The TGF- β Family Member Growth Differentiation Factor 15 (GDF15) Regulates the Self-Renewal of Multiple Myeloma Cancer Stem Cells

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2954-2954
Author(s):  
Toshihiko Tanno ◽  
Akil Merchant ◽  
Jasmin R. Agarwal ◽  
Qiuju Wang ◽  
William Matsui

Abstract Abstract 2954 Multiple myeloma (MM) cancer stem cells (CSCs) possess both enhanced tumorigenic potential and relative drug resistance suggesting they play a major role in disease relapse and progression. Therefore, a better understanding of the processes regulating MM CSCs may lead to the development of novel therapies that prevent tumor regrowth and improve long-term outcomes. Normal stem cells are tightly regulated by factors within the local microenvironment that include both soluble factors and direct contact with accessory cells. However, external factors regulating MM CSCs have not been identified. Recent studies have demonstrated that stromal cells in the MM bone marrow microenvironment secrete growth differentiation factor 15 (GDF15), a member of the TGF-b family. We initially studied the role of this cytokine in the pathogenesis of MM by examining circulating GDF15 levels in MM patients. Compared to healthy volunteers, we found that median GDF15 levels were significantly increased in MM patients (821 vs. 390 pg/ml; n=16; p<0.05) and increased with disease stage (Stage II=585 pg/ml, Stage III=1, 004 pg/ml). To examine the functional effects of GDF15 on MM cells, we cultured human MM cell lines (NCI-H929, RPMI 8226) with recombinant GDF15 and found that it induced the expansion of isolated CD138neg MM CSCs in a dose-dependent manner but had little impact on the growth of CD138+ plasma cells (Fig). Furthermore, GDF15 enhanced clonogenic myeloma growth as evidenced by increased colony formation that was maintained during serial replating, a surrogate for self-renewal. This effect appeared to be GDF15 specific since it could be blocked using anti-GDF15 antibody. Similarly, GDF15 treatment increased the in vitro clonogenic growth of MM CSCs from primary clinical bone marrow specimens. We also investigated the down-stream cellular pathways potentially mediating the effects of GDF15 and found that it activates the AKT signaling pathway known to improve the self-renewal of embryonic (ES) and normal hematopoietic stem cells. GDF15 also induced expression of the SOX2 transcription factor known to be upregulated in CD138neg MM CSCs. Since SOX2 is required for the self-renewal of ES cells and the generation of induced pluripotent stem (iPS) cells, its induction by GDF15 may also increase the self-renewal of MM CSCs. GDF15 is the first soluble factor identified that regulates MM CSCs, and its effects are mediated by the activation of highly conserved self-renewal programs. Disclosures: No relevant conflicts of interest to declare.

2019 ◽  
Vol 14 (5) ◽  
pp. 428-436 ◽  
Author(s):  
Gabriele D. Bigoni-Ordóñez ◽  
Daniel Czarnowski ◽  
Tyler Parsons ◽  
Gerard J. Madlambayan ◽  
Luis G. Villa-Diaz

Cancer is a highly prevalent and potentially terminal disease that affects millions of individuals worldwide. Here, we review the literature exploring the intricacies of stem cells bearing tumorigenic characteristics and collect evidence demonstrating the importance of integrin &#945;6 (ITGA6, also known as CD49f) in cancer stem cell (CSC) activity. ITGA6 is commonly used to identify CSC populations in various tissues and plays an important role sustaining the self-renewal of CSCs by interconnecting them with the tumorigenic microenvironment.


2015 ◽  
Vol 10 (2) ◽  
pp. 455 ◽  
Author(s):  
Jian-Bo Zhou ◽  
Gang Peng ◽  
Yu-Cheng Jia ◽  
Jun Li ◽  
Jia Wang ◽  
...  

