AML Cells Have Altered Mitochondrial Biogenesis and Low Spare Reserve Capacity in Their Respiratory Chain That Renders Them Susceptible to Oxidative Metabolic Stress.

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2581-2581
Author(s):  
Shrivani Sriskanthadevan ◽  
Timothy E Chung ◽  
Marko Skrtic ◽  
Bozhena Jhas ◽  
Rose Hurren ◽  
...  

Abstract Abstract 2581 Oxidative metabolism generates intracellular energy and metabolic intermediates necessary to promote the growth of AML cells. Recently, we demonstrated that AML cells are uniquely sensitive to inhibition of mitochondrial translation. Therefore, we characterized the structure and metabolic function of the mitochondria in AML and normal hematopoietic cells. Compared to normal cells (n = 10), 1° AML cells (n = 12) had increased mitochondrial mass and increased levels of the NRF-1, TFAM, EF-Tu and Myc, genes that positively regulate mitochondrial biogenesis. By transmission electron microscopy, we demonstrated that the mitochondria in 1°AML cells were larger in area, but fewer in number compared to normal CD34+ cells. Given the dysregulated mitochondrial biogenesis in 1° AML cells, we examined the activity and reserve capacity of the respiratory complexes in 1° AML and normal cells. When normalized for mitochondrial mass, 1°AML cells (n = 12) had reduced activity of respiratory complexes III, IV and V compared to normal cells (n = 10). Thus, despite the increased mitochondrial mass in AML, respiratory chain complex activity did not increase proportionately. Next, we evaluated the spare reserve capacity in AML cell lines, 1° AML samples, and normal cells. Spare reserve capacity reflects the difference between basal and maximal respiratory rate and was determined by measuring oxygen consumption after treatment with oligomycin to block ATP synthesis and FCCP to uncouple ATP synthesis from the electron transport chain. The spare reserve capacity in AML cells and 1o samples was lower than normal hematopoietic cells. In order to determine the reserve capacity in individual respiratory complexes, we evaluated the rate of oxygen consumption in 1°AML and normal cells by treating the cells with increasing concentrations of the complex I, III IV, and V inhibitors, rotenone, antimycin, sodium azide, and oligomycin, respectively, and measuring changes in oxygen consumption. AML cells displayed less reserve capacity in the individual complexes compared to normal hematopoietic cells, and the differences were most striking for complexes III and IV. Consistent with the reduced reserve capacity, AML cells were more sensitive to respiratory chain inhibitors. We then employed a genetic approach to investigate the relationship between mitochondrial mass and spare reserve capacity using P493 Burkitt's cells with inducible myc as we and others have previously shown that myc regulates mitochondrial mass. Compared to myc knockdown cells, myc +P493 cells had increased mitochondrial mass, larger mitochondria, increased basal oxygen consumption, but reduced activity of respiratory complexes III, IV and V when normalized for mitochondrial mass, compared to myc - cells. In addition, myc expressing cells had less spare reserve capacity in their respiratory chain. Thus, in this isogenic cell line, increased mitochondrial mass was not accompanied by a proportionate increase in respiratory chain activity resulting in decreased spare reserve capacity. Given the reduced reserve capacity in AML cells, we evaluated the effects of increasing electron flux through respiratory chain. We speculated that the low spare reserve capacity would render AML cells more vulnerable to oxidative stress. To test this strategy AML cells and 1° samples as well as normal cells were treated increasing concentrations of the fatty acid substrate palmitate or the TCA cycle substrate dimethyl succinate. Consistent with our hypothesis, treatment with palmitate or dimethyl succinate transiently increased oxygen consumption and decreased spare reserve capacity in AML but not normal cells. Subsequently these treatments, increased reactive oxygen and induced cell death preferentially in AML cells and 1° samples compare to normal hematopoietic cells. Moreover, this treatment preferentially reduced the clonogenic growth of 1° AML cells over normal cells and reduced the engraftment of 1°AML but not normal cells into immune deficient mice. In summary, compared to normal hematopoietic cells, AML cells have greater mitochondrial mass but respiratory chain activity does not increase proportionately. The lack of proportionate rise in respiratory complex activity results in reduced spare reserve capacity in the respiratory complexes and greater sensitivity to oxidative stress. These data highlight a unique metabolic vulnerability in AML. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3585-3585
Author(s):  
Shrivani Sriskanthadevan ◽  
Skrtic Marko ◽  
Bozhena Livak ◽  
Yulia Jitkova ◽  
Rose Hurren ◽  
...  

