The F-Box Protein NIPA Regulates the Hematopoietic Stem Cell Pool

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2330-2330
Author(s):  
Stefanie Kreutmair ◽  
Anna Lena Illert ◽  
Rouzanna Istvanffy ◽  
Melanie Sickinger ◽  
Christina Eckl ◽  
...  

Abstract Abstract 2330 Hematopoietic stem cells (HSCs) are characterized by their ability to self-renewal and multilineage differentiation. Since mostly HSCs exist in a quiescent state re-entry into cell cycle is essential for their regeneration and differentiation and the expression of numerous cell cycle regulators must be tightly controlled. We previously characterized NIPA (Nuclear Interaction Partner of ALK) as a F-Box protein that defines an oscillating ubiquitin E3 ligase targeting nuclear cyclin B1 in interphase thus contributing to the timing of mitotic entry. To examine the function of NIPA on vivo, we generated NIPA deficient animals, which are viable but sterile due to a defect in recombination and testis stem cell maintenance. To further characterize the role of NIPA in stem cell maintenance and self-renewal we investigated hematopoiesis in NIPA deficient animals. Peripheral blood counts taken at different ages revealed no apparent difference between NIPA knockout and wild type mice in numbers and differentiation. In contrast, looking at the hematopoietic stem cell pool, FACS analyses of bone marrow showed significantly decreased numbers of Lin-Sca1+cKit+ (LSK) cells in NIPA deficient animals, where LSKs were reduced to 40% of wild type littermates (p=0,0171). This effect was only apparent in older animals, where physiologically higher LSK numbers have to compensate for the exhaustion of the stem cell pool. Additionally, older NIPA deficient mice have only half the amount of multi myeloid progenitors (MMPs) in contrast to wild type animals. To examine efficient activation of stem cells to self-renew in response to myeloid depression, we treated young and old mice with the cytotoxic drug (5-FU) four days before bone marrow harvest. As expected, 5-FU activated hematopoietic progenitors in wild type animals, whereas NIPA deficient progenitors failed to compensate to 5-FU depression, e.g. LSKs of NIPA knockout mice were reduced to 50% of wild type levels (p<0.001), CD150+CD34+ Nipa deficient cells to 20% of wild type levels (p<0.0001). Interestingly, these effects were seen in all NIPA deficient animals independent of age, allowing us to trigger the self-renewal phenotype by activating the hematopoietic stem cell pool. Using competitive bone marrow transplantation assays, CD45.2 positive NIPA deficient or NIPA wild type bone marrow cells were mixed with CD45.1 positive wild type bone marrow cells and transplanted into lethally irradiated CD45.2 positive recipient mice. Thirty days after transplantation, FACS analysis of peripheral blood and bone marrow showed reduced numbers of NIPA knockout cells in comparison to NIPA wild type bone marrow recipient mice. This result was even more severe with aging of transplanted mice, where NIPA deficient cells were reduced to less than 10% of the level of wild type cells in bone marrow of sacrificed mice 6 months after transplantation, pointing to a profound defect in repopulation capacity of NIPA deficient HSCs. Taken together our results demonstrate a unique and critical role of NIPA in regulating the primitive hematopoietic compartment as a regulator of self-renewal, cycle capacity and HSC expansion. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2021 ◽  
Author(s):  
Yuqing Yang ◽  
Andrew J Kueh ◽  
Zoe Grant ◽  
Waruni Abeysekera ◽  
Alexandra L Garnham ◽  
...  

