A Locally Administered Novel Heparin Complex Attenuates Collagen-Induced Platelet Activation and Thrombosis In Vivo,

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3361-3361
Author(s):  
Riitta Lassila ◽  
Annukka Jouppila ◽  
Ulla M Marzec ◽  
Stephen R Hanson

Abstract Abstract 3361 We have developed a semi-synthetic antithrombotic heparin complex, APL001, to mimic mast cell-derived natural heparin proteoglycans (HepPG). HepPG attenuate platelet-collagen interactions under blood flow by inhibiting VWF- and GPIIb/IIIa -mediated platelet aggregation. In addition, rat-derived HepPG arrest platelet thrombus growth on collagen surfaces or at vascular injury sites, both in vitro and in vivo (Lassila et al.ATVB 1997, Kauhanen et al. ATVB 2000, Olsson et al. Thromb Haemost 2002). Our objective was to study the inhibitory capacity of APL001 for preventing human platelet aggregation in vitro and acute thrombosis in a baboon model in vivo. The effects of unfractionated heparin (UFH) and APL001 were compared in relevant coagulation assays (APTT, PT, thrombin time, anti-FXa activity, fibrinogen, FVIII:C and VWF activity (VWF:RCo) and antigen). Additionally, agonist-induced (collagen, ristocetin and ADP) platelet aggregation in citrate or hirudin-anticoagulated whole blood (Multiplate®) (n=10 healthy subjects), and platelet function analysis (PFA100®) in citrated platelet rich plasma (PRP) were assessed. In a well-established baboon thrombosis model a collagen-coated PTFE graft (length 2 cm, lumen 4 mm) was placed in an arterio-venous shunt. Prior to blood contact the thrombogenic surface was treated for 10 min with UFH or APL001 (both at 4 mg/mL). Thrombus formation was initiated by exposing the surface to blood flow (100 mL/min, shear rate 265−1), and the deposition of 111-In-labeled platelets and of fibrin was quantified continuously over 1h. Fibrin thrombus accumulation was assessed from the incorporation of circulating 125-I-fibrinogen. In the heparin-relevant coagulation tests APL001 was comparable or 20–30% more potent than UFH while FVIII, fibrinogen and VWF variables remained unaltered. In contrast to UFH, APL001 (300 μg/mL) consistently inhibited collagen- and ristocetin-induced platelet aggregation, whereas UFH had only a modest effect in comparison with PBS control (Table). ADP-induced aggregation was unaffected. Comparable results were observed in the PRP aggregation assay. PFA100 testing also demonstrated inhibitory effects. In the in vivo thrombosis model (n=4) APL001 reduced platelet deposition on collagen (vs. the results with UFH) by 34% (p=0.01), while platelet accumulation in distal propagated thrombus was reduced by 61% (p=0.16). APL001-treated surfaces accumulated 45% less fibrin than the UFH-treated surfaces (p=0.008). In conclusion, when compared with UFH APL001 inhibited both collagen- and ristocetin-induced platelet aggregation in human blood, while anticoagulant properties were comparable. In the absence of systemic antithrombotic drugs, exposure of APL001 to a highly thrombogenic collagen surface arrested thrombus formation in an in vivo baboon model. This finding suggests that locally administered APL001 alone, due to its dual antiplatelet and anticoagulant effects, may limit the growth and size of thrombus and thereby prevent subsequent thrombo-occlusion.TableAnticoagulantInhibition-% of platelet aggregation ± SDConc. 300 μg/mLnColl (3.2 μg/mL)Ristocetin (0.77 mg/mL)ADP (6.4 μM)CitrateAPL0011033 ± 1543 ± 166 ± 24UFH1011 ± 1323 ± 153 ± 7p value0.0030.0100.700HirudinAPL0011032 ± 1043 ± 178 ± 10UFH108 ± 1116 ± 166 ± 9p value0.0000.0020.600 Disclosures: Lassila: Aplagon: Chief Scientific Advisor.

