AML Cells Have Increased Mitochondrial Mass but Less Reserve in Their Respiratory Chain Complexes Leading to Heightened Sensitivity to Inhibition of Mitochondrial Protein Translation,

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3585-3585
Author(s):  
Shrivani Sriskanthadevan ◽  
Skrtic Marko ◽  
Bozhena Livak ◽  
Yulia Jitkova ◽  
Rose Hurren ◽  
...  

Abstract Abstract 3585 Recent studies suggest that dysregulated mitochondrial oxygen consumption promotes the growth of AML cells. Therefore, we characterized the structure and metabolic function of the mitochondria in AML and normal G-CSF-mobilized hematopoietic mononuclear cells (PBSCs). Compared to PBSCs, 1o AML cells had increased mitochondrial mass as demonstrated by an increased mitochondrial DNA copy number and increased activity of matrix enzyme citrate synthase. The increased mitochondrial mass observed in 1o AML cells may represent larger mitochondria and/or more numerous mitochondria. Therefore, we evaluated the mitochondria of 1o AML and normal CD34+ hematopoietic cells by electron microscopy. The mitochondria in 1o AML cells were larger in area, but fewer in number compared to normal CD34+ cells. Mitochondria contain the respiratory chain complexes that promote oxidative phosphorylation. Given the dysregulated mitochondrial biogenesis in 1o AML cells, we examined the levels and capacity of the respiratory complexes in 1o AML and normal PBSCs. When normalized for mitochondrial mass, 1o AML cells (n = 12) had reduced activity of respiratory complexes III and IV compared to PBSCs (n = 10) (Mean complex III activity AML vs PBSC: 0.32 ± 0.04 RU vs 0.66 ± 0.11 RU p = 0.0063; Mean complex IV activity AML vs PBSC: 0.13 ± 0.01 RU vs 0.24 ± 0.02 RU, p= 0.0003). We evaluated the capacity of the respiratory complexes in AML cells and PBSCs by treating with increasing concentrations of the complex III inhibitor antimycin, and measuring the changes in oxygen consumption. AML cells displayed heightened sensitivity to the complex III inhibitor and less reserve capacity in the respiratory complex compared to PBSCs (mean concentration of antimycin required to reduce oxygen consumption by 50%: AML (n = 11) vs PBSC (n = 3): 13.7 ± 1.6 nM vs 29.0 ± 2.4 nM; p = 0.0007). AML cell lines were similar to 1o AML cells with decreased basal respiratory complex activity and reserve capacity compared to PBSCs. Given the reduced levels and reserve in the respiratory chain complexes in AML cells, we evaluated the effects of inhibiting mitochondrial protein translation in AML cells and PBSCs. Chemical (tigecycline, and chloramphenicol) and genetic (RNAi knockdown of the EF-Tu) inhibition of mitochondrial translation reduced the levels and function of the respiratory complexes that contain proteins encoded by mitochondrial DNA. Consistent with the reduced reserve capacity, inhibiting mitochondrial translation preferentially reduced oxygen consumption and viability of 1o AML cells and AML cell lines over PBSCs and normal CD34+ cells. To understand the molecular basis for the abnormal mitochondrial biogenesis in 1o AML cells, we measured levels of the NRF-1, TFAM and EF-Tu, genes known to positively regulate mitochondrial biogenesis. Compared to PBSCs, AML samples showed at least a 3-fold increase in mRNA expression of these genes. Myc is a positive regulator of NRF-1, TFAM and EF-Tu. Therefore, we measured levels of myc in 1o AML cells and PBSCs by Q-RT-PCR. Compared to PBSCs, myc was increased in 1o AML cells and positively correlated with expression of NRF-1, TFAM and EF-Tu as well as with mitochondrial mass. To determine whether increased myc expression is functionally related to the increased mitochondrial biogenesis and decreased reserve in respiratory capacity, we employed P493 Burkitt's cells with inducible myc knockdown. P493 cells expressing myc had increased mitochondrial mass, larger mitochondria, and increased basal oxygen consumption compared to the myc knockdown cells. When normalized for mitochondrial mass, myc expressing cells had reduced activity of respiratory complexes III and IV compared to myc knockdown cells. In addition, myc expressing cells had less reserve in respiratory complex III (concentration of antimycin required to reduce oxygen consumption by 50% –+ myc P493 vs –myc P493: 6.580 ± 0.393 nM vs 12.87 ± 1.97 nM p =0.0352). Thus, compared to normal hematopoietic cells, AML cells have greater mitochondrial mass but reduced reserve in their respiratory complexes. As a result of this decreased reserve, AML cells have a heightened sensitivity to inhibition of mitochondrial translation which reduces respiratory chain complex levels and activity. Genetically, the abnormal mitochondrial structure and function appears related to dysregulated myc and its influence on genes promoting increased mitochondrial biogenesis. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2581-2581
Author(s):  
Shrivani Sriskanthadevan ◽  
Timothy E Chung ◽  
Marko Skrtic ◽  
Bozhena Jhas ◽  
Rose Hurren ◽  
...  