The histone acetyltransferase HBO1 (MYST2, KAT7) is indispensable for postgastrulation development, histone H3 lysine 14 acetylation (H3K14Ac) and the expression of embryonic patterning genes. In this study, we report the role of HBO1 in regulating hematopoietic stem cell function in adult hematopoiesis. We used two complementary cre-recombinase transgenes to conditionally delete Hbo1 (Mx1-Cre and Rosa26-CreERT2). Hbo1 null mice became moribund due to hematopoietic failure with pancytopenia in the blood and bone marrow two to six weeks after Hbo1 deletion. Hbo1 deleted bone marrow cells failed to repopulate hemoablated recipients in competitive transplantation experiments. Hbo1 deletion caused a rapid loss of hematopoietic progenitors (HPCs). The numbers of lineage-restricted progenitors for the erythroid, myeloid, B-and T-cell lineages were reduced. Loss of HBO1 resulted in an abnormally high rate of recruitment of quiescent hematopoietic stem cells (HSCs) into the cell cycle. Cycling HSCs produced progenitors at the expense of self-renewal, which led to the exhaustion of the HSC pool. Mechanistically, genes important for HSC functions were downregulated in HSC-enriched cell populations after Hbo1 deletion, including genes essential for HSC quiescence and self-renewal, such as Mpl, Tek(Tie-2), Gfi1b, Egr1, Tal1(Scl), Gata2, Erg, Pbx1, Meis1 and Hox9, as well as genes important for multipotent progenitor cells and lineage-specific progenitor cells, such as Gata1. HBO1 was required for H3K14Ac through the genome and particularly at gene loci required for HSC quiescence and self-renewal. Our data indicate that HBO1 promotes the expression of a transcription factor network essential for HSC maintenance and self-renewal in adult hematopoiesis.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1688-1688 ◽  
Author(s):  
Noriko Miyake ◽  
Ann C.M. Brun ◽  
Mattias Magnusson ◽  
David T. Scadden ◽  
Stefan Karlsson

Abstract Hox transcription factors have emerged as important regulators of hematopoiesis. In particular, enforced expression of HOXB4 is a potent stimulus for murine hematopoietic stem cell (HSC) self-renewal. Murine HSCs engineered to overexpress HoxB4 expand significantly more than control cells in vivo and ex vivo while maintaining a normal differentiation program. HSCs are regulated by the cell proliferation machinery that is intrinsically controlled by cyclin-dependent kinase inhibitors such as p21Cip1/Waf1(p21) and p27Kip1 (p27). The p21 protein restricts cell cycling of the hematopoietic stem cell pool and maintains hematopoietic stem cell quiescence. In order to ask whether enhanced proliferation due to HOXB4 overexpression is mediated through suppression of p21 we overexpressed HOXB4 in hematopoietic cells from p21−/− mice. First, we investigated whether human HOXB4 enhances in vitro expansion of BM cells from p21−/− mice compared to p21+/+ mice. 5FU treated BM cells from p21−/− or p21+/+ mice were pre-stimulated with SCF, IL-6, IL-3 for 2 days followed by transduction using retroviral vector expressing HOXB4 together with GFP (MIGB4) or the control GFP vector (MIG). The cells were maintained in suspension cultures for 13 days and analyzed for GFP positive cells by flow-cytometry. Compared to MIG transduced BM cells from p21+/+ mice (MIG/p21+), the numbers of GFP positive cells were increased 1.1-fold in MIG/p21−, 3.2-fold in MIGB4/p21+ and 10.0-fold in MIGB4/p21− respectively (n=5). CFU assays were performed after 13 days of culture. The numbers of CFU were increased 4.8-fold in MIG/p21−, 19.5-fold in MIG/p21+ and 33.9 -fold in MIGB4/p21− respectively. Next, we evaluated level of HSCs expansion by bone marrow repopulation assays. After 12-days of culture, 1.5 x 105 MIGB4 or MIG-transduced cells (Ly5.2) were transplanted into lethally irradiated mice in combination with 8 x 105 fresh Ly5.1 bone marrow cells. Sixteen weeks after transplantation, no Ly5.2 cells could be detected in MIG/p21+ or MIG/p21− transplanted mice (n=6). In contrast, Ly5.2 positive cells were detected in both MIGB4/p21+/+ and MIGB4/p21−/− cells. The % of Ly5.2 positive cells in MIGB4/p21− transplanted mice was 9.9-fold higher than MIGB4/p21+ transplanted mice. (38.4 % vs 3.9 %, P<0.02, n=5). These Ly5.2 positive cells differentiated into all lineages, as determined by proportions of Mac-1, B-220, CD3 and Ter119 positive populations. Currently, we are enumerating the expansion of HOXB4 transduced HSCs in p21 deficient BM cells using the CRU assay. Our findings suggest that HOXB4 increases the self-renewal of hematopoietic stem cells by a mechanism that is independent of p21. In addition, the findings demonstrate that deficiency of p21 in combination with enforced expression of HOXB4 can be used to rapidly and effectively expand hematopoietic stem cells.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1291-1291
Author(s):  
Robin Jeannet ◽  
Qi Cai ◽  
Hongjun Liu ◽  
Hieu Vu ◽  
Ya-Huei Kuo

