Role of the N-Terminal Amino Acid Region of Factor Va Light Chain In Prothrombinase Assembly and Function.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1127-1127
Author(s):  
John L. Vaughn ◽  
Jamila Hirbawi ◽  
Michael A. Bukys ◽  
Michael Kalafatis

Abstract Abstract 1127 The timely activation of prothrombin (II) to thrombin (IIa) by the prothrombinase (IIase) complex is required for the maintenance of hemostasis. The IIase complex is composed of the enzyme factor Xa (fXa) and the cofactor factor Va (fVa) assembled on a membrane surface in the presence of divalent ions. While fXa alone is capable of activating II, the incorporation of fVa into the IIase complex results in a 300,000-fold increase in the catalytic efficiency of fXa for IIa formation. FVa is generated following limited proteolysis of factor V (fV) by IIa at Arg709, Arg1018, and Arg1545, releasing a heavy chain (residues 1–709) and light chain (residues 1546–2196) that associate noncovalently through divalent ions. The A3 domain of the light chain of fVa has been implicated in the interaction of the cofactor with fXa. To determine the contribution of the A3 domain of fVa to IIase assembly and function, synthetic peptides representing residues 1546–1612 were screened for their ability to inhibit IIase. The peptide representing residues 1546–1558 strongly inhibited IIase with an IC50 of 50 μM. Additional fluorometric studies with overlapping pentapeptides from that region revealed that amino acids 1553–1558 were responsible for the observed inhibition. To verify the data from the overlapping pentapeptide studies, site-directed mutagenesis was used to generate a fVa mutant molecule with amino acids 1549–1558 deleted (fVaLCD1). FVaLCD1 demonstrated greatly reduced clotting activity in two-stage clotting assays. Gel electrophoresis of the IIase catalyzed activation of II using fVaLCD1 revealed a 50% reduction in the rate of prothrombin consumption. IIase assembled with fVaLCD1 exhibited a 5-fold increase in the apparent disassociation constant (Kdapp) for the enzyme-cofactor interaction and a 50% reduction in the turnover number (kcat) for the enzyme. To investigate the possibility that amino acids 1549–1558 are important for procofactor activation, the fVaLCD1 mutant was incubated with IIa and visualized with gel electrophoresis. The fVaLCD1 mutant exhibited a greatly reduced rate of IIa catalyzed activation. Additional recombinant fVa molecules with overlapping alanine mutations within the amino acid region 1548–1559 revealed that amino acids 1554–1555 were responsible for the observed effects in fVaLCD1. The recombinant fVa molecule with amino acids 1554–1555 mutated to alanines (fVaAA) demonstrated a greatly reduced clotting activity, an 8-fold increase in the Kdapp for the enzyme-cofactor interaction, and a 50% reduction in the kcat for the enzyme. To further investigate the mutational robustness of fVa against mutations in amino acids 1554–1555, a recombinant fVa molecule with both tyrosine residues in that region mutated conservatively to phenylalanines (fVaFF) was created. The more conservative fVaFF mutant, which differed from fVaWT only in the absence of side-chain hydroxyl moieties, exhibited normal clotting activity, kinetics, and procofactor activation. Altogether, the data demonstrate that amino acids 1554–1555 from the N-terminal region of the fVa light chain are important for IIase assembly and function because they constitute an interactive site for IIa and fXa. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3977-3977
Author(s):  
Melissa A. Blum ◽  
Daniel O. Beck ◽  
Michael Kalafatis

