHC expression (p=0.0422). Multivariate analysis demonstrated that age, CR, cytoplasmic HIF-1α IHC expression (p=0.0056; HR=0.22; 95% CI=0.07–0.64) and HIF-2α mRNA expression (p=0.0101; HR=0.16; 95% CI=0.04–0.65) were independent predictors for OS. Similarly, age, CR, cytoplasmic HIF-1α IHC expression (p=0.0302; HR=0.26; 95% CI=0.08–0.88), and HIF-2α mRNA levels (p=0.0016, HR 0.08, 95% CI= 0.02–0.39) were also independent factors for EFS. Conclusions: Our results are the first to demonstrate that overexpression of HIF-1α and HIF-2α are independent prognostic factors in normal karyotype AML (constituting 40–49% of all adult AML diagnoses). Given the fact that HIF expression can be upregulated by oncogenes and tumor suppressors, additional studies examining potential correlations between HIF-1/2α expression and FLT-3/NPM-1 gene mutations in NK-AML; and in other prognostic AML subgroups (i.e. AML with recurrent or complex cytogenetics) are warranted. Based on these data, inhibition of HIF-1/2α mediated pathways with targeted agents may represent a future means to improve clinical outcome for subsets of AML patients.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2552-2552
Author(s):  
Kellie M. Demock ◽  
Joseph Marinaro ◽  
Amanda Sobczyk ◽  
Laurie Ann Ford ◽  
Meir Wetzler ◽  
...  

Abstract Vascular endothelial growth factor (VEGF), the most important angiogenic factor in tumor biology, contributes to acute myeloid leukemia (AML) growth via multiple paracrine interactions. Expression of VEGF receptors (VEGFR) by some AML cells also allows VEGF to function as a direct cell-autonomous autocrine growth factor promoting survival and chemoresistance. Although VEGF isoforms and VEGFR have been previously been identified in AML patient samples, very few studies have examined the prognostic impact of concomitant VEGF/VEGFR expression in this disease or in subsets of AML by prognostic karyotype. We examined expression of two VEGF ligands (VEGF-A, -C) and three VEGFR (VEGFR-1, R-2, R-3) in diagnostic marrow samples from 91 consecutive AML pts (46% male, 54% female) with normal karyotype (NK) treated at our institute from 1995–2005. Median patient age was 66 years (range 21–87). Less than half (n=46, 49%) achieved complete remission (CR) following induction chemotherapy. Median overall survival (OS) was 9.6 months. Levels of VEGF-A, -C, VEGFR-1, R-2, and R-3 mRNA were measured by Q-PCR and expressed relative to normal bone marrow controls (level of mRNA expression=1). VEGF-A and -C protein expression was also evaluated by immunohistochemistry (IHC). We found that the majority of AML samples overexpressed VEGF-A (median 1.35 fold increase, range 0.06–12.18) and underexpressed VEGF-C (median 0.49, range 0.03–27.93) by Q-PCR. IHC confirmed that most marrow AML cells were positive for VEGF-A (n=69/84, 82%) but were not positive for VEGF-C (n=56/86, 65%) protein. VEGFR mRNA expression was found in a minority of NK-AML samples but was highly concordant with co-expression of all three receptors (VEGFR1+R2+R3) identified in one third (27/84, 32%) of all patients. Significant prognostic factors for OS were age, CR, VEGFR-1 (p=0.0146) and VEGFR-2 (p=0.0055). Significant factors for EFS were the same: age, CR, VEGFR-1 (p=0.0146), and VEGFR-2 (p=0.0055). Predictors for leukemia-free survival (LFS, defined as time from CR to relapse/death) were VEGFR-1 (p=0.0289) and elevated WBC at diagnosis (p=0.0265). VEGF-A, and VEGFR-3 expression did not predict for outcome in any analyses. Multivariate analysis confirmed that age and CR were independent prognostic factors in all NK-AML patients; however, the impact of individual VEGFR status on outcome was unable to be determined due to the high concordant sample expression, and concordant expression was not significant. Conclusions: We conclude that the majority of NK-AML marrow samples expressed higher levels of VEGF-A than normal bone marrow. One third of NK-AML samples also expressed one or more VEGFR with a high degree of concordant expression. Both VEGFR-1 and VEGFR-2 overexpression were prognostic factors for OS and EFS, while VEGFR-1 overexpression predicted for leukemia-free survival. These data demonstrating the prognostic significance of VEGFR-1 and VEGFR-2 expression in normal karyotype AML (constituting 40–49% of new AML diagnoses) suggest that the presence of autocrine VEGF-A/VEGFR-1 and VEGF-A/VEGFR-2 mediated loops in these abnormal myeloblasts may confer therapy resistance and/or an increased risk of relapse. Accordingly, targeted therapy directed against multiple VEGFR with novel receptor tyrosine kinase inhibitors, alone or in combination with chemotherapy, could be considered in order to improve clinical outcomes in NK-AML. Potential correlations between VEGFR expression and FLT-3/NPM-1 gene mutations in NK-AML patients are under evaluation.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1427-1427
Author(s):  
Steven M. Kornblau ◽  
Andrew Pierce ◽  
Stefan Meyer ◽  
Farhad Ravandi ◽  
Gautam Borthakur ◽  
...  