2016 ◽  
Vol 36 (suppl_1) ◽  
Author(s):  
Reheman Adili ◽  
Katherine Mast ◽  
Theodore R Holman ◽  
Michael Holinstat

Background: Platelet reactivity is required to maintain hemostasis, however high platelet reactivity leads to thrombus formation, myocardial infarction, and stroke. Platelet 12-lipoxygenase (12-LOX) has been demonstrated by our lab and others to regulate agonist-mediated platelet reactivity suggesting a role for 12-LOX in regulation of in vivo thrombosis. The ability to target 12-LOX in vivo has not been established to date. Therefore, we sought to determine if 12-LOX regulates platelet reactivity and thrombus formation in vivo using the selective 12-LOX inhibitor ML355 to determine whether platelet 12-LOX is an effective target for anti-platelet therapeutics. Methods: ML355 effects on human platelet function was assessed in vitro by platelet aggregometry, ex vivo by perfusion chamber, and in vivo by thrombus formation and vessel occlusion in small and large vessels in 12-LOX -/- , WT mice, and mice treated with ML355 via intravital microscopy using the FeCl 3 and laser injury models. Results: In in vitro platelet aggregation, ML355 dose-dependently inhibited agonist-induced aggregation. In ex vivo flow chamber assays, platelet adhesion and thrombus formation on collagen-coated surfaces at high shear was attenuated in both mouse and human whole blood after incubation with ML355. Further, platelet aggregation and thrombus growth in 12-LOX -/- mice were impaired in both laser and FeCl 3 -induced mesenteric, carotid artery and cremaster arteriole thrombosis models. Thrombi in 12-LOX -/- mice were unstable and frequently formed emboli, which resulted in impaired vessel occlusion or reopening. Additionally, thrombus formation and vessel occlusion was impaired in ML355 treated WT mice. Conclusions: The 12-LOX inhibitor ML355 inhibits platelet aggregation induced by a number of platelet agonists. Ex vivo high shear conditions in both mice and human was attenuated in the presence of ML355. Thrombus formation and vessel occlusion were impaired in mice deficient in 12-LOX. Finally, ML355 attenuates thrombus formation and prevents vessel occlusion in vivo . Our data strongly indicates 12-LOX is an important determinant of platelet reactivity and inhibition of platelet 12-LOX may represent a new target for anti-platelet therapeutics.


1981 ◽  
Author(s):  
U M T Houtsmuller ◽  
G Hornstra ◽  
E Haddeman

Arterial thrombus formation is reduced in essential fatty acid (EFA) deficiency. This goes together with an enhanced thrombin induced aggregation of platelets in vitro,whereas collagen-induced aggregation is definitely suppressed. A small amount of linoleic acid (18:2 (n-6)) is able to cure EFA-deficiency and to normalize arterial thrombogenesis. This latter effect may be due to either the structural function of this EFA or to its function as the ultimate dietary precursor of prostaglandins (PG). Columbinic acid, a stereo-isomer of γ-linolenic acid (18:3 (n-6)) was recently shown to possess all the structural functions of EFA, but not the PG-dependent ones. This fatty acid therefore presents a suitable tool to investigate the PG-dependence of arterial thrombogenesis and its underlying processes. We therefore compared the effect of small amounts of linoleic and columbinic acid (both as methylesters) on the water vapour release in vivo (which is a sensitive parameter for a non-PG dependent function of polyenoic fatty acids), arterial thrombosis tendency (time needed for the thrombotic obstruction of an aorta prosthesis) and platelet aggregation in vitro (aggregometry) induced by collagen and thrombin. In contrast to linoleic acid, columbinic acid did not normalize arterial thrombosis tendency and collagen induced platelet aggregation. Columbinic acid was equally effective as linoleic acid in the normalization of the water vapour release in vivo and of the thrombin-induced aggregation. We conclude that arterial thrombus formation and collagen- induced aggregation greatly depend on prostanoid formation, whereas thrombin-induced aggregation does not. The structural role of polyenoic fatty acids in thrombin-induced aggregation may provide a tool in the elucidation of factors determining the thrombin-sensitivity of blood platelets.