Abstract Abstract 1291 Alcam, which encodes the activated leukocyte cell adhesion molecule (CD166), is a cell surface immunoglobulin superfamily member mediating homophilic adhesion as well as heterotypic interactions with CD6. It has recently been shown that Alcam+ endosteal subset in the bone marrow contain hematopoietic niche cells able to support hematopoietic stem cell (HSC) activity. We examined Alcam mRNA levels and cell surface expression by quantitative RT-PCR and flow cytometry in various hematopoietic stem and progenitor subsets. We found that Alcam is highly expressed in long-term repopulating HSC (LT-HSC), multipotent progenitors (MPP), and granulocyte/macrophage progenitors (GMP). We use an Alcam null mouse allele to assess the function of Alcam in HSC differentiation and self-renewal. Clonogenic colony-forming progenitor serial-replating assay show that the replating potential of Alcam-deficient LT-HSCs is impaired. An in vitro single-cell differentiation assay of phenotypic LT-HSCs reveals that Alcam-deficiency leads to an enhanced granulocytic differentiation. In competitive repopulation transplantation, Alcam-deficient cells show a transient engraftment enhancement, however, the engraftment is significantly lower in secondary transplantation, suggesting that the self-renewal capacity of Alcam-deficient HSC is compromised. We performed a limiting-dilution transplantation assay and determined that the frequency of long-term repopulating cells in Alcam-deficient bone marrow is significantly reduced compared to wild type control. We further assessed the engraftment efficiency of phenotypically purified LT-HSCs. We show that the engraftment efficiency of Alcam-deleted LT-HSCs is significantly reduced compared to wild type LT-HSCs. Since Alcam-deleted HSCs are able to home efficiently to the bone marrow cavity, the engraftment defect is not due to inefficient homing upon transplantation. Collectively, These studies implicate Alcam mediated cell-cell interaction in the regulation of hematopoietic transplantation and recovery. Disclosures: No relevant conflicts of interest to declare.


Leukemia ◽  
2013 ◽  
Vol 27 (8) ◽  
pp. 1637-1649 ◽  
Author(s):  
Y Saito ◽  
K Kaneda ◽  
A Suekane ◽  
E Ichihara ◽  
S Nakahata ◽  
...  

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2315-2315 ◽  
Author(s):  
Pauline Rimmele ◽  
Carolina L. Bigarella ◽  
Valentina d'Escamard ◽  
Brigitte Izac ◽  
David Sinclair ◽  
...  