Abstract Abstract 3585 Recent studies suggest that dysregulated mitochondrial oxygen consumption promotes the growth of AML cells. Therefore, we characterized the structure and metabolic function of the mitochondria in AML and normal G-CSF-mobilized hematopoietic mononuclear cells (PBSCs). Compared to PBSCs, 1o AML cells had increased mitochondrial mass as demonstrated by an increased mitochondrial DNA copy number and increased activity of matrix enzyme citrate synthase. The increased mitochondrial mass observed in 1o AML cells may represent larger mitochondria and/or more numerous mitochondria. Therefore, we evaluated the mitochondria of 1o AML and normal CD34+ hematopoietic cells by electron microscopy. The mitochondria in 1o AML cells were larger in area, but fewer in number compared to normal CD34+ cells. Mitochondria contain the respiratory chain complexes that promote oxidative phosphorylation. Given the dysregulated mitochondrial biogenesis in 1o AML cells, we examined the levels and capacity of the respiratory complexes in 1o AML and normal PBSCs. When normalized for mitochondrial mass, 1o AML cells (n = 12) had reduced activity of respiratory complexes III and IV compared to PBSCs (n = 10) (Mean complex III activity AML vs PBSC: 0.32 ± 0.04 RU vs 0.66 ± 0.11 RU p = 0.0063; Mean complex IV activity AML vs PBSC: 0.13 ± 0.01 RU vs 0.24 ± 0.02 RU, p= 0.0003). We evaluated the capacity of the respiratory complexes in AML cells and PBSCs by treating with increasing concentrations of the complex III inhibitor antimycin, and measuring the changes in oxygen consumption. AML cells displayed heightened sensitivity to the complex III inhibitor and less reserve capacity in the respiratory complex compared to PBSCs (mean concentration of antimycin required to reduce oxygen consumption by 50%: AML (n = 11) vs PBSC (n = 3): 13.7 ± 1.6 nM vs 29.0 ± 2.4 nM; p = 0.0007). AML cell lines were similar to 1o AML cells with decreased basal respiratory complex activity and reserve capacity compared to PBSCs. Given the reduced levels and reserve in the respiratory chain complexes in AML cells, we evaluated the effects of inhibiting mitochondrial protein translation in AML cells and PBSCs. Chemical (tigecycline, and chloramphenicol) and genetic (RNAi knockdown of the EF-Tu) inhibition of mitochondrial translation reduced the levels and function of the respiratory complexes that contain proteins encoded by mitochondrial DNA. Consistent with the reduced reserve capacity, inhibiting mitochondrial translation preferentially reduced oxygen consumption and viability of 1o AML cells and AML cell lines over PBSCs and normal CD34+ cells. To understand the molecular basis for the abnormal mitochondrial biogenesis in 1o AML cells, we measured levels of the NRF-1, TFAM and EF-Tu, genes known to positively regulate mitochondrial biogenesis. Compared to PBSCs, AML samples showed at least a 3-fold increase in mRNA expression of these genes. Myc is a positive regulator of NRF-1, TFAM and EF-Tu. Therefore, we measured levels of myc in 1o AML cells and PBSCs by Q-RT-PCR. Compared to PBSCs, myc was increased in 1o AML cells and positively correlated with expression of NRF-1, TFAM and EF-Tu as well as with mitochondrial mass. To determine whether increased myc expression is functionally related to the increased mitochondrial biogenesis and decreased reserve in respiratory capacity, we employed P493 Burkitt's cells with inducible myc knockdown. P493 cells expressing myc had increased mitochondrial mass, larger mitochondria, and increased basal oxygen consumption compared to the myc knockdown cells. When normalized for mitochondrial mass, myc expressing cells had reduced activity of respiratory complexes III and IV compared to myc knockdown cells. In addition, myc expressing cells had less reserve in respiratory complex III (concentration of antimycin required to reduce oxygen consumption by 50% –+ myc P493 vs –myc P493: 6.580 ± 0.393 nM vs 12.87 ± 1.97 nM p =0.0352). Thus, compared to normal hematopoietic cells, AML cells have greater mitochondrial mass but reduced reserve in their respiratory complexes. As a result of this decreased reserve, AML cells have a heightened sensitivity to inhibition of mitochondrial translation which reduces respiratory chain complex levels and activity. Genetically, the abnormal mitochondrial structure and function appears related to dysregulated myc and its influence on genes promoting increased mitochondrial biogenesis. Disclosures: No relevant conflicts of interest to declare.