<p>The present study demonstrates the effects of triptolide, one of the constituents from Tripterygium wilfordii, on the self‑renewal capacity of human hepatocellular carcinoma. The investigation revealed that triptolide markedly prevented the proliferation of liver cancer stem cells (LCSCs). For the LCSCs the minimum inhibitory concentration of triptolide was 0.6 μM. There was a significant and obvious decrease in the capacity of LCSCs to form self-sphere. Furthermore, triptolide reduced the sphere-forming capacity of LCSCs along with inhibition of β‑catenin expression. However, the exposure of triptolide-treated cells to lithium chloride, an activator the Wnt/β-catenin signaling pathway, reversed the triptolide-induced inhibition of β-catenin expression and inhibited the self-renewal capacity. Therefore, triptolide effectively eradicates LCSCs through the inhibition of β-catenin protein and may act as a novel agent for the treatment of hepatocellular carcinoma.</p><p> </p>


2015 ◽  
Vol 76 (4) ◽  
pp. 891-901 ◽  
Author(s):  
Liang Fang ◽  
Qionghua Zhu ◽  
Martin Neuenschwander ◽  
Edgar Specker ◽  
Annika Wulf-Goldenberg ◽  
...  

2013 ◽  
Vol 34 (11) ◽  
pp. 1374-1380 ◽  
Author(s):  
Zheng-ming Wang ◽  
Wen-jun Du ◽  
Gary A Piazza ◽  
Yaguang Xi

2016 ◽  
Author(s):  
Saswati Karmakar ◽  
Parthasarathy Seshacharyulu ◽  
Arokia Priyanka Vaz ◽  
Imayavaramban Lakshmanan ◽  
Moorthy Palanimuthu Ponnusamy ◽  
...  

2016 ◽  
Vol 48 (8) ◽  
pp. e255-e255 ◽  
Author(s):  
Dae Kyoung Kim ◽  
Eun Jin Seo ◽  
Eun J Choi ◽  
Su In Lee ◽  
Yang Woo Kwon ◽  
...  

2015 ◽  
Vol 34 (4) ◽  
pp. 2065-2071 ◽  
Author(s):  
SANG HYUK LEE ◽  
HYO JUNG NAM ◽  
HYUN JUNG KANG ◽  
TINA L. SAMUELS ◽  
NIKKI JOHNSTON ◽  
...  

2021 ◽  
Author(s):  
H.Rosie Xing ◽  
Zhiwei Sun ◽  
Doudou Liu ◽  
Bin Zeng ◽  
Qiting Zhao ◽  
...  

Abstract Background The genesis and developments of solid tumors, analogous to the renewal of healthy tissues, are driven by a subpopulation of dedicated stem cells, known as cancer stem cells (CSCs), that exhibit long-tern clonal repopulation and self-renewal capacity. CSCs may regulate tumor initiation, growth, dormancy, metastasis, recurrence and chemoresistance. While autophagy has been proposed as a regulator of the stemness of CSCs, the underlying mechanisms requires further elucidation. Methods The subpopulation of CSCs in human melanoma cell line M14 was established by repetitive enrichments for cells that consistently display anchorage-independent spheroid growth. The stemness properties of the CSCs were confirmed in vitro by the expressions of stemness marker genes, the single-cell cloning assay and the serial spheroid formation assay. Subcutaneous tumor transplantation assay in BALB/c nude mice was performed to test the stemness properties of the CSCs in vivo. The autophagic activity in cells was confirmed by the protein level of LC3 and P62, mRFP-LC3B punta and cytoplasmic accumulation of autolysosomes. The morphology of ER was detected with transmission electron microscopy. Results In the present study, by employing a stable CSC cell line derived from human melanoma cell line M14, we show for the first time that Sec23a inhibits the self-renewal of melanoma CSCs via inactivation of ER-phagy. Mechanistically, inhibition of Sec23a reduces ER stress and consequently FAM134B-induced ER-phagy. Furthermore, TCGA data mining and analysis show that Sec23a is a favorable diagnostic and prognostic marker for human skin cutaneous melanoma (SKCM). Conclusion Herein, this study has elucidated a new mechanism underlying the regulation of autophagy on stemness, i.e. CSCs can exploit the SEC23A/ER-stress/FAM134B/ER-phagy axis for the self-renewal. The results provide new ideas for comprehensive exploration of the regulatory network of CSC self-renewal and new potential targets for CSCs-based therapy strategies for malignant tumors.


Stem Cells ◽  
2019 ◽  
Vol 37 (11) ◽  
pp. 1389-1400 ◽  
Author(s):  
Juanjuan Shan ◽  
Junjie Shen ◽  
Min Wu ◽  
Haijun Zhou ◽  
Juan Feng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document