1987 ◽  
Author(s):  
K Rehse ◽  
U Lukens ◽  
S Leibring ◽  
V Schein ◽  
A Kesselhut

We have found that oligoamines of the general formula R2−3X(R=-(CH2)m-NH-(CH2)n-Y) in which X and Y may be aliphatic, alicyc-lic, aromatic or even heterocyclic moieties are a new class of compounds which exhibit platelet aggregation inhibiting and anticoagulant activities in vitro and have antithrombotic properties in vivo. The compound RE 1492 (N,N’,N1’-Tris-4-phenylbutylbenzene-1,3,5-trimethanamine) is chosen as example to demonstrate these effects. In PRP the following IC50 of RE 1492 (inductor in brackets) were measured: 3 ¼mol/L (Collagen), 1 ¼mol/L (ADP, 2ndphase), 7.5 μmol/L (ADP, lstphase), 2,5 μmol/L (A 23187, 2ndphase), 7,5 μmol/L (Ionophor A 23187, lstphase), 30 ¼mol/L (Thrombin). The inhibition of the aggregation Induced by ADP could as well be demonstrated in whole blood. The formation of fibrin was inhibited as shown by the prolongation of the thromboplastin time (Quick) and the partial thromboplastin time (PTT) the first being more sensitive (25% of normal at 50 ymol/L) than the latter (25% of normal at 100 ymol/L). The reason was the inhibition of coagulation factors in the following order: VII (25% of normal at 12.5 ¼mol/L) >WErwnr/IX (25 ¼mol/L) »X (200 μmol/L). The thrombin time remains normal. The antithrombotic properties of RE 1492 were investigated in an in vivo thrombosis model. The formation of platelet thrombi in mesenteric arterioles and venoles of rats (diameterM5 ym) was induced by a laser beam. In controls 1,76±1,14 (SD) shots (50 msec, 50 mW) on the arterioles were necessary for thrombus formation. Twenty minutes after i.v. application of RE 1492 this number rose to 3,18±2,08 (3 mg/kg, p ≤ 0,01, X2-test) and 4,59±1,93 (10 mg/kg, p ≤ 0,01) in arterioles. In venoles of the control animals 1,29±0,45 shots were necessary for thrombus formation. This number rose to 2,11±1,62 (p ≤ 0,05) after 3 mg/kg and 3,28±2,03 (p0,01) after 10 mg/kg. As the number of shots applied was limited to five an average shot number of 5± SD would indicate that no thrombus formation takes place at all. As RE 1492 does neither influence the metabolic pattern of arachidonic acid in platelets nor the activity of phosphodiesterase or adenylatcyclase it is supposed that the oligoamines exert their effects by interaction with phospholipids (PL) resulting in a “membrane stabilization” in platelets and inhibition of PL dependent coagulation factors during fibrin formation.


Author(s):  
Mihir K Patel ◽  
Kiranj K. Chaudagar ◽  
Anita A. Mehta

Objective: Although recent advances in the treatment of congestive heart disease, mortality among patients’ remains a questionable remark. Therefore, we evaluated the role of capsaicin on in vitro and ex vivo platelet aggregation induced by Adenosine Di-Phosphate (ADP) as well as in in vivo thrombosis models and role of NO, KATP was also identified in the capsaicin-induced anti-platelet animal model as well as in vivo model of arterial thrombosis.Methods: According to body weight wistar rats were divided into five groups. Group I and Group II was treated with saline and capsaicin (3 mg/kg, i. v), while animals from Group III were treated with N(ω)-nitro-L-arginine methyl ester (L-NAME) (30 mg/kg, i. v) 30 min before administration of capsaicin (3 mg/kg, i. v). Group IV animals were treated with glibenclamide (10 mg/kg,i. v) 30 min before administration of capsaicin (3 mg/kg, i. v). Group V was considered as a positive control and administered clopidogrel (30 mg/kg, p. o). Animals were subjected for in vitro, ex-vivo platelet aggregation assay. ADP (30µM) was utilized as an aggregating agent in these experiments. After these assays; animals of each group were subjected for subaqueous tail bleeding time in a rat model and FeCl3-induced arterial thrombosis model in rats.Results: In ADP-induced in vitro platelet aggregation, a significant reduction in % platelet aggregation was observed at 50µM (64.35±4.641) and 100µM (52.72±4.192) concentration of capsaicin as compared to vehicle control (85.82±3.716). Capsaicin (3 mg/kg, i. v) also showed a significant reduction (49.53±4.075) in ex-vivo ADP-induced platelet aggregation as compared to vehicle control (89.38±2.057). In FeCl3 induced arterial thrombosis model, Capsaicin (3 mg/kg, i. v) exhibited an increase in time to occlusion in this rodent model and presence of the L-NAME and glibenclamide had inhibited the activity of capsaicin.Conclusion: In our study, capsaicin (50 µM, 100µM) exhibited potent anti-platelet activity in ADP-induced platelet aggregation, similarly capsaicin exhibited significant anti-platelet action in the ex-vivo study. Moreover, the presence of L-NAME and glibenclamide inhibited the anti-thrombotic and anti-platelet action of capsaicin. Therefore, it was concluded that NO and KATP may be involved in the anti-thrombotic action of capsaicin.