2001 ◽  
Vol 90 (3) ◽  
pp. 1137-1157 ◽  
Author(s):  
David A. Hood

Chronic contractile activity produces mitochondrial biogenesis in muscle. This adaptation results in a significant shift in adenine nucleotide metabolism, with attendant improvements in fatigue resistance. The vast majority of mitochondrial proteins are derived from the nuclear genome, necessitating the transcription of genes, the translation of mRNA into protein, the targeting of the protein to a mitochondrial compartment via the import machinery, and the assembly of multisubunit enzyme complexes in the respiratory chain or matrix. Putative signals involved in initiating this pathway of gene expression in response to contractile activity likely arise from combinations of accelerations in ATP turnover or imbalances between mitochondrial ATP synthesis and cellular ATP demand, and Ca2+ fluxes. These rapid events are followed by the activation of exercise-responsive kinases, which phosphorylate proteins such as transcription factors, which subsequently bind to upstream regulatory regions in DNA, to alter transcription rates. Contractile activity increases the mRNA levels of nuclear-encoded proteins such as cytochrome c and mitochondrial transcription factor A (Tfam) and mRNA levels of upstream transcription factors like c- junand nuclear respiratory factor-1 (NRF-1). mRNA level changes are often most evident during the postexercise recovery period, and they can occur as a result of contractile activity-induced increases in transcription or mRNA stability. Tfam is imported into mitochondria and controls the expression of mitochondrial DNA (mtDNA). mtDNA contributes only 13 protein products to the respiratory chain, but they are vital for electron transport and ATP synthesis. Contractile activity increases Tfam expression and accelerates its import into mitochondria, resulting in increased mtDNA transcription and replication. The result of this coordinated expression of the nuclear and the mitochondrial genomes, along with poorly understood changes in phospholipid synthesis, is an expansion of the muscle mitochondrial reticulum. Further understanding of 1) regulation of mtDNA expression, 2) upstream activators of NRF-1 and other transcription factors, 3) the identity of mRNA stabilizing proteins, and 4) potential of contractile activity-induced changes in apoptotic signals are warranted.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Gisela Chelimsky ◽  
Pippa Simpson ◽  
Liyun Zhang ◽  
Doug Bierer ◽  
Steve Komas ◽  
...  

Background. Fatigue is often the primary complaint of children with functional gastrointestinal disorders (FGDI) and other chronic overlapping pain disorders (COPC). The basis for this symptom remains unknown. We evaluated mitochondrial function in the white blood cells of these patients. Methods. This prospective Children’s Wisconsin IRB approved study recruited subjects aging 10–18 years from pediatric neurogastroenterology clinics and healthy comparison subjects (HC). Environmental and oxidative stressors can damage the mitochondrial respiratory chain. The known low-grade inflammation in COPC could, therefore, impact the respiratory chain and theoretically account for the disabling fatigue so often voiced by patients. Mitochondrial energy generation can be easily measured in peripheral mononuclear cells (PMC) as a general marker by the Seahorse XF96 Extracellular Flux Analyzer. We measured 5 parameters of oxygen consumption using this methodology: basal respiration (BR), ATP linked oxygen consumption (ATP-LC), maximal oxygen consumption rate (max R), spare respiratory capacity (SRC), and extracellular acidification rate (ECAR), which reflect non-electron chain energy generation through glycolysis. In health, we expect high ATP linked respiration, high reserve capacity, low proton leak, and low non-mitochondrial respiration. In disease, the proton leak typically increases, ATP demand increases, and there is decreased reserve capacity with increased non-mitochondrial respiration. Findings and clinical data were compared to healthy control subjects using a Mann–Whitney test for skewed variables, Fisher’s exact test for dichotomous variables, and regression tree for association with functional outcome (functional disability inventory, FDI). Results. 19 HC and 31 COPC showed no statistically significant difference in age. FGID, orthostatic intolerance, migraine, sleep disturbance, and chronic fatigue were present in the majority of COPC subjects. BR, ECAR, and ATP-LC rates were lower in the COPC group. The low BR and ATP-LC suggest that mitochondria are stressed with decreased ability to produce ATP. Tree analysis selected SRC as the best predictor of functional disability: patients with SRC >150 had a greater FDI (more disability) compared to patients with SRC <=150, p -value = 0.021. Conclusion. Subjects with COPC have reduced mitochondrial capacity to produce ATP. Predisposing genetic factors or reversible acquired changes may be responsible. A higher SRC best predicts disability. Since a higher SRC is typically associated with more mitochondrial reserve, the SRC may indicate an underutilized available energy supply related to inactivity, or a “brake” on mitochondrial function. Prospective longitudinal studies can likely discern whether these findings represent deconditioning, true mitochondrial dysfunction, or both.