Abstract Abstract 1427 Background: In prior proteomic analysis on Acute myeloid leukemia (AML) cell lines evaluating the effects of several leukemogenic oncogenes we observed that transglutaminase2 (TG2) was expressed at greater levels as a consequence of oncogenic transformation. TG2 is a multi-domain, multi-functional enzyme with diverse biological functions, including extracellular matrix formation, integrin-mediated signalling, and signal transduction. It's normal roles remain obscure, but it is linked to the pathogenesis of celiac sprue, neurodegenerative diseases, and some cancers. In malignancy it is reported to be an anti-apoptotic mediator of hypoxia inducible factor (HIF) conferring a growth advantage to tumor cells. Expression has been associated with resistance to chemotherapy and apoptosis. We therefore assess the expression of TG2 protein in primary AML patient samples. METHODS: We analyzed 511 AML samples from patients with newly diagnosed AML using a custom made reverse phase proteomic array. This array included 11 normal bone marrow derived CD34+ samples as controls and had 140 paired same day blood and marrow samples and 49 paired diagnosis and relapse samples. The array was probed with antibodies against 203 targets including TG2 (Abcam, ab2386, UK). Supercurve algorithms were used to generate a single value from the five serial dilutions. Loading control and topographical normalization procedures accounted for protein concentration and background staining variations. RESULTS: Expression of TG2 was statistically similar (p= 0.43) in paired blood and marrow samples and in protein prepared from fresh cells or from cryopreserved cells (p= 0.71). Expression was above, equal to or below that of normal CD34+ cells in 12%, 62%, and 27% of patients. Levels were significantly higher at relapse compared to diagnosis in the 49 paired samples (p = 0.003). Levels were higher in FAB M6 and M7 (P =<0.00001 and < 0.008) and lower in patients with inversion16. Higher TG2 expression was strongly inversely correlated with total WBC (r=.035, p < 0.0001) and the absolute blood blast count (r = −.30, p <0.0001). Patients with higher TG2 level had a shorter but not statistically significant overall survival in the entire cohort, and was not prognostic in subsets stratified based on cytogenetics or mutations (FLT3, NPM1, RAS). Likewise, patients with higher TG2 levels had shorter remission durations, but again this was not significant in the entire cohort or in subsets. Expression of TG2 was significantly correlated with 55 of 203 proteins. Notable among these were numerous integrin and adhesion proteins. Hierarchical clustering of these demonstrated that AML is characterized by two large cohorts, one in which TG2 is elevated and is positively correlated with CD49B, Integrinβ3, FAK, Fibronectin and IGFB2, a second in which TG2 is low and negatively correlated with high expression of Osteopontin, CD11 and, CD44 and a 3rd in which only Caveolin1 is expressed. A Cytoscape interaction plot based on online databases of known protein-protein interactions revealed that TG2 has known interactions with Fibronectin, which it binds and post-translationally modifies, and integrinβ3. In combination this suggests that there is canonical interaction between TG2 and integrin and adhesion proteins active in AML. TG2 expression also correlated positively with numerous anti-apotptosis proteins. CONCLUSION: TG2 is expressed in the majority of cases of AML at levels comparable to normal bone marrow CD34+ cells and levels became significantly higher at relapse suggesting that the protein expression signature associated with high TG2 levels may be selected for, or confer a subtle survival advantage to leukemic blasts. In support of this, while the level of TG2 was not statistically significantly prognostic for either overall survival or remission duration, patents with higher levels were somewhat more likely to relapse, and less likely to be alive beyond 3 years. TG2 has previously been linked to drug resistance in cancer and given the negative correlation between TG2 levels and peripheral blasts observed increased TG2 levels may lead to the protection of the leukemic stem cell due to increased adhesion/reduced motility. TG2 may therefore form part of a network of proteins that define poor outcome in AML patients and potentially offer a target to sensitize AML stem cells to drug treatment. Disclosures: Off Label Use: Clofarabine in AML.