Abstract Abstract 2315 SIRT1 is a member of the NAD-dependent family of sirtuin deacetylases with critical functions in cellular metabolism, response to stress and aging. Although SIRT1 is clearly a regulator of embryonic stem cells, reports on the function of SIRT1 in adult hematopoietic stem cell (HSC) have been conflicting. While SIRT1 was positively associated with HSC activity on a genetic screen, using a germline deletion of SIRT1 three groups found SIRT1 to be dispensable for adult HSC. Here, we first showed that nuclear SIRT1 expression is enriched in bone marrow-derived Lin−Sca1+cKit+ (LSK) cells, as compared to total bone marrow cells. Germline deletion of SIRT1 is associated with developmental defects and high perinatal mortality resulting in only 10% of mice reaching adulthood. To circumvent the potential developmental adaptation of these mice, we used an adult-tamoxifen inducible SIRT1 knockout mouse model. Full-length SIRT1 protein was nearly undetectable in the bone marrow and spleen of SIRT1−/− mice. Analysis of wild type and SIRT1−/− bone marrow cells, 4 weeks after tamoxifen treatment, showed that loss of SIRT1 increased the size and frequency of the LSK compartment. Interestingly, this was associated with a significant decrease in the frequency of long-term repopulating HSC as determined by SLAM markers (CD48−CD150+LSK) within LSK cells. This decrease was even more pronounced with time. In agreement with these results, the long-term repopulation ability of CD48−CD150+LSK cells is severely compromised in SIRT1−/− mice as measured 16 weeks after transplantation, strongly suggesting that SIRT1 is essential for long-term HSC function. Thus, loss of SIRT1 results in loss of long-term repopulating stem cells in favor of total LSK cells that is a more heterogeneous population of stem cells. SIRT1 has several substrates with a potential function in HSC. Among these, we focused on Foxo3 Forkhead transcription factor which is essential for the maintenance of hematopoietic and leukemic stem cell pool. Despite the importance of Foxo3 to the control of HSC function, mechanisms that regulate Foxo3 activity in HSC remain unknown. Negative regulation of FoxOs by AKT phosphorylation promotes their cytosolic localization in response to growth factors stimulation. Interestingly, Foxo3 is constitutively nuclear in bone marrow LSK and in leukemic stem cells, strongly suggesting that negative phosphorylation may not be the sole Foxo3 regulatory mechanism in these stem cells. FoxO proteins are regulated by several post-translational modifications including acetylation in addition to phosphorylation, although the impact of acetylation on Foxo3 function remains unresolved. Therefore, we asked whether regulation of adult HSC activity by SIRT1 deacetylase is mediated by Foxo3. The in vivo injection of sirtinol, a SIRT1 inhibitor, for 3 weeks compromised significantly the long-term repopulation capacity of wild type but not Foxo3−/− HSC as measured by the repopulation ability of CD48−CD150+LSK cells in lethally irradiated mice after 16 weeks. These results suggest that Foxo3 is likely to be required for SIRT1 regulation of HSC activity. In agreement with this, we showed that in contrast to wild type LSK cells, Foxo3 is mostly cytoplasmic in SIRT1−/− LSK cells, indicating that loss of SIRT1 is sufficient to translocate Foxo3 to the cytosol and presumably inhibit its activity. We further showed that ectopically expressed acetylation-mimetic mutant of Foxo3 where all putative acetyl-lysine residues are mutated to glutamine, in bone marrow mononuclear cells, is mostly localized in the cytosol in contrast to wild type Foxo3 protein and results in significant decrease of colony-forming unit-spleen (CFU-S) activity. Using pharmacological antagonism as well as conditional deletion of SIRT1 in adult HSC, we identified a critical function for SIRT1 in the regulation of long-term HSC activity. Our results contrast with previously published data obtained from germline deleted SIRT1 mice, and suggest that the use of a conditional approach is essential for unraveling SIRT1 function in adult tissues. Our data also suggest that SIRT1 regulation of HSC activity is through activation of Foxo3. These findings are likely to have an important impact on our understanding of the regulation of hematopoietic and leukemic stem cells and may be of major therapeutic value for hematological malignancies and disorders of stem cells and aging. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 125 (17) ◽  
pp. 2678-2688 ◽  
Author(s):  
Marisa Bowers ◽  
Bin Zhang ◽  
Yinwei Ho ◽  
Puneet Agarwal ◽  
Ching-Cheng Chen ◽  
...  