Blood ◽  
2015 ◽  
Vol 125 (13) ◽  
pp. 2120-2130 ◽  
Author(s):  
Shrivani Sriskanthadevan ◽  
Danny V. Jeyaraju ◽  
Timothy E. Chung ◽  
Swayam Prabha ◽  
Wei Xu ◽  
...  

Key Points AML cells have increased mitochondrial mass, low respiratory chain complex activities, and low spare reserve capacity compared with normal cells. AML cells have heightened sensitivity to inhibitors of the respiratory chain complexes and oxidative stressors.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 729-729
Author(s):  
Sara Mirali ◽  
Botham Aaron ◽  
Veronique Voisin ◽  
Changjiang Xu ◽  
Jonathan St-Germain ◽  
...  

Acute myeloid leukemia (AML) cells and stem cells have unique mitochondrial characteristics with an increased reliance on oxidative phosphorylation (OXPHOS). To identify new biological vulnerabilities in the mitochondrial proteome of AML cells, we conducted an shRNA screen and identified neurolysin (NLN), a zinc metalloprotease whose mitochondrial function is not well understood and whose role in AML has not been previously reported. To begin our investigation into the role of NLN in AML, we analyzed NLN gene expression in a database of 536 AML and 73 normal bone marrow samples. NLN was overexpressed in 41% of AML samples. Overexpression of NLN in primary AML cells compared to normal hematopoietic cells was confirmed by immunoblotting. To validate the results of the screen and to determine whether NLN is required for AML growth and viability, we knocked down NLN in the leukemia cell lines OCI-AML2, MV4-11, NB4, and TEX with shRNA. NLN knockdown reduced leukemia growth and viability by 50-70%. Moreover, knockdown of NLN in AML cells reduced the clonogenic growth of leukemic cells in vitro and the engraftment of AML cells into mouse marrow after five weeks by up to 80% and 85%, respectively. The mitochondrial function of NLN is largely unknown, so we identified NLN's mitochondrial protein interactors in T-REx HEK293 cells using proximity-dependent biotin labeling (BioID) coupled with mass spectrometry (MS). This screen identified 73 mitochondrial proteins that preferentially interacted with NLN and were enriched for functions including respiratory chain complex assembly, respiratory electron transport, and mitochondrion organization. Therefore, we assessed the effects of NLN knockdown on OXPHOS. NLN knockdown reduced basal and maximal oxygen consumption, but there were no changes in the levels of individual respiratory chain complex subunits. To understand how NLN influences OXPHOS, we examined the formation of respiratory chain supercomplexes (RCS). Respiratory chain complexes I, III, and IV assemble into higher order quaternary structures called RCS, which promote efficient oxidative metabolism. NLN knockdown significantly impaired RCS formation in T-REx HEK293, OCI-AML2, and NB4 cells, which was rescued by overexpressing wild-type shRNA-resistant NLN. RCS have not been previously studied in leukemia. Therefore, we analyzed their levels in primary AML patient samples and normal hematopoietic cells. RCS assembly was increased in a subset of AML patient samples and positively correlated with NLN protein expression (R2 = 0.83, p &lt; 0.05), suggesting that NLN mediates RCS assembly in AML. To investigate how NLN may be regulating RCS assembly, we analyzed our BioID results to identify NLN interactors that are known regulators of supercomplex formation. Among the top interactors was the known RCS regulator, LETM1. Knockdown of NLN in AML cells impaired LETM1 assembly. Of note, knockdown of LETM1 also reduced growth and oxygen consumption of AML cells. As a chemical approach to evaluate the effects of NLN inhibition on AML cells, we used the allosteric NLN inhibitor R2, (3-[(2S)-1-[(3R)-3-(2-Chlorophenyl)-2-(2-fluorophenyl)pyrazolidin-1-yl]-1-oxopropan-2-yl]-1-(adamantan-2-yl)urea), whose anti-cancer effects have not been previously reported. R2 reduced viability of AML cells, as well as two primary AML culture models, 8227 and 130578. R2 impaired RCS formation in OCI-AML2, NB4, 8227, and primary AML cells. Moreover, R2 reduced the CD34+CD38- stem cell enriched population in 8227 cells, reduced LETM1 complex assembly, and impaired OXPHOS in OCI-AML2 and 8227 cells. Finally, we assessed the effects of inhibiting NLN in mice engrafted with primary AML and normal hematopoietic cells in vivo. Treatment of mice with R2 reduced the leukemic burden in these mice without toxicity. Moreover, inhibiting NLN targeted the AML stem cells as evidenced by reduced engraftment in secondary experiments. In contrast, inhibiting NLN did not reduce the engraftment of normal hematopoietic cells. Collectively, these results demonstrate that inhibition of NLN preferentially targets AML cells and stem cells as compared to normal hematopoietic cells. In summary, we defined a novel role for NLN in RCS formation. We show that RCS are necessary for oxidative metabolism in AML and highlight NLN inhibition as a potential therapeutic strategy. Disclosures Minden: Trillium Therapetuics: Other: licensing agreement. Chan:Agios: Honoraria; AbbVie Pharmaceuticals: Research Funding; Celgene: Honoraria, Research Funding. Schimmer:Medivir Pharmaceuticals: Research Funding; Novartis Pharmaceuticals: Consultancy; Jazz Pharmaceuticals: Consultancy; Otsuka Pharmaceuticals: Consultancy.