Abstract The procoagulant enzymatic complex, prothrombinase, which is required for normal hemostasis, is composed of the enzyme, factor Xa, the protein cofactor, factor Va, associated on a cell surface in the presence of divalent metal ions. Incorporation of factor Va into prothrombinase and its interaction with factor Xa increases the catalytic efficiency of the enzyme by five orders of magnitude as compared to factor Xa alone. While the importance of the contribution of factor Va to the activity of factor Xa for rapid thrombin formation by prothrombinase at the place of vascular injury has been long established, the consequence of the interaction of the cofactor with the members of prothrombinase and the molecular mechanism by which factor Va accelerates prothrombin activation remains an enigma. Prothrombin is activated following two cleavages (Arg271/Arg320). Depending on the order of peptide bond cleavage different intermediates are formed. Factor Xa alone cleaves prothrombin sequentially, first at Arg271 to produce fragment 1•2 and prethrombin-2, followed by cleavage at Arg320 to produce fragment 1•2 and thrombin. The prothrombinase complex catalyzes the activation of prothrombin following the opposite pathway (Arg320 followed by Arg271), resulting in a formation of an active intermediate (meizothrombin) and a 300,000-fold increase in the rate of the overall reaction compared with the rate of prothrombin activation observed with factor Xa alone. We have shown that amino acid region 307–348 of factor Va heavy chain is critical for cofactor activity. A peptide containing this amino acid sequence (42 amino acids, N42R) was found to interact with fluorescently labeled factor Xa and to inhibit prothrombinase activity. Our present data show that N42R can be cross-linked to the heavy chain of membrane-bound factor Xa in the presence of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC). We have also demonstrated that amino acid region 323–331 from N42R (AP4′) contains a binding site for factor Xa of factor Va heavy chain. Our present data show that a peptide containing amino acid residues 317–326 (AP3) inhibited both prothrombinase activity and the high affinity interaction of factor Va with factor Xa on the membrane surface. Moreover, we have found using site directed mutagenesis and recombinant factor Va that amino acids at the NH2-terminal end of AP4′ (i.e. residues 323–325, Glu-Tyr-Phe) are responsible for the inhibitory effect of AP3 and AP4′ and are crucial for the interaction of factor Va with factor Xa. A tripeptide with this sequence inhibited prothrombinase activity in an assay using a fluorescent thrombin inhibitor. To identify the effect of these peptides on factor Xa’s ability to cleave and activate prothrombin, we studied prothrombin activation by gel electrophoresis. The data demonstrated that several peptides that inhibited both the factor Va-factor Xa interaction on the membrane surface and prothrombinase activity, had the ability to accelerate cleavage of prothrombin by factor Xa alone, in the absence of factor Va. Specifically, N42R and AP3 were found to increase the rate of prothrombin consumption by factor Xa by approximately four-fold when compared to factor Xa acting alone. Both peptides induced acceleration in prethrombin-2 formation suggesting an increased in the rate of cleavage of prothrombin at Arg271. These data suggest that the binding of factor Va to factor Xa through amino acid region 323–331 alone produces an effect on factor Xa that increases its potency for cleavage at Arg271.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3574-3574
Author(s):  
Joesph R Wiencek ◽  
Michael Kalafatis

