Cytokinesis Failure in Fanconi Anemia Pathway Deficient Murine Hematopoietic Stem Cells.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 495-495
Author(s):  
Patrizia Vinciguerra ◽  
Susana Godinho ◽  
Kalindi Parmar ◽  
David Pellman ◽  
Alan D'Andrea

Abstract Abstract 495 Fanconi Anemia (FA) is a rare recessive chromosomal-instability disorder characterized by congenital malformations, a high predisposition to cancer, and progressive bone marrow failure. FA is genetically heterogeneous and, to date, thirteen FA genes have been identified (FANCA, -B, -C, -D1, -D2, -E, -F, -G, -I, -J, -L, -M, -N). The thirteen encoded FA proteins cooperate in a common DNA repair pathway active during the Synthesis (S) phase of the cell cycle. DNA damage detected during replication results in the monoubiquitination of two FA proteins, FANCD2 and FANCI, that translocate into chromatin-associated DNA repair foci where they colocalize with downstream components of the pathway. Partial colocalization with BLM, the RecQ helicase mutated in Bloom's syndrome, has also been described. How disruption of this pathway leads to bone marrow failure is a critical unanswered question. Interestingly, FA cells also have abnormalities that suggest a defect in mitosis, including micronuclei and multinucleation. The objectives of this study were to 1) investigate the role of the FA pathway in normal mitosis and 2) determine whether defects in this function underlie the bone marrow failure of FA patients. For this study, we used HeLa cells transiently or stably knocked down for FA genes, FA patient derived cell lines and hematopoietic stem cells from Fanconi mice models generated in our laboratory (Fancd2-/- and Fancg-/-). First, a polyclonal antibody was raised against FANCI and, together with an anti-FANCD2 antibody, used to investigate the localization of the FANCD2-I complex throughout the cell cycle by immunostaining. FANCI and FANCD2 colocalized to discrete foci on condensed chromosomes in a population of cells in Mitosis (M) phase, consistent with results of Chan et al. (Replication stress induces sister-chromatid bridging at fragile site loci in mitosis. Nat Cell Biol. 2009;11:753-760), Naim and Rosselli (The FANC pathway and BLM collaborate during mitosis to prevent micro-nucleation and chromosome abnormalities. Nat Cell Biol. 2009;11:761-768). These foci were dependent on an intact FA pathway, but did not localize at centromeres and did not increase when the spindle assembly checkpoint was challenged. By immunofluorescence, we showed an increase in the presence of Hoechst positive DNA bridges and PICH positive / BLM positive DNA bridges (Hoechst positive and negative) in anaphase and telophase of FA deficient cells compared to FA proficient cells. This increase of DNA bridges between separating sister chromatids in FA deficient cells correlated with an increase of multinucleated cells. Multinuclearity, scored by immunostaining for microtubules and Hoechst staining for DNA, was the result of cytokinesis failure as observed by live cell imaging. Furthermore, inhibition of apoptosis increased the number of binucleated cells, suggesting that cytokinesis failure led to apoptosis. Importantly, an increase in binucleated cells was also observed in the hematopoietic stem cells population from Fancd2-/- and Fancg-/- mice, compared to wild-type sibling mice, and this increase correlated with elevated apoptosis in those cells. Based on these new findings, we conclude that the Fanconi pathway is required for normal mitosis and hypothesize that apoptosis induced by cytokinesis failure of hematopoietic stem cells may cause the bone marrow failure commonly found in FA patients. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. SCI-32-SCI-32 ◽  
Author(s):  
Agata Smogorzewska

Fanconi anemia, the most common hereditary bone marrow failure disorder, results from defective repair of DNA interstrand crosslinks (ICLs), which covalently link complementary DNA strands causing replication stalling. Mutations in 22 different genes (FANCA-FANCW) have been shown to result in Fanconi anemia. Their protein products work at different stages of DNA repair leading to considerable heterogeneity in human phenotypes. The majority of the FANC gene mutations are recessively inherited with the exceptions of FANCB and FANCR/RAD51. FANCB is X-linked, and all FANCR/RAD51 mutations arise de novo, affect only one allele, and the mutant protein acts as a dominant negative against the wild type protein. Despite advances in the molecular diagnosis of Fanconi anemia, if Fanconi anemia is suspected, chromosome breakage (DEB or MMC) testing on patient cells is essential. We have seen a number of patients referred to the International Fanconi Anemia Registry (http://lab.rockefeller.edu/smogorzewska/ifar/) who are misdiagnosed with Fanconi anemia based solely on the presence of a FANC gene variant in gene panel or whole exome sequencing. Conversely, blood mosaicism may lead to a negative blood chromosome breakage test. If there is a high suspicion of Fanconi anemia, but blood breakage results are negative, breakage test on patient fibroblasts should be performed. Diagnosis of Fanconi anemia should also be entertained in young adults presenting with squamous cell carcinoma of the aerodigestive tract, since this may be their initial presentation of Fanconi anemia and conventional chemotherapy dose would precipitate bone marrow failure in these patients. In my talk, I will discuss the mechanism of the Fanconi anemia repair pathway during DNA replication. Then, I will concentrate on the mechanism of bone marrow failure and tumorigenesis in Fanconi anemia. I will explore the hypothesis that the endogenously produced aldehydes including some that are still unknown, contribute to disease development. Fanconi anemia-deficient hematopoietic stem cells have an autonomous DNA repair defect. Accumulation of DNA damage leads to apoptosis due to the activation of p53. If cells escape death, mutagenesis may lead to the development of leukemia. The sources of endogenous DNA damage are poorly understood. Cell cycle induction of Fanconi anemia pathway-deficientmouse hematopoietic stem cells results in DNA damage and bone marrow failure, which implies that the DNA lesions encountered during replication are the culprit. There is mounting evidence that the endogenous aldehydes, including acetaldehyde and formaldehyde,may cause those DNA lesions. To identify other metabolites that may induce bone marrow failure in Fanconi anemia, we used a library of CRISPR guides to target Cas9 to metabolic genes to screen for and identify synthetic lethality with Fanconi anemia deficiency. We have identifiedALDH9A1as the most significantly depleted gene in FANCD2-/- cells. The synthetically lethal interaction was validated using single gene editing in human umbilical cord-derived hematopoietic stem progenitor cells. We propose a model in which aldehydes that are metabolized by ALDH9A1 accumulate in the absence of this enzyme and cause DNA damage that requires the Fanconi anemia pathway proteins for repair, survival, and suppression of tumorigenesis. We are testing this model using Fanca-/-Aldh9a1-/-mice. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2003 ◽  
Vol 102 (6) ◽  
pp. 2081-2084 ◽  
Author(s):  
Xiaxin Li ◽  
P. Artur Plett ◽  
Yanzhu Yang ◽  
Ping Hong ◽  
Brian Freie ◽  
...  

Abstract The pathogenesis of bone marrow failure in Fanconi anemia is poorly understood. Suggested mechanisms include enhanced apoptosis secondary to DNA damage and altered inhibitory cytokine signaling. Recent data determined that disrupted cell cycle control of hematopoietic stem and/or progenitor cells disrupts normal hematopoiesis with increased hematopoietic stem cell cycling resulting in diminished function and increased sensitivity to cell cycle–specific apoptotic stimuli. Here, we used Fanconi anemia complementation type C–deficient (Fancc–/–) mice to demonstrate that Fancc–/– phenotypically defined cell populations enriched for hematopoietic stem and progenitor cells exhibit increased cycling. In addition, we established that the defect in cell cycle regulation is not a compensatory mechanism from enhanced apoptosis occurring in vivo. Collectively, these data provide a previously unrecognized phenotype in Fancc–/– hematopoietic stem/progenitor cells, which may contribute to the progressive bone marrow failure in Fanconi anemia.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 861-861 ◽  
Author(s):  
Viktor Janzen ◽  
Heather E. Fleming ◽  
Michael T. Waring ◽  
Craig D. Milne ◽  
David T. Scadden

Abstract The processes of cell cycle control, differentiation and apoptosis are closely intertwined in controlling cell fate during development and in adult homeostasis. Molecular pathways connecting these events in stem cells are poorly defined and we were particularly interested in the cysteine-aspartic acid protease, Caspase-3, an ‘executioner’ caspase also implicated in the regulation of the cyclin dependent kinase inhibitors, p21Cip1 and p27Kip1. These latter proteins are known to participate in primitive hematopoietic cell cycling and self-renewal. We demonstrated high levels of Caspase-3 mRNA and protein in immunophenotypically defined mouse hematopoietic stem cells (HSC). Using mice engineered to be deficient in Caspase-3, we observed a consistent reduction of lymphocytes in peripheral blood counts and a slight reduction in bone marrow cellularity. Notably, knockout animals had an increase in the stem cell enriched Lin−cKit+Sca1+Flk2low (LKSFlk2lo) cell fraction. The apoptotic rates of LKS cells under homeostatic conditions as assayed by the Annexin V assay were not significantly different from controls. However, in-vitro analysis of sorted LKS cells revealed a reduced sensitivity to apoptotic cell death in absence of Caspase-3 under conditions of stress (cytokine withdrawal or gamma irradiation). Primitive hematopoietic cells displayed a higher proliferation rate as demonstrated by BrdU incorporation and a significant reduction in the percentage of cells in the quiescent stage of the cell cycle assessed by the Pyronin-Y/Hoechst staining. Upon transplantation, Caspase-3−/− stem cells demonstrated marked differentiation abnormalities with significantly reduced ability to differentiate into multiple hematopoietic lineages while maintaining an increased number of primitive cells. In a competitive bone marrow transplant using congenic mouse stains Capase-3 deficient HSC out-competed WT cells at the stem cell level, while giving rise to comparable number of peripheral blood cells as the WT controls. Transplant of WT BM cells into Caspase-3 deficient mice revealed no difference in reconstitution ability, suggesting negligible effect of the Caspase-3−/− niche microenvironment to stem cell function. These data indicate that Caspase-3 is involved in the regulation of differentiation and proliferation of HSC as a cell autonomous process. The molecular bases for these effects remain to be determined, but the multi-faceted nature of the changes seen suggest that Caspase-3 is central to multiple regulatory pathways in the stem cell compartment.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2358-2358
Author(s):  
Ali Nowrouzi ◽  
Africa Gonzales-Murillo ◽  
Anna Paruzynski ◽  
Ariana Jacome ◽  
Paula Rio ◽  
...  

Abstract Improved protocols using lentiviral vectors have been established with minimal cytokine exposure and short transduction times proving more suitable for overcoming the disease-specific challenge in correcting functionally defective hematopoietic stem cells (HSCs) of Fanconi Anemia (FA) patients. Bone marrow (BM) cells from FA patients were transduced ex vivo with lentiviral vectors (LVs) expressing FANCA and/or EGFP using optimized conditions to preserve the repopulating properties of the primitive hematopoietic stem cells (manuscript submitted). In a forward preclinical screening of possible LV-induced side effects we analyzed the insertional inventory in colonies generated by FA BM cells previously transduced with the LVs. We have established and optimized DNA and RNA isolation procedures for minimal cell numbers, suitable for large scale screening of colony forming cell (CFC) derived colonies by linear amplification-mediated PCR (LAM-PCR) and massive parallel pyrosequencing (454 GS Flx system; Roche). This approach is applicable for detecting early indicators of clonal selection, and is based on the analysis of common integration sites (CIS) and non-random distribution of vector insertions in particular genomic loci. From a total of 180 CFC-derived colonies expressing the EGFP LV marker gene, 298 vector insertions could be sequenced and mapped to the human genome. The analysis of vector targeted gene coding regions showed a non-random genomic distribution of LV insertions, with a significant overrepresentation of RefSeq genes that are part of distinct functional categories. Accordingly vector associated genes are predominantly involved in cellular signal cascades regulated by the MAP Kinase family known to be involved in a wide variety of cellular processes such as proliferation, differentiation, transcription regulation and development. Apart from the observed high integration frequency in genes (>80%), partial loss of vector LTR nucleotides was detected in >10% of the integrants (3–25bp). Notably, >20% of the lentiviral insertions were found to be located in CIS of predominantly 2nd order. Further screening assays of LV transduced CFC-derived colonies will allow a deeper investigation in the functional consequences of such CIS targeting in gene therapy protocols of FA. However our results suggest that the LV transduction of FA BM progenitors leads to a relatively high frequency of insertions in CIS which may be indicative of an insertion based (specific) selection mechanism. We herby show that the ex vivo large scale integration site analyses of CFC-derived colonies from patients considered to undergo gene therapeutic treatments constitutes a robust approach, which combined with mouse preclinical biosafety studies will help to improve the safety of clinical gene therapy protocols. The non-random distribution of LV integrations in CIS associated genes and in genes involved in particular cellular pathways may be indicative for the altered biochemical pathways characteristic of FA stem cells, with reported defects in DNA repair and self-renewal.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2504-2504
Author(s):  
Russell Garrett ◽  
Gerd Bungartz ◽  
Alevtina Domashenko ◽  
Stephen G. Emerson

Abstract Abstract 2504 Poster Board II-481 Polyinosinic:polycytidlyic acid (poly I:C) is a synthetic double-stranded RNA used to mimic viral infections in order to study immune responses and to activate gene deletion in lox-p systems employing a Cre gene responsive to an Mx-1 promoter. Recent observations made by us and others have suggested hematopoietic stem cells, responding to either poly I:C administration or interferon directly, enter cell cycle. Twenty-two hours following a single 100mg intraperitoneal injection of poly I:C into 10-12 week old male C57Bl/6 mice, the mice were injected with a single pulse of BrdU. Two hours later, bone marrow was harvested from legs and stained for Lineage, Sca-1, ckit, CD48, IL7R, and BrdU. In two independent experiments, each with n = 4, 41 and 33% of Lin- Sca-1+ cKit+ (LSK) IL-7R- CD48- cells from poly I:C-treated mice had incorporated BrdU, compared to 7 and 10% in cells from PBS-treated mice. These data support recently published reports. Total bone marrow cellularity was reduced to 45 and 57% in the two experiments, indicating either a rapid death and/or mobilization of marrow cells. Despite this dramatic loss of hematopoietic cells from the bone marrow of poly I:C treated mice, the number of IL-7R- CD48- LSK cells increased 145 and 308% in the two independent experiments. Importantly, the level of Sca-1 expression increased dramatically in the bone marrow of poly I:C-treated mice. Both the percent of Sca-1+ cells and the expression level of Sca-1 on a per cell basis increased after twenty-four hours of poly I:C, with some cells acquiring levels of Sca-1 that are missing from control bone marrow. These data were duplicated in vitro. When total marrow cells were cultured overnight in media containing either PBS or 25mg/mL poly I:C, percent of Sca-1+ cells increased from 23.6 to 43.7%. Within the Sca-1+ fraction of poly I:C-treated cultures, 16.7% had acquired very high levels of Sca-1, compared to only 1.75% in control cultures. Quantitative RT-PCR was employed to measure a greater than 2-fold increase in the amount of Sca-1 mRNA in poly I:C-treated cultures. Whereas the numbers of LSK cells increased in vivo, CD150+/− CD48- IL-7R- Lin- Sca-1- cKit+ myeloid progenitors almost completely disappeared following poly I:C treatment, dropping to 18.59% of control marrow, a reduction that is disproportionately large compared to the overall loss of hematopoietic cells in the marrow. These cells are normally proliferative, with 77.1 and 70.53% accumulating BrdU during the 2-hour pulse in PBS and poly I:C-treated mice, respectively. Interestingly, when Sca-1 is excluded from the analysis, the percent of Lin- IL7R- CD48- cKit+ cells incorporating BrdU decreases following poly I:C treatment, in keeping with interferon's published role as a cell cycle repressor. One possible interpretation of these data is that the increased proliferation of LSK cells noted by us and others is actually the result of Sca-1 acquisition by normally proliferating Sca-1- myeloid progenitors. This new hypothesis is currently being investigated. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. SCI-42-SCI-42
Author(s):  
Toshio Suda

Abstract Abstract SCI-42 Tissue homeostasis over the life of an organism relies on both self-renewal and multipotent differentiation of stem cells. Hematopoietic stem cells (HSCs) are sustained in a specific microenvironment known as the stem cell niche. Adult HSCs are kept quiescent during the cell cycle in the endosteal niche of the bone marrow. Normal HSCs maintain intracellular hypoxia, stabilize the hypoxia-inducible factor-1a (HIF-1a) protein, and generate ATP by anaerobic metabolism. In HIF-1a deficiency, HSCs became metabolically aerobic, lost cell cycle quiescence, and finally became exhausted. An increased dose of HIF-1a protein in VHL-mutated HSCs and their progenitors induced cell cycle quiescence and accumulation of HSCs in the bone marrow (BM), which were not transplantable. This metabolic balance promotes HSC maintenance by limiting the production of reactive oxygen species (ROS), but leaves HSCs susceptible to changes in redox status (1). We have performed the metabolomic analysis in HSCs. Upregulation of pyruvate dehydrogenase kinases enhanced the glycolytic pathway, cell cycle quiescence, and stem cell capacity. Thus, HSCs directly utilize the hypoxic microenvironment to maintain their slow cell cycle by HIF-1a-dependent metabolism. Downregulation of mitochondrial metabolism might be reasonable, since it reduces ROS generation. On the other hand, at the time of BM transplantation, HSCs activate oxidative phosphorylation to acquire more ATP for proliferation. Autophagy also energizes HSCs by providing amino acids during transplantation. ATG (autophagy-related) 7 is essential for transplantation and metabolic homeostasis. The relationship between mitochondrial heat shock protein, mortalin, and metabolism in HSCs will also be discussed. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. SCI-20-SCI-20
Author(s):  
Margaret A. Goodell

Bone marrow failure (BMF), the inability to regenerate the differentiated cells of the blood, has a number of genetic and environmental etiologies, such as mutation of telomere-associated protein genes and immune-related aplastic anemia. Recently, mutations in DNA methyltransferase 3A (DNMT3A) have been found to be associated with approximately 15% of cases of primary myelofibrosis (MF), which can be a cause of BMF. The role of DNMT3A more broadly in hematopoiesis, and specifically in BMF, is currently poorly understood. DNMT3A is one of two de novo DNA methylation enzymes important in developmental fate choice. We showed that Dnmt3a is critical for normal murine hematopoiesis, as hematopoietic stem cells (HSCs) from Dnmt3a knockout (KO) mice displayed greatly diminished differentiation potential while their self-renewal ability was markedly increased1, in effect, leading to failure of blood regeneration or BMF. Combined with loss of Dnmt3b, HSCs exhibited a profound differentiation block, mediated in part by an increase of stabilized b-catenin. While we did not initially observe bone marrow pathology or malignancy development in mice transplanted with Dnmt3a KO HSCs, when we aged a large cohort of mice, all mice succumbed to hematologic disease within about 400 days. Roughly one-third of mice developed frank leukemia (acute lymphocytic leukemia or acute myeloid leukemia), one-third developed MDS, and the remainder developed primary myelofibrosis or chronic myelomonocytic leukemia. The pathological characteristics of the mice broadly mirror those of patients, suggesting the Dnmt3a KO mice can serve as a model for human DNMT3A-mutation associated disease. Strikingly, bone marrow of mice with different disease types exhibit distinct DNA methylation features. These will findings and the implications for disease development will be discussed. We are currently investigating the factors that drive different outcomes in the mice, including stressors such as exposure to interferons. We have hypothesized that HSC proliferation accelerates the Dnnmt3a-associated disease phenotypes. We have previously shown that interferons directly impinge on HSCs in the context of infections. Interferons activate HSCs to divide, generating differentiated progeny and cycling HSCs. Repeated interferon stimulation may permanently impair HSC function and bias stem cell output. When combined with loss of Dnmt3a, interferons may promote BMF. We will discuss broadly how external factors such as aging and infection may collaborate with specific genetic determinants to affect long-term hematopoiesis and malignancy development. Reference: Challen GA, Sun D, Jeong M, et al. Dnmt3a is essential for hematopoietic stem cell differentiation. Nat Genet 2012; 44: 23-31 Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


JCI Insight ◽  
2020 ◽  
Vol 5 (4) ◽  
Author(s):  
Stephanie Heidemann ◽  
Brian Bursic ◽  
Sasan Zandi ◽  
Hongbing Li ◽  
Sagi Abelson ◽  
...  

Blood ◽  
1997 ◽  
Vol 90 (6) ◽  
pp. 2293-2299 ◽  
Author(s):  
G. Prem Veer Reddy ◽  
Cheryl Y. Tiarks ◽  
Lizhen Pang ◽  
Joanne Wuu ◽  
Chung-Cheng Hsieh ◽  
...  

Abstract Hematopoietic stem cells purified from mouse bone marrow are quiescent with less than 2% of Lin− Hoechstlow/Rhodaminelow (Lin− Holow/Rholow) and 10% to 15% of Lin−/Sca+ cells in S phase. These cells enter proliferative cycle and progress through G1 and into S phase in the presence of cytokines and 5% heat-inactivated fetal calf serum (HI-FCS). Cytokine-stimulated Lin− Holow/Rholow cells took 36 to 40 hours to complete first division and only 12 hours to complete each of 5 subsequent divisions. These cells require 16 to 18 hours to transit through G0 /G1 period and 28 to 30 hours to enter into mid-S phase during the first cycle. Up to 56% of Lin− Rholow/Holow cells are high-proliferative potential (7 factor-responsive) colony-forming cells (HPP-CFC). At isolation, HPP-CFC are quiescent, but after 28 to 30 hours of culture, greater than 60% are in S phase. Isoleucine-deprivation of Lin−Holow/Rholow cells in S phase of first cycle reversibly blocked them from entering into second cycle. After the release from isoleucine-block, these cells exhibited a G1 period of less than 2 hours and entered into mid-S phase by 12 hours. Thus, the duration of G1 phase of the cells in second cycle is 4 to 5 times shorter than that observed in their first cycle. Similar cell cycle kinetics are observed with Lin−/Sca+ population of bone marrow cells. Stem cell factor (SCF ) alone, in the presence of HI-FCS, is as effective as a cocktail of 2 to 7 cytokines in inducing quiescent Lin−/Sca+ cells to enter into proliferative cycle. Aphidicolin treatment reversibly blocked cytokine-stimulated Lin−/Sca+ cells at G1 /S boundary, allowing their tight synchrony as they progress through first S phase and enter into second G1 . For these cells also, SCF alone is sufficient for their progression through S phase. These studies indicate a very short G1 phase for stem cells induced to proliferate and offer experimental approaches to synchronize murine hematopoietic stem cells.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1048-1048
Author(s):  
Kazuhiko Ikeda ◽  
Tsutomu Shichishima ◽  
Yoshihiro Yamashita ◽  
Yukio Maruyama ◽  
Hiroyuki Mano

Abstract Paroxysmal nocturnal hemoglobinuria (PNH) is an acquired clonal hematological disorder which is manifested by complement-mediated hemolysis, venous thrombosis, and bone marrow failure. Deficiencies of glycosylphosphatidylinositol (GPI)-anchored proteins, due to mutations in the phosphatidylinositol glycan-class A (PIG-A) gene, contribute to complement-mediated hemolysis and affect all hematopoietic lineages in PNH. However, it is unclear how a PNH clone with a PIG-A gene mutation expands in bone marrow. Although some genes, including the Wilms’ tumor gene (Shichishima et al, Blood, 2002), the early growth response gene, anti-apoptosis genes, and the gene localized at breakpoints of chromosome 12, have been reported as candidate genes that may associate with proliferations of a GPI-negative PNH clone, previous studies were not intended for hematopoietic stem cell, indicating that the differences in gene expressions between GPI-negative PNH clones and GPI-positive cells from PNH patients remain unclear at the level of hematopoietic stem cell. To identify genes contributing to the expansion of a PNH clone, here we compared the gene expression profiles between GPI-negative and GPI-positive fractions among AC133-positive hematopoietic stem cells (HSCs). By using the FACSVantage (Becton Dickinson, San Jose, CA) cell sorting system, both of CD59+AC133+ and CD59− AC133+ cells were purified from bone marrow mononuclear cells obtained from 11 individuals with PNH. Total RNA was isolated from each specimen with the use of RNeasy Mini column (Qiagen, Valencia, CA). The mRNA fractions were amplified, and were used to generate biotin-labeled cDNAs by the Ovation Biotin system (NuGEN Technologies, San Carlos, CA). The resultant cDNAs were hybridized with a high-density oligonucleotide microarray (HGU133A; Affymetrix, Santa Clara, CA). A total of >22,000 probe sets (corresponding to >14,000 human genes) were assayed in each experiment, and thier expression intensities were analyzed by GeneSpring 7.0 software (Silicon Genetics, Redwood, CA). Comparison between CD59-negative and CD59-positive HSCs has identified a number of genes, expression level of which was statistically different (t-test, P <0.001) between the two fractions. Interestingly, one of the CD59− -specific genes isolated in our data set turned out to encode a key component of the proteasome complex. On the other hand, a set of transcriptional factors were specifically silenced in the CD59− HSCs. These data indicate that affected CD59-negative stem cells have a specific molecular signature which is distinct from that for the differentiation level-matched normal HSCs. Our data should pave a way toward the molecular understanding of PNH.


Sign in / Sign up

Export Citation Format

Share Document