Efficacy of SAR302503, a JAK2 Inhibitor, in the Treatment of a Primary Xenograft Model of Human Acute Myeloid Leukemia,

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3624-3624
Author(s):  
Weihsu Claire Chen ◽  
Andreea C. Popescu ◽  
Yan Xing ◽  
Gitte Gerhard ◽  
Julie S. Yuan ◽  
...  

Abstract Abstract 3624 Small molecule inhibitors targeting somatic mutations of Janus kinase 2 (JAK2) have demonstrated effectiveness in clinical trials for treatment of myeloproliferative disorders. Activated JAK2 signaling has been reported in some acute myeloid leukemia (AML) samples even though the frequency of JAK2 mutations is relatively rare in AML. Whether JAK2 inhibitors are effective in AML is not clear. Since many myeloid malignancies including AML are organized as cellular hierarchies driven by leukemia stem cells (LSC) at the apex, it is also unknown whether LSCs are sensitive to JAK2 inhibition. We report that SAR302503 (SAR503, Sanofi, Cambridge, MA), an orally administered small molecule inhibitor of JAK2, shows therapeutic efficacy in a xenograft model of human AML established by intrafemoral injection of primary human AML cells into anti-NK treated irradiated NOD.SCID mice. Drug pharmacokinetic studies confirm that SAR503 exhibits good bioavailability in NOD.SCID mice. Starting 2 weeks post transplantation to permit establishment of an AML graft, mice were orally gavaged twice a day with 60 mg/kg SAR503 or vehicle alone (0.5% methylcellulose) for 14 consecutive days. In 5 of 7 AML samples, treated mice exhibited significantly lower engraftment (3 to 18 fold; p < 0.05) in the injected femur compared to control mice. For 4 samples, there was also a significantly reduced level of engraftment (2 to 19 fold; p < 0.05) in non-injected bones, indicating that JAK2 inhibition affected the migratory ability of AML cells. The observed heterogeneous drug response (5 responders and 2 non-responders) correlated well with phosphoflow analysis showing that AML samples that responded to JAK2 inhibition in vivo had high basal and marked reduction in the STAT signaling pathway after in vitro treatment, whereas non-responding samples did not. Serial transplantation studies are ongoing to evaluate the effect of JAK2 inhibition on LSCs in treated primary mice. To evaluate whether AML samples that did not respond to JAK2 inhibition alone would respond to combination therapy, we treated engrafted mice with SAR503 plus cytarabine, a standard chemotherapeutic drug used in AML. Combination therapy of one non-responding sample resulted in a significantly reduced leukemic burden (2.3%) compared to mice treated with SAR503 alone (85.8%) or cytarabine alone (16.8%; p < 0.05 versus combination therapy). Our results demonstrate the potential of SAR503 to target AML cells and AML LSCs across a cross section of primary AML samples. Our pilot studies warrant a much larger scale evaluation of AML samples to identify responders and non-responders along with associated proteomic and genomic biomarkers of drug response. The approach we have taken, which focuses on large-scale analysis of primary samples using state-of-the-art xenograft assays, offers a new paradigm for preclinical drug development to identify both novel agents that effectively target LSCs and the patient populations most likely to benefit from targeted treatment. Disclosures: Off Label Use: We describe using SAR302503 to treat AML in a mouse model.

2020 ◽  
Vol 11 (9) ◽  
Author(s):  
Kai Chen ◽  
Qianying Yang ◽  
Jie Zha ◽  
Manman Deng ◽  
Yong Zhou ◽  
...  

Abstract Acute myeloid leukemia (AML) is a heterogeneous myeloid neoplasm with poor clinical outcome, despite the great progress in treatment in recent years. The selective Bcl-2 inhibitor venetoclax (ABT-199) in combination therapy has been approved for the treatment of newly diagnosed AML patients who are ineligible for intensive chemotherapy, but resistance can be acquired through the upregulation of alternative antiapoptotic proteins. Here, we reported that a newly emerged histone deacetylase inhibitor, chidamide (CS055), at low-cytotoxicity dose enhanced the anti-AML activity of ABT-199, while sparing normal hematopoietic progenitor cells. Moreover, we also found that chidamide showed a superior resensitization effect than romidepsin in potentiation of ABT-199 lethality. Inhibition of multiple HDACs rather than some single component might be required. The combination therapy was also effective in primary AML blasts and stem/progenitor cells regardless of disease status and genetic aberrance, as well as in a patient-derived xenograft model carrying FLT3-ITD mutation. Mechanistically, CS055 promoted leukemia suppression through DNA double-strand break and altered unbalance of anti- and pro-apoptotic proteins (e.g., Mcl-1 and Bcl-xL downregulation, and Bim upregulation). Taken together, these results show the high therapeutic potential of ABT-199/CS055 combination in AML treatment, representing a potent and alternative salvage therapy for the treatment of relapsed and refractory patients with AML.


2015 ◽  
Vol 5 (3) ◽  
pp. e297-e297 ◽  
Author(s):  
E Saland ◽  
H Boutzen ◽  
R Castellano ◽  
L Pouyet ◽  
E Griessinger ◽  
...  

2020 ◽  
Vol 26 (23) ◽  
pp. 6132-6140
Author(s):  
Amer M. Zeidan ◽  
Maya Ridinger ◽  
Tara L. Lin ◽  
Pamela S. Becker ◽  
Gary J. Schiller ◽  
...  

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Gerard Minuesa ◽  
Steven K. Albanese ◽  
Wei Xie ◽  
Yaniv Kazansky ◽  
Daniel Worroll ◽  
...  

2019 ◽  
Vol 3 (3) ◽  
pp. 242-255 ◽  
Author(s):  
Shaneice R. Mitchell ◽  
Karilyn Larkin ◽  
Nicole R. Grieselhuber ◽  
Tzung-Huei Lai ◽  
Matthew Cannon ◽  
...  

Abstract Treatment options for acute myeloid leukemia (AML) remain extremely limited and associated with significant toxicity. Nicotinamide phosphoribosyltransferase (NAMPT) is involved in the generation of NAD+ and a potential therapeutic target in AML. We evaluated the effect of KPT-9274, a p21-activated kinase 4/NAMPT inhibitor that possesses