Abstract Background In the United States, every thirty nine seconds an individual dies from complications from Cardiovascular Diseases. Persistent thrombus formation at the genesis of these diseases, such as stroke and other coagulation disorders, has no full model to date. Intrinsically blood clots are produced due to excessive/unnecessary thrombin formation, which leads to the conversion of fibrinogen to fibrin. As a result the regulation of thrombin formation is critical in controlling clot generation. Upon vasculature damage, the proteolytic conversion of prothrombin (Pro) to thrombin compatible to rates of survival is catalyzed by the prothrombinase complex composed of the enzyme, factor Xa (fXa), the cofactor, factor Va (fVa), assembled on a phospholipid membrane in the presence of calcium ions. Although fXa is capable of activating Pro through the initial cleavage at Arg271 followed by the cleavage at Arg320 (pre2 pathway), it would take approximately six months to form a clot. However, the incorporation of fVa into prothrombinase results in a five-fold increase in the catalytic efficiency of fXa for thrombin generation and the order of cleavages reversed (meizo pathway). Thus the timely arrest of unwarranted bleeding is due to the assembly of prothrombinase at the site of injury. Inevitably the presence and absence of fVa dictates the pathway of Pro activation and previous studies have suggested that fXa interacts with Pro within amino acid region 473-487 in a fVa-dependent manner. Aim To evaluate the role amino acid region 473-487 of Pro has in coagulation. Methods A recombinant Pro molecule with the region 473-487 was deleted (rProΔ473-487) using site-directed mutagenesis. Methotrexate was used for selection to stably transfect BHK-21 cells with rProΔ473-487 and wild-type Pro (rProWT). The two recombinant molecules were purified according to a well-established protocol and, at the last step, Fast Performance Liquid Chromatography was used equipped with a strong anionic Mono-Q 5/50 column. Properly carboxylated rProΔ473-487 and rProWT was isolated and removed from the column by utilizing a calcium gradient. Subsequently Pro deficient plasma was used to assess the molecules clotting activities on a Diagnostica Stago STart® 4 Hemostasis Analyzer. Gel electrophoresis was used to evaluate both recombinant molecules and their ability to generate active thrombin by either the multifaceted prothrombinase or fXa alone. Further studies were then performed using generated recombinant thrombin from the recombinant Pro molecules to investigate in their ability to activate procofactors V (fV) & VIII (fVIII). Results The investigation into the Activated Partial Thromboplastin Time [APTT] revealed clotting activity for human Pro and rProWT to be comparable, whereas rProΔ473-487 was substantially limited in the process of forming a fibrin clot. Next gel electrophoresis and scanning densitometry indicated the consumption of rProΔ473-487 by prothrombinase and subsequent thrombin formation was decreased 24-fold when compared to rProWT. In contrast membrane-bound fXa alone, in the absence of fVa, exhibited a 6-fold increase in the rate of initial cleavage Arg271 and subsequent activation of rProΔ473-487. Both recombinant Pro molecules demonstrated a similar cleavage pattern of activation equivalent with human Pro suggesting no structural alterations took place in rProΔ473-487following the mutation. Furthermore, generated human thrombin and recombinant wild-type thrombin were found to activate fV and fVIII within five minutes while the recombinant mutant thrombin was impeded in the activation process out to three hours. Conclusion Overall the data demonstrate that amino acid sequence 473-487 of Pro plays a preeminent role in 1) timely activation of Pro at initial cleavage Arg320 by prothrombinase, and 2) suitable macromolecular procofactor activation. Thus there is incisive rationale why no major mutations have been identified in this dynamic region which would be problematic for inherent physiological hemostasis. Disclosures: No relevant conflicts of interest to declare.


Biochemistry ◽  
2008 ◽  
Vol 47 (26) ◽  
pp. 6840-6850 ◽  
Author(s):  
Melissa A. Barhoover ◽  
Tivadar Orban ◽  
Daniel O. Beck ◽  
Michael A. Bukys ◽  
Michael Kalafatis

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2221-2221
Author(s):  
Joesph R Wiencek ◽  
Jamila Hirbawi ◽  
Mahesheema Na ◽  
Michael Kalafatis