Blood ◽  
1987 ◽  
Vol 69 (3) ◽  
pp. 924-928 ◽  
Author(s):  
JG Kelton ◽  
JC Moore ◽  
WG Murphy

Many patients with thrombotic thrombocytopenic purpura (TTP) have a platelet aggregating factor in their serum that may be pathologically linked with the disease process. To help characterize the type of platelet aggregation and platelet release induced by the sera from seven TTP patients, we measured the ability of a variety of inhibitors of platelet function as well as the ability of monoclonal antibodies (MoAbs) against platelet glycoproteins to inhibit TTP sera-induced platelet aggregation and release. These results were compared with the ability of the same inhibitors to block platelet aggregation induced by ristocetin, collagen, ADP, thrombin, and IgG-immune complexes. Monoclonal antibody directed against platelet glycoprotein Ib totally inhibited ristocetin-induced aggregation and release but had no effect on aggregation and release induced by the TTP sera or by any of the other platelet agonists. However, the MoAb against glycoproteins IIb/IIIa inhibited aggregation and release caused by TTP sera as well as by collagen, thrombin, and ADP but had no effect on aggregation and release induced by ristocetin. The aggregating activity could be abolished by heparin but not by the serine protease inhibitor PMSF (1 mmol/L). And although monomeric human IgG and purified Fc fragments of IgG inhibited IgG-immune complex-induced aggregation and release, they had no effect on TTP sera-induced aggregation and release nor on aggregation and release induced by any of the other agonists. Consistent with these in vitro studies showing no effect of IgG were the in vivo observations that intravenous (IV) IgG was without effect when administered to three patients with TTP. This study indicates that although a von Willebrand factor (vWF)-rich preparation of cryoprecipitate enhances the in vitro platelet aggregation and release caused by sera from the seven TTP patients we studied, the pathway of aggregation and release is not via platelet glycoprotein Ib. Also the aggregating factor of TTP sera is not neutralized in vitro or in vivo by IgG.


Author(s):  
R. Castillo ◽  
S. Maragall ◽  
J. A. Guisasola ◽  
F. Casals ◽  
C. Ruiz ◽  
...  

Defective ADP-induced platelet aggregation has been observed in patients treated with streptokinase. This same effect appears “in vitro” when adding SK to platelet rich plasma (PRP). Classic hemophilia and normal platelet poor plasmas (PPP) treated with SK inhibit the aggregation of washed platelets; plasmin-treated normal human serum also shows an inhibitory effect on platelet aggregation. However, von Willebrand SK-treated plasmas do not inhibit the aggregation of washed platelets. The same results appear when plasmas are previously treated with a rabbit antibody to human factor VIII.This confirms that the antiaggregating effect is mainly linked to the digested factor VIII related antigen.The inhibition of ADP-induced platelet aggregation has been proved in gel filtration-isolated and washed platelets from SK-treated PRP.Defective ristocetin-induced platelet aggregation has also been observed- This action does not appear in washed platelets from SK-treated PRP in presence of normal PPP, but it does in presence of SK-treated PPP, which suggests that the inhibition of the ristocetin-induced aggregation is due to the lack of factor VIII and not to the factor VIII-related products.Heparin, either “in vivo” or “in vitro”, has corrected the antiaggregating effect of SK.