Key Points Bone marrow OB ablation leads to reduced quiescence, long-term engraftment, and self-renewal capacity of hematopoietic stem cells. Significantly accelerated leukemia development and reduced survival are seen in transgenic BCR-ABL mice following OB ablation.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1406-1406
Author(s):  
Matthew J Boyer ◽  
Feng Xu ◽  
Hui Yu ◽  
Tao Cheng

Abstract DNA methylation is an epigenetic means of gene regulation and is carried out by a family of methyltransferases of which DNMT1 acts to maintain methylation marks following DNA replication and DNMT3a and DNMT3b methylate DNA de novo. DNMT3b has been shown to be essential for mammalian development and necessary for differentiation of germline and neural progenitor cells. Mutations of DNMT3b in humans lead to a rare autosomal recessive disorder characterized by immunodeficiency, centromeric instability, and facial abnormalities. We have shown by real-time, RT-PCR that DNMT3b mRNA is uniquely over-expressed by approximately 30-fold in immunophenotypically-defined longterm repopulating hematopoietic stem cells (HSCs) that are CD34−lineage−c-kit+Sca-1+ as compared to progenitor and differentiated cell types within the bone marrow and with respect to the other members of the DNMT family, namely DNMT1 and DNMT3a. To determine DNMT3b’s function in HSCs competitive bone marrow transplantation was undertaken. Isolated lineage− enriched bone marrow cells were transduced with a retroviral backbone based on the Murine Stem Cell Virus (MSCV) carrying either GFP and a short, hairpin RNA (shRNA) targeting DNMT3b or GFP alone. Following transduction 1×105 GFP+ cells along with 1×105 competitor cells were transplanted into 9.5 Gray irradiated congenic recipients. Two months following transplantation mice receiving bone marrow cells transduced with DNMT3b shRNA showed a significantly lower engraftment of donor cells as a percentage of total competitor cell engraftment in the peripheral blood as compared to those receiving cells transduced with GFP alone (24.8 vs 3.7, p&lt;0.05) which persisted at 3 months (22.8 vs 1.5, p&lt;0.05). Similarly, within the donor derviced cells in the peripheral blood there was a lower percentage of myeloid (CD11b+) cells at 2 and 3 months in the recipients of DNMT3b shRNA transduced cells as compared to controls. However there was no observed difference in the percentage of peripheral B (CD45R+) or T (CD3+) cells within the donor-derived cells. To determine the mechanism behind the observed engraftment defect with DNMT3b knockdown we cultured GFP+ transduced bone marrow cells in vitro with minimal cytokine support. As a control for our targeting methodology we also transduced bone marrow cells from mice harboring two floxed DNMT3b alleles with a MSCV carrying Cre recombinase and GFP. While lineage− bone marrow cells transduced with GFP alone increased 10-fold in number over two weeks of culture, cells in which DNMT3b was down regulated by shRNA or Cre-mediated recombination only doubled. Culture of lineage− bone marrow cells in methylcellulose medium by the colony-forming cell (CFC) assay revealed increases in the granulocytic and total number of colonies with DNMT3b knockdown or Cre-mediated recombination of DNMT3b similar to the increased myeloid engraftment of DNMT3b shRNA transduced cells observed 1 month following competitive bone marrow transplantation. However when 5,000 of these cells from the first CFC assay were sub-cultured there was a significant loss of colony forming ability within all lineages when DNMT3b was targeted by shRNA or Cre-mediated recombination. Taken together with the decreased engraftment of DNMT3b shRNA cells following competitive bone marrow transplantation, the observed limited proliferation in liquid culture and loss of colony forming ability during serial CFC assays is suggestive of a self-renewal defect of HSCs in the absence of DNMT3b, that was previously only reported in the absence of both DNMT3a and DNMT3b. Further elucidation of this proposed self-renewal defect is being undertaken and results of ongoing studies including long-term culture initiating cell (LTC-IC) assays and identification of genomic sites of DNA methylation within different hematopoietic subsets will also be presented.


Sign in / Sign up

Export Citation Format

Share Document