2021 ◽  
Vol 7 (1) ◽  
pp. 42
Author(s):  
Deyamira Matuz-Mares ◽  
Oscar Flores-Herrera ◽  
Guadalupe Guerra-Sánchez ◽  
Lucero Romero-Aguilar ◽  
Héctor Vázquez-Meza ◽  
...  

Respiratory supercomplexes are found in mitochondria of eukaryotic cells and some bacteria. A hypothetical role of these supercomplexes is electron channeling, which in principle should increase the respiratory chain efficiency and ATP synthesis. In addition to the four classic respiratory complexes and the ATP synthase, U. maydis mitochondria contain three type II NADH dehydrogenases (NADH for reduced nicotinamide adenine dinucleotide) and the alternative oxidase. Changes in the composition of the respiratory supercomplexes due to energy requirements have been reported in certain organisms. In this study, we addressed the organization of the mitochondrial respiratory complexes in U. maydis under diverse energy conditions. Supercomplexes were obtained by solubilization of U. maydis mitochondria with digitonin and separated by blue native polyacrylamide gel electrophoresis (BN-PAGE). The molecular mass of supercomplexes and their probable stoichiometries were 1200 kDa (I1:IV1), 1400 kDa (I1:III2), 1600 kDa (I1:III2:IV1), and 1800 kDa (I1:III2:IV2). Concerning the ATP synthase, approximately half of the protein is present as a dimer and half as a monomer. The distribution of respiratory supercomplexes was the same in all growth conditions. We did not find evidence for the association of complex II and the alternative NADH dehydrogenases with other respiratory complexes.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Lauren A. Callender ◽  
Johannes Schroth ◽  
Elizabeth C. Carroll ◽  
Conor Garrod-Ketchley ◽  
Lisa E. L. Romano ◽  
...  

AbstractGATA3 is as a lineage-specific transcription factor that drives the differentiation of CD4+ T helper 2 (Th2) cells, but is also involved in a variety of processes such as immune regulation, proliferation and maintenance in other T cell and non-T cell lineages. Here we show a mechanism utilised by CD4+ T cells to increase mitochondrial mass in response to DNA damage through the actions of GATA3 and AMPK. Activated AMPK increases expression of PPARG coactivator 1 alpha (PPARGC1A or PGC1α protein) at the level of transcription and GATA3 at the level of translation, while DNA damage enhances expression of nuclear factor erythroid 2-related factor 2 (NFE2L2 or NRF2). PGC1α, GATA3 and NRF2 complex together with the ATR to promote mitochondrial biogenesis. These findings extend the pleotropic interactions of GATA3 and highlight the potential for GATA3-targeted cell manipulation for intervention in CD4+ T cell viability and function after DNA damage.


Biology ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 349
Author(s):  
Rodrigo Prieto-Carrasco ◽  
Fernando E. García-Arroyo ◽  
Omar Emiliano Aparicio-Trejo ◽  
Pedro Rojas-Morales ◽  
Juan Carlos León-Contreras ◽  
...  