Abstract Abstract 2221 The intricate process of hemostasis is a highly regulated mechanism which implements the conversion of prothrombin to thrombin and the crucial formation of a fibrin clot. The direct progression of hemostasis is pivotal to the prevention of various clotting disorders associated to hypercoagulation and excess bleeding. Upon vascular injury, the proteolytic conversion of prothrombin to thrombin compatible to rates of survival is catalyzed by the prothrombinase complex composed of the enzyme, factor Xa (fXa), the cofactor, factor Va (fVa), assembled on a phospholipid membrane in the presence of divalent metal ions. Coagulation factor V (fV) is synthesized as a multi-domain (A1-A2-B-A3-C1-C2) quiescent procofactor with nominal procoagulant activity. Following the three sequential catalytic cleavages by a-thrombin at Arg709, Arg1018 and Arg1545 amino acids 710–1545 of the B-domain are liberated to generate the noncovalently associated light and heavy chains of fVa. The cleavage at Arg1545 is crucial for full procoagulant activity. The heterodimer of fVa is composed of a heavy chain associated with the 2 A domains (residues 1–303 and 317–656) and a light chain composed of one A domain (1546-1877) and two C domains (residues 1878–2036 and 2037–2196). Since single chain fV does not bind fXa, the proper removal of the B-domain is vital to generate procoagulant activity. The incorporation of fVa into the prothrombinase complex results in a 300,000-fold increase in the catalytic efficiency of fXa for thrombin generation. Appropriate binding of fVa to fXa during prothrombinase function is essential to the proper activation of the substrate, prothrombin. Previous studies have determined the heavy and light chains of fVa to have fXa interactive sites. A highly basic region of amino acids in the B-domain suggests a potential sheathing of either the heavy or light chain fXa interface sites. To verify this hypothesis we investigated the role of amino acid region 1000–1008 that contains seven basic amino acid residues. To ascertain the role of this region we have constructed a recombinant mutant fV molecule with all activation cleavage sites (R709/R1018/R1545) mutated to glutamine (fV*T3Q), a mutant fV molecule with region 1000–1008 deleted (fVΔ1000-1008), and a mutant fV molecule containing the same deletion with all activation cleavage sites changed to glutamine (fVΔ1000-1008/*T3Q). The recombinant molecules along with wild type fV (fVWT) were transiently expressed in COS7L cells, purified to homogeneity, and assessed for their capability to bind fXa within prothrombinase prior (fV) and after incubation with thrombin (fVa). The data showed that fV*T3Q and fVa*T3Q were unable to interact with fXa. In contrast, the Kd values for fVΔ1000-1008 (0.9 nM), fVaΔ1000-1008 (0.4 nM), fVΔ1000-1008*T3Q (0.7 nM) and fVaΔ1000-1008*T3Q (0.5 nM), were similar to the affinity of fVaWT for fXa (0.22 nM). Two-stage clotting assays revealed that while fVa*T3Q was practically devoid of clotting activity, the mutant molecules fVaΔ1000-1008, and fVaD1000-1008*T3Q had clotting activities comparable to fVaWT. Thus, unactivated fVΔ1000-1008*T3Q has an affinity for fXa that is similar to the affinity of fVaWT for the enzyme. In addition, fVΔ1000-1008*T3Q that cannot be cleaved and activated by thrombin or activated during the course of the clotting assay, has similar clotting activity as fVaWT (∼3110 U/mg). The data presented in this study provide an important insight into one of the possible roles of the B domain of factor V, explicitly the fXa interactive sites on fVa are covered/inhibited by amino acids 1000–1008 of the fV B-domain. These data strongly suggest that amino acid region 1000–1008 of fV contains a regulatory sequence protecting the organisms from spontaneous binding of the procofactor to fXa and unnecessary prothrombinase complex formation which will result in catastrophic physiological consequences. Disclosures: No relevant conflicts of interest to declare.


Biochemistry ◽  
2008 ◽  
Vol 47 (30) ◽  
pp. 7963-7974 ◽  
Author(s):  
Jamila Hirbawi ◽  
Michael A. Bukys ◽  
Melissa A. Barhoover ◽  
Evrim Erdogan ◽  
Michael Kalafatis

2019 ◽  
Vol 87 (8) ◽  
Author(s):  
Sarah J. Bland ◽  
Jason L. Larabee ◽  
Tyler M. Shadid ◽  
Mark L. Lang ◽  
Jimmy D. Ballard

ABSTRACTClostridioides difficiletoxin B (TcdB) is an intracellular toxin responsible for many of the pathologies ofC. difficileinfection. The two variant forms of TcdB (TcdB1 and TcdB2) share 92% sequence identity but have reported differences in rates of cell entry, autoprocessing, and overall toxicity. This 2,366-amino-acid, multidomain bacterial toxin glucosylates and inactivates small GTPases in the cytosol of target cells, ultimately leading to cell death. Successful cell entry and intoxication by TcdB are known to involve various conformational changes in the protein, including a proteolytic autoprocessing event. Previous studies found that amino acids 1753 to 1852 influence the conformational states of the proximal carboxy-terminal domain of TcdB and could contribute to differences between TcdB1 and TcdB2. In the current study, a combination of approaches was used to identify sequences within the region from amino acids 1753 to 1852 that influence the conformational integrity and cytotoxicity of TcdB2. Four deletion mutants with reduced cytotoxicity were identified, while one mutant, TcdB2Δ1769–1787, exhibited no detectable cytotoxicity. TcdB2Δ1769–1787underwent spontaneous autoprocessing and was unable to interact with CHO-K1 or HeLa cells, suggesting a potential change in the conformation of the mutant protein. Despite the putative alteration in structural stability, vaccination with TcdB2Δ1769–1787induced a TcdB2-neutralizing antibody response and protected againstC. difficiledisease in a mouse model. These findings indicate that the 19-amino-acid region spanning residues 1769 to 1787 in TcdB2 is crucial to cytotoxicity and the structural regulation of autoprocessing and that TcdB2Δ1769–1787is a promising candidate for vaccination.