1981 ◽  
Author(s):  
J S Fleming ◽  
B T Cornish ◽  
J O Buchanan ◽  
J P Buyniski

Prostacyclin and thromboxane A2, two of the physiologically most important end products of arachidonic acid metabolism, represent a basic control system which modulates platelet function. Decreased vascular prostacyclin is believed to play a role in the increased thrombotic tendency associated with various clinical diseases including diabetes and atherosclerosis. Compounds which either enhance the formation or release of prostacyclin or potentiate the activity of low levels of prostacyclin may be therapeutically useful in ameliorating this associated pathology. We have studied various inhibitors of platelet aggregation for their ability to potentiate the activity of low levels of prostacyclin both in vitro and in an in vivo model of experimental thrombosis. Anagrelide, aspirin, dipyridamole, sulfinpyrazone and ticlopidine all demonstrated interaction with prostacyclin in vitro against collagen-induced platelet aggregation. More limited interactions were observed against ADP-induced aggregation. Using isobolographic analysis most combinations demonstrated additive interaction. However, pronounced supra-additive interaction was observed vs. both aggregating agents in the case of prostacyclin (0.1-1 ng/ml) - anagrelide (8-90 ng/ml) combinations. Dramatic enhancement of the effects of prostacyclin on biolaser-induced thrombosis was also seen in anagrelide (0.5 mg/kg po) pretreated animals. Other inhibitors of platelet aggregation used in combination with prostacyclin produced less spectacular results. These findings suggest that aside from inherent antiaggregatory and antithrombotic activity, certain platelet active drugs may produce equally important effects by virtue of their ability to interact with prostacyclin in a clinically beneficial manner.


Blood ◽  
1987 ◽  
Vol 69 (3) ◽  
pp. 924-928 ◽  
Author(s):  
JG Kelton ◽  
JC Moore ◽  
WG Murphy

Abstract Many patients with thrombotic thrombocytopenic purpura (TTP) have a platelet aggregating factor in their serum that may be pathologically linked with the disease process. To help characterize the type of platelet aggregation and platelet release induced by the sera from seven TTP patients, we measured the ability of a variety of inhibitors of platelet function as well as the ability of monoclonal antibodies (MoAbs) against platelet glycoproteins to inhibit TTP sera-induced platelet aggregation and release. These results were compared with the ability of the same inhibitors to block platelet aggregation induced by ristocetin, collagen, ADP, thrombin, and IgG-immune complexes. Monoclonal antibody directed against platelet glycoprotein Ib totally inhibited ristocetin-induced aggregation and release but had no effect on aggregation and release induced by the TTP sera or by any of the other platelet agonists. However, the MoAb against glycoproteins IIb/IIIa inhibited aggregation and release caused by TTP sera as well as by collagen, thrombin, and ADP but had no effect on aggregation and release induced by ristocetin. The aggregating activity could be abolished by heparin but not by the serine protease inhibitor PMSF (1 mmol/L). And although monomeric human IgG and purified Fc fragments of IgG inhibited IgG-immune complex-induced aggregation and release, they had no effect on TTP sera-induced aggregation and release nor on aggregation and release induced by any of the other agonists. Consistent with these in vitro studies showing no effect of IgG were the in vivo observations that intravenous (IV) IgG was without effect when administered to three patients with TTP. This study indicates that although a von Willebrand factor (vWF)-rich preparation of cryoprecipitate enhances the in vitro platelet aggregation and release caused by sera from the seven TTP patients we studied, the pathway of aggregation and release is not via platelet glycoprotein Ib. Also the aggregating factor of TTP sera is not neutralized in vitro or in vivo by IgG.


Sign in / Sign up

Export Citation Format

Share Document