Abstract Abstract 2581 Oxidative metabolism generates intracellular energy and metabolic intermediates necessary to promote the growth of AML cells. Recently, we demonstrated that AML cells are uniquely sensitive to inhibition of mitochondrial translation. Therefore, we characterized the structure and metabolic function of the mitochondria in AML and normal hematopoietic cells. Compared to normal cells (n = 10), 1° AML cells (n = 12) had increased mitochondrial mass and increased levels of the NRF-1, TFAM, EF-Tu and Myc, genes that positively regulate mitochondrial biogenesis. By transmission electron microscopy, we demonstrated that the mitochondria in 1°AML cells were larger in area, but fewer in number compared to normal CD34+ cells. Given the dysregulated mitochondrial biogenesis in 1° AML cells, we examined the activity and reserve capacity of the respiratory complexes in 1° AML and normal cells. When normalized for mitochondrial mass, 1°AML cells (n = 12) had reduced activity of respiratory complexes III, IV and V compared to normal cells (n = 10). Thus, despite the increased mitochondrial mass in AML, respiratory chain complex activity did not increase proportionately. Next, we evaluated the spare reserve capacity in AML cell lines, 1° AML samples, and normal cells. Spare reserve capacity reflects the difference between basal and maximal respiratory rate and was determined by measuring oxygen consumption after treatment with oligomycin to block ATP synthesis and FCCP to uncouple ATP synthesis from the electron transport chain. The spare reserve capacity in AML cells and 1o samples was lower than normal hematopoietic cells. In order to determine the reserve capacity in individual respiratory complexes, we evaluated the rate of oxygen consumption in 1°AML and normal cells by treating the cells with increasing concentrations of the complex I, III IV, and V inhibitors, rotenone, antimycin, sodium azide, and oligomycin, respectively, and measuring changes in oxygen consumption. AML cells displayed less reserve capacity in the individual complexes compared to normal hematopoietic cells, and the differences were most striking for complexes III and IV. Consistent with the reduced reserve capacity, AML cells were more sensitive to respiratory chain inhibitors. We then employed a genetic approach to investigate the relationship between mitochondrial mass and spare reserve capacity using P493 Burkitt's cells with inducible myc as we and others have previously shown that myc regulates mitochondrial mass. Compared to myc knockdown cells, myc +P493 cells had increased mitochondrial mass, larger mitochondria, increased basal oxygen consumption, but reduced activity of respiratory complexes III, IV and V when normalized for mitochondrial mass, compared to myc - cells. In addition, myc expressing cells had less spare reserve capacity in their respiratory chain. Thus, in this isogenic cell line, increased mitochondrial mass was not accompanied by a proportionate increase in respiratory chain activity resulting in decreased spare reserve capacity. Given the reduced reserve capacity in AML cells, we evaluated the effects of increasing electron flux through respiratory chain. We speculated that the low spare reserve capacity would render AML cells more vulnerable to oxidative stress. To test this strategy AML cells and 1° samples as well as normal cells were treated increasing concentrations of the fatty acid substrate palmitate or the TCA cycle substrate dimethyl succinate. Consistent with our hypothesis, treatment with palmitate or dimethyl succinate transiently increased oxygen consumption and decreased spare reserve capacity in AML but not normal cells. Subsequently these treatments, increased reactive oxygen and induced cell death preferentially in AML cells and 1° samples compare to normal hematopoietic cells. Moreover, this treatment preferentially reduced the clonogenic growth of 1° AML cells over normal cells and reduced the engraftment of 1°AML but not normal cells into immune deficient mice. In summary, compared to normal hematopoietic cells, AML cells have greater mitochondrial mass but respiratory chain activity does not increase proportionately. The lack of proportionate rise in respiratory complex activity results in reduced spare reserve capacity in the respiratory complexes and greater sensitivity to oxidative stress. These data highlight a unique metabolic vulnerability in AML. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 125 (13) ◽  
pp. 2120-2130 ◽  
Author(s):  
Shrivani Sriskanthadevan ◽  
Danny V. Jeyaraju ◽  
Timothy E. Chung ◽  
Swayam Prabha ◽  
Wei Xu ◽  
...  

Key Points AML cells have increased mitochondrial mass, low respiratory chain complex activities, and low spare reserve capacity compared with normal cells. AML cells have heightened sensitivity to inhibitors of the respiratory chain complexes and oxidative stressors.


2014 ◽  
Vol 205 (4) ◽  
pp. 511-524 ◽  
Author(s):  
Markus Hildenbeutel ◽  
Eric L. Hegg ◽  
Katharina Stephan ◽  
Steffi Gruschke ◽  
Brigitte Meunier ◽  
...  