2008 ◽  
Vol 29 (4) ◽  
pp. 243-245 ◽  
Author(s):  
Hayyam Kiratli ◽  
Haluk Demiroğlu ◽  
Serkan Emeç

Cell Reports ◽  
2020 ◽  
Vol 30 (3) ◽  
pp. 739-754.e4 ◽  
Author(s):  
Etienne Paubelle ◽  
Florence Zylbersztejn ◽  
Thiago Trovati Maciel ◽  
Caroline Carvalho ◽  
Annalisa Mupo ◽  
...  

2018 ◽  
Author(s):  
Allegra A. Petti ◽  
Stephen R. Williams ◽  
Christopher A. Miller ◽  
Ian T. Fiddes ◽  
Sridhar N. Srivatsan ◽  
...  

AbstractVirtually all tumors are genetically heterogeneous, containing subclonal populations of cells that are defined by distinct mutations1. Subclones can have unique phenotypes that influence disease progression2, but these phenotypes are difficult to characterize: subclones usually cannot be physically purified, and bulk gene expression measurements obscure interclonal differences. Single-cell RNA-sequencing has revealed transcriptional heterogeneity within a variety of tumor types, but it is unclear how this expression heterogeneity relates to subclonal genetic events – for example, whether particular expression clusters correspond to mutationally defined subclones3,4,5,6-9. To address this question, we developed an approach that integrates enhanced whole genome sequencing (eWGS) with the 10x Genomics Chromium Single Cell 5’ Gene Expression workflow (scRNA-seq) to directly link expressed mutations with transcriptional profiles at single cell resolution. Using bone marrow samples from five cases of primary human Acute Myeloid Leukemia (AML), we generated WGS and scRNA-seq data for each case. Duplicate single cell libraries representing a median of 20,474 cells per case were generated from the bone marrow of each patient. Although the libraries were 5’ biased, we detected expressed mutations in cDNAs at distances up to 10 kbp from the 5’ ends of well-expressed genes, allowing us to identify hundreds to thousands of cells with AML-specific somatic mutations in every case. This data made it possible to distinguish AML cells (including normal-karyotype AML cells) from surrounding normal cells, to study tumor differentiation and intratumoral expression heterogeneity, to identify expression signatures associated with subclonal mutations, and to find cell surface markers that could be used to purify subclones for further study. The data also revealed transcriptional heterogeneity that occurred independently of subclonal mutations, suggesting that additional factors drive epigenetic heterogeneity. This integrative approach for connecting genotype to phenotype in AML cells is broadly applicable for analysis of any sample that is phenotypically and genetically heterogeneous.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4945-4945 ◽  
Author(s):  
Poonkuzhali Balasubramanian ◽  
Ashok kumar Jayavelu ◽  
Ajay Abraham ◽  
Savitha Varatharajan ◽  
Sreeja Karathedath ◽  
...  