2003 ◽  
Vol 279 (4) ◽  
pp. 3084-3095 ◽  
Author(s):  
Daniel O. Beck ◽  
Michael A. Bukys ◽  
Lisam S. Singh ◽  
Katalin A. Szabo ◽  
Michael Kalafatis

Genetics ◽  
1994 ◽  
Vol 138 (4) ◽  
pp. 1025-1040 ◽  
Author(s):  
C Liu ◽  
X Mao ◽  
A J Lustig

Abstract Alleles specifically defective in telomeric silencing were generated by in vitro mutagenesis of the yeast RAP1 gene. The most severe phenotypes occur with three mutations in the C-terminal 28 amino acids. Two of the alleles are nonsense mutations resulting in truncated repressor/activator protein 1 (RAP1) species lacking the C-terminal 25-28 amino acids; the third allele is a missense mutation within this region. These alleles define a novel 28-amino acid region, termed the C-terminal tail domain, that is essential for telomeric and HML silencing. Using site-directed mutagenesis, an 8-amino acid region (amino acids 818-825) that is essential for telomeric silencing has been localized within this domain. Further characterization of these alleles has indicated that the C-terminal tail domain also plays a role in telomere size control. The function of the C-terminal tail in telomere maintenance is not mediated through the RAP1 interacting factor RIF1: rap1 alleles defective in both the C-terminal tail and RIF1 interaction domains have additive effects on telomere length. Overproduction of SIR3, a dose-dependent enhancer of telomeric silencing, suppresses the telomeric silencing, but not length, phenotypes of a subset of C-terminal tail alleles. In contrast, an allele that truncates the terminal 28 amino acids of RAP1 is refractory to SIR3 overproduction. These results indicate that the C-terminal tail domain is required for SIR3-dependent enhancement of telomeric silencing. These data also suggest a distinct set of C-terminal requirements for telomere size control and telomeric silencing.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1731-1731
Author(s):  
Evrim Erdogan ◽  
Michael Kalafatis

Abstract The factor Va molecule is the essential cofactor of the prothrombinase complex. This complex composed of factor Xa and factor Va assembled on a platelet membrane-surface in the presence of Ca2+ ions converts membrane-bound prothrombin to thrombin. Single chain factor V does not bind factor Xa. Single-chain factor V is cleaved by thrombin first at Arg709 followed by cleavages at Arg1018 and Arg1545 to produce the heavy and light chains of the active cofactor (factor Va) and two activation peptides. Efficient thrombin cleavage and activation of factor V is essential for cofactor function and requires tyrosine sulfation. Tyrosine sulfation of factor V also appears to regulate its activity. Seven tyrosine residues in factor V, Tyr665, Tyr696, Tyr698, Tyr1494, Tyr1510, Tyr1515, and Tyr1565 have been identified as potential sites of sulfation. However, which residues are sulfated and their contribution to procofactor activation and cofactor function still remain to be elucidated. Two of the sulfation sites Tyr696 and Tyr698 are located in the acidic amino acid region near to the first required thrombin cleavage site at Arg709. Recent data demonstrated that these residues are essential for factor V activation and cofactor activity. Another acidic amino acid region, 1490–1520 is adjacent to the thrombin cleavage site at Arg1545 required for light chain formation. This region also contains three potential sulfation sites at residues 1494, 1510, and 1515 and was shown to be required for optimum procofactor activation. To ascertain which of these three residues is important for procofactor activation, site-directed mutagenesis was used to create recombinant factor V molecules with mutations 1493DY1494→AF, 1508DDY1510→AAF and 1514DY1515→AF. The clotting and cofactor activity of the 1493DY1494→AF and 1514DY1515→AF mutants was similar to the clotting activity observed with the wild type recombinant factor Va molecule following activation by thrombin or RVV-V activator. In contrast, under similar experimental conditions recombinant factor V with the substitution 1508DDY1510→AAF was deficient in its clotting activity and had impaired cofactor activity. Moreover, following prolonged incubation with thrombin, no light chain formation was observed in the factor V molecule bearing the 1508DDY1510→AAF mutation. Thus, amino acid residues 1508–1510 of factor V are required for thrombin interaction with the procofactor which in turn appears necessary for cleavage at Arg1545. Studies of sulfated proteins have shown that the effect of sulfo-tyrosines on protein structure/function can be preserved by replacing them with glutamic acid. To explicitly identify the sulfated tyrosines on the factor V molecule, we mutated Tyr696, Tyr698 and Tyr1510 to glutamic acid and transfected them into COS-7L cells. Expression was performed in the presence of media containing or devoid of sulfate. In the presence of sulfate, the cofactor and clotting activities of the DY696DY698→DEDE and DDY1510→DDE mutants, separately were similar to the wild type recombinant factor Va molecule. However, in the absence of sulfate, the wild type and the mutant recombinant factor V molecules had both impaired cofactor activity and clotting activity following their activation with thrombin. However, their respective activity was higher than the activity of the factor V molecule bearing the 1508DDY1510→AAF mutation. Our data suggest that residues 696, 698, and 1510 of factor V appear to be sulfated and might be important for procofactor activation and cofactor function.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2012-2012
Author(s):  
Jamila Hirbawi ◽  
Michael Kalafatis