Mitochondrial respiratory chain complexes convert chemical energy into a membrane potential by connecting electron transport with charge separation. Electron transport relies on redox cofactors that occupy strategic positions in the complexes. How these redox cofactors are assembled into the complexes is not known. Cytochrome b, a central catalytic subunit of complex III, contains two heme bs. Here, we unravel the sequence of events in the mitochondrial inner membrane by which cytochrome b is hemylated. Heme incorporation occurs in a strict sequential process that involves interactions of the newly synthesized cytochrome b with assembly factors and structural complex III subunits. These interactions are functionally connected to cofactor acquisition that triggers the progression of cytochrome b through successive assembly intermediates. Failure to hemylate cytochrome b sequesters the Cbp3–Cbp6 complex in early assembly intermediates, thereby causing a reduction in cytochrome b synthesis via a feedback loop that senses hemylation of cytochrome b.


2018 ◽  
Vol 29 (7) ◽  
pp. 776-785 ◽  
Author(s):  
Lena Böttinger ◽  
Christoph U. Mårtensson ◽  
Jiyao Song ◽  
Nicole Zufall ◽  
Nils Wiedemann ◽  
...  

Mitochondria are the powerhouses of eukaryotic cells. The activity of the respiratory chain complexes generates a proton gradient across the inner membrane, which is used by the F1FO-ATP synthase to produce ATP for cellular metabolism. In baker’s yeast, Saccharomyces cerevisiae, the cytochrome bc1 complex (complex III) and cytochrome c oxidase (complex IV) associate in respiratory chain supercomplexes. Iron–sulfur clusters (ISC) form reactive centers of respiratory chain complexes. The assembly of ISC occurs in the mitochondrial matrix and is essential for cell viability. The cysteine desulfurase Nfs1 provides sulfur for ISC assembly and forms with partner proteins the ISC-biogenesis desulfurase complex (ISD complex). Here, we report an unexpected interaction of the active ISD complex with the cytochrome bc1 complex and cytochrome c oxidase. The individual deletion of complex III or complex IV blocks the association of the ISD complex with respiratory chain components. We conclude that the ISD complex binds selectively to respiratory chain supercomplexes. We propose that this molecular link contributes to coordination of iron–sulfur cluster formation with respiratory activity.


2009 ◽  
Vol 20 (10) ◽  
pp. 2615-2625 ◽  
Author(s):  
Martin Prestele ◽  
Frank Vogel ◽  
Andreas S. Reichert ◽  
Johannes M. Herrmann ◽  
Martin Ott

The complexes of the respiratory chain represent mosaics of nuclear and mitochondrially encoded components. The processes by which synthesis and assembly of the various subunits are coordinated remain largely elusive. During evolution, many proteins of the mitochondrial ribosome acquired additional domains pointing at specific properties or functions of the translation machinery in mitochondria. Here, we analyzed the function of Mrpl36, a protein associated with the large subunit of the mitochondrial ribosome. This protein, homologous to the ribosomal protein L31 from bacteria, contains a mitochondria-specific C-terminal domain that is not required for protein synthesis per se; however, its absence decreases stability of Mrpl36. Cells lacking this C-terminal domain can still synthesize proteins, but these translation products fail to be properly assembled into respiratory chain complexes and are rapidly degraded. Surprisingly, overexpression of Mrpl36 seems to even increase the efficiency of mitochondrial translation. Our data suggest that Mrpl36 plays a critical role during translation that determines the rate of respiratory chain assembly. This important function seems to be carried out by a stabilizing activity of Mrpl36 on the interaction between large and small ribosomal subunits, which could influence accuracy of protein synthesis.


2017 ◽  
Vol 10 (11) ◽  
pp. 1343-1352 ◽  
Author(s):  
Hong Lin ◽  
Jordi Magrane ◽  
Amy Rattelle ◽  
Anna Stepanova ◽  
Alexander Galkin ◽  
...  

2010 ◽  
Vol 21 (12) ◽  
pp. 1937-1944 ◽  
Author(s):  
Heike Bauerschmitt ◽  
David U. Mick ◽  
Markus Deckers ◽  
Christine Vollmer ◽  
Soledad Funes ◽  
...  

Biogenesis of respiratory chain complexes depends on the expression of mitochondrial-encoded subunits. Their synthesis occurs on membrane-associated ribosomes and is probably coupled to their membrane insertion. Defects in expression of mitochondrial translation products are among the major causes of mitochondrial disorders. Mdm38 is related to Letm1, a protein affected in Wolf-Hirschhorn syndrome patients. Like Mba1 and Oxa1, Mdm38 is an inner membrane protein that interacts with ribosomes and is involved in respiratory chain biogenesis. We find that simultaneous loss of Mba1 and Mdm38 causes severe synthetic defects in the biogenesis of cytochrome reductase and cytochrome oxidase. These defects are not due to a compromised membrane binding of ribosomes but the consequence of a mis-regulation in the synthesis of Cox1 and cytochrome b. Cox1 expression is restored by replacing Cox1-specific regulatory regions in the mRNA. We conclude, that Mdm38 and Mba1 exhibit overlapping regulatory functions in translation of selected mitochondrial mRNAs.


Sign in / Sign up

Export Citation Format

Share Document