Abstract Acute myeloid leukemia (AML) is a clinically and biologically complex and heterogeneous hematopoietic neoplasm. Recent advances in acute myeloid leukemia (AML) biology have lead to prognosticate and predict treatment outcome in AML based on molecular markers. Mutations in NPM1, CEBPA are considered good prognosis and High BAALC, ERG & MN1 expression associate with worse outcome in AML patients treated with standard chemotherapy. Although many efforts have been made to identify genetic mutations and modulated gene expression levels that can be used to predict outcomes in patients with AML, the association between these prognostic markers has not been evaluated. We have reported previously that the NPM1 mutated patients have significantly high dCK and hENT1 gene expression (involved in cytarabine metabolism) and low ABCG2 and ABCB1transporter expression (Abraham et al, ASH abstracts; Nov 2011; 118: 3481 and Nov 2012; 120: 143), suggesting that the good prognostic nature of this mutation is possibly due to the better metabolism and transport of the chemotherapeutic drugs used in induction therapy.  We extended this study to look for association between NPM1/FLT3 mutation status and the RNA expression of other good or poor prognostic markers in patients with AML. We prospectively included 274 adult patients with AML in this study. The median age was 42 years (range 16-74y). AML was diagnosed according to the FAB and WHO classifications. There were 238 patients with de novo AML; Secondary AML -6; Therapy related AML- 2 and Relapsed AML-28. Bone marrow cytogenetics and immunophenotyping analysis was available for all patients at diagnosis and/or relapse. Diagnostic bone marrow MNCs were isolated by ficoll- density gradient centrifugation and stored in trizol reagent for RNA expression and mutation detection. RT-PCR was used to screen AML-ETO and Inv 16, and the expression of BAALC, ERG1, MN1, CXCR4 and WT1were analyzed using RQ-PCR. NPM1-c, FLT3 ITD and TKD were screened using DNA PCR followed by gene-scan, sequencing or RFLP methods. The basic demographics and the frequency of the markers are listed in Table 1. When analyzed separately in normal karyotype AML (NK-AML), the frequencies of the mutations were: NPM1: 52.2%; FLT3-ITD: 24%; TKD: 4.3%. When the RNA expression of BAALC, WT1, ERG1, CXCR4 and MN1 was compared in patients with NPM1 or FLT3 mutations, we noticed that patients with NPM1 had significantly low expression of BAALC, MN1 and ERG1 while those with FLT3 mutations (ITD or TKD) had higher expression of these genes (Figure1). There was no significant association with CXCR4 or WT1 expression and these mutations. When analyzed separately in the normal karyotype AML, these associations were still significant. In addition, the relapsed patients had significantly higher expression of BAALC, MN1, and ERG1 RNA compared to de-novoAML cases (data not shown). To conclude, we show that NPM1 or FLT3 mutations acquire the prognostic significance due to several factors including BAALC, ERG1 and MN1expression levels in addition to drug metabolizing enzymes’ and drug transporter expression. These factors must be taken into consideration when attempting to personalize chemotherapy in AML. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2000 ◽  
Vol 95 (11) ◽  
pp. 3514-3519 ◽  
Author(s):  
Dorina M. van der Kolk ◽  
Edo Vellenga ◽  
Anneke Y. van der Veen ◽  
Leonore Noordhoek ◽  
Hetty Timmer-Bosscha ◽  
...  

Abstract Deletion of the multidrug resistance gene MRP1has been demonstrated in acute myeloid leukemia (AML) patients with inversion of chromosome 16 (inv[16]). These AML patients are known to have a relatively favorable prognosis, which suggests thatMRP1 might play an important role in determining clinical outcome. This study analyzed MRP1 deletion by fluorescent in situ hybridization (FISH), with a focus on inv(16) AML patients. Functional activity of multidrug resistance protein (MRP) was studied in a flow cytometric assay with the use of the MRP substrate carboxyfluorescein (CF) and the inhibitor MK-571. MRP1, MRP2, and MRP6 messenger RNA (mRNA) expression was determined with reverse transcriptase–polymerase chain reaction (RT-PCR). The results were compared with normal bone marrow cells. MRP1deletion was detected in 7 AML patients; 2 cases showed no MRP1FISH signals, and 5 cases had 1 MRP1 signal, whereas in 4 AML patients with inv(16) no MRP1 deletions were observed. A variability in MRP activity, expressed as CF efflux–blocking by MK-571, was observed (efflux-blocking factors varied between 1.2 and 3.6); this correlated with the number of MRP1 genes (r = 0.91, P &lt; .01). MRP activity in the AML cases was not different from normal hematopoietic cells. MRP1 mRNA was detected in patients with 1 or 2 MRP1 FISH signals, but not in patients with no MRP1 signals. MRP2 and MRP6 mRNA were expressed predominantly in AML samples with 1 MRP1 signal, whereas in normal bone marrow cells no MRP2 and MRP6 mRNA was observed. In conclusion, this study shows that MRP activity varies among inv(16) AML cases and does not differ from that in normal hematopoietic cells; this might be in part due to the up-regulation of other MRP genes.


Sign in / Sign up

Export Citation Format

Share Document