The five-sixth nephrectomy (5/6Nx) model is widely used to study the mechanisms involved in chronic kidney disease (CKD) progression. Mitochondrial impairment is a critical mechanism that favors CKD progression. However, until now, there are no temporal studies of the change in mitochondrial biogenesis and dynamics that allow determining the role of these processes in mitochondrial impairment and renal damage progression in the 5/6Nx model. In this work, we determined the changes in mitochondrial biogenesis and dynamics markers in remnant renal mass from days 2 to 28 after 5/6Nx. Our results show a progressive reduction in mitochondrial biogenesis triggered by reducing two principal regulators of mitochondrial protein expression, the peroxisome proliferator-activated receptor-gamma coactivator 1-alpha and the peroxisome proliferator-activated receptor alpha. Furthermore, the reduction in mitochondrial biogenesis proteins strongly correlates with the increase in renal damage markers. Additionally, we found a slow and gradual change in mitochondrial dynamics from fusion to fission, favoring mitochondrial fragmentation at later stages after 5/6Nx. Together, our results suggest that 5/6Nx induces the progressive reduction in mitochondrial mass over time via the decrease in mitochondrial biogenesis factors and a slow shift from mitochondrial fission to fusion; both mechanisms favor CKD progression in the remnant renal mass.


1992 ◽  
Vol 12 (5) ◽  
pp. 381-386 ◽  
Author(s):  
F. Buttgereit ◽  
M. D. Brand ◽  
M. Müller

The influence of ConA on the energy metabolism of quiescent rat thymocytes was investigated by measuring the effects of inhibitors of protein synthesis, proteolysis, RNA/DNA synthesis, Na+K+-ATPase, Ca2+-ATPase and mitochondrial ATP synthesis on respiration. Only about 50% of the coupled oxygen consumption of quiescent thymocytes could be assigned to specific processes using two different media. Under these conditions the oxygen is mainly used to drive mitochondrial proton leak and to provide ATP for protein synthesis and cation transport, whereas oxygen consumption to provide ATP for RNA/DNA synthesis and ATP-dependent proteolysis was not measurable. The mitogen ConA produced a persistent increase in oxygen consumption by about 30% within seconds. After stimulation more than 80% of respiration could be assigned to specific processes. The major oxygen consuming processes of ConA-stimulated thymocytes are mitochondrial proton leak, protein synthesis and Na+K+-ATPase with about 20% each of total oxygen consumption, while Ca2+-ATPase and RNA/DNA synthesis contribute about 10% each. Quiescent thymocytes resemble resting hepatocytes in that most of the oxygen consumption remains unexplained. In constrast, the pattern of energy metabolism in stimulated thymocytes is similar to that described for Ehrlich Ascites tumour cells and splenocytes, which may also be in an activated state. Most of the oxygen consumption is accounted for, so the unexplained process(es) in unstimulated cells shut(s) off on stimulation.


1971 ◽  
Vol 49 (11) ◽  
pp. 1175-1182 ◽  
Author(s):  
M. Ishaque ◽  
A. Donawa ◽  
M. I. H. Aleem

The respiratory chain system of heterotrophically grown Pseudomonas saccharophila contained cytochromes of the b, c, a, and o types and also the NADH and succinate oxidase enzyme systems. Cell-free extracts catalyzed phosphorylation coupled to the oxidation of NADH, succinate, and ascorbate (plus cytochrome c). The P/O ratios were in the range of 1.00 for generated NADH, 0.29 for added NADH, 0.50 for succinate, and 0.25 for ascorbate (plus cytochrome c).The oxidative phosphorylation was uncoupled by 2,4-dinitrophenol, 2,6-dibromophenol, pentachlorophenol, m-chlorocarbonyl cyanide phenylhydrazone, and dicumarol without any inhibition of oxygen consumption. Phosphorylation coupled to NADH oxidation was completely inhibited by the flavoprotein inhibitors such as rotenone, amytal, and atabrine; these inhibitors had no effect, however, on the ATP synthesis associated with succinate oxidation. Antimycin A or 2-n-nonyl-4-hydroxyquinoline-N-oxide as well as cyanide or azide at low concentrations completely inhibited the phosphate esterification coupled to the oxidation of NADH or succinate, but had little or no effect on the oxygen consumption. Relatively higher concentrations of oligomycin were required for a complete inhibition of the electron-transport-linked ATP formation.


Sign in / Sign up

Export Citation Format

Share Document