Abstract Following vascular injury, the process of hemostasis facilitates the generation of thrombin, which in turn allows the formation of a fibrin clot. Without the proper regulation of this process, serious life threatening conditions, such as DVT (deep vein thrombosis), can occur. The proteolytic conversion of prothrombin to thrombin is catalyzed by the prothrombinase complex composed of the enzyme, factor Xa (fXa), the cofactor, factor Va (fVa), assembled on a membrane surface in the presence of divalent metal ions. The incorporation of factor Va (fVa) into the prothrombinase complex results in a 300,000-fold increase in the catalytic efficiency of factor Xa (fXa) for thrombin generation. Factor Va is composed of heavy and light chains. The light chain of the cofactor contains the binding sites of the cofactor to the membrane surface while the heavy chain contains binding sites for the other components of prothrombinase. Portions of the fVa heavy chain have been found to act as fXa binding sites. It has been demonstrated that the COOH-terminal region of factor Va contains cluster of acidic amino acids that are crucial for its cofactor activity. More specifically, amino acid region 695–698 from fVa heavy chain regulates the rate of cleavage of prothrombin at Arg271 by prothrombinase. The COOH-terminal portion of the heavy chain also contains another cluster of acidic amino acids (encompassing residues 659–663). Site-directed mutagenesis was performed to generate a factor V (fV) molecule with region Asp659-Asp663 (fV663) deleted. We have also constructed mutant molecules with regions Lys680-Arg709 and Asp659-Asp663 (fV663+709)) deleted from the COOH-terminal region of the heavy chain. Finally, a mutant molecule containing point mutations in region Asp659-Asp663 where the five amino acids in this sequence are mutated to all lysines (fV5K), was also constructed. These recombinant molecules along with wild type fV (fVWT) were transiently expressed in COS7L cells and assessed for their capability to promote prothrombin activation following activation by thrombin. Prothrombin activation by prothrombinase assembled with the mutant molecules was evaluated by SDS-PAGE and the kinetic parameters of the reactions were determined. SDS-PAGE analyses of prothrombin activation time courses revealed that the overall cleavage of prothrombin by prothrombinase assembled with the recombinant mutant molecules was slower. Two-stage clotting assays revealed that FV663+709, fVa5K, and fVa663 all had reduced clotting activities compared to fVaWT and plasma-derived fVa. Kinetic analyses demonstrated that Kd values for fXa of all the mutants were similar to fVaWT. However, kcat values for the various molecules varied. The kcat values for prothrombinase assembled with fVa5K, and fVa663 were 10-fold reduced when compared to the values obtained with prothrombinase assembled with fVaWT, while prothrombinase assembled with fVa663+709 had a kcat value that was sligtly lower than that of fVaWT. Our data suggest that amino acid region 659–663 from fV plays a crucial role for fVa cofactor acivity and overall the data demonstrate that acidic amino acids from the COOH-terminus of the factor Va heavy chain play a preeminent role in proper prothrombinase complex assembly and function, resulting in competent thrombin formation. These data assign an important regulatory role of the acidic COOH-terminal region of fVa to the activity of factor Xa within prothrombinase. Finally, our data aid in further studies that may lead to the development of small synthetic molecules that could be used as anticoagulants in individuals with thrombotic tendencies.


Sign in / Sign up

Export Citation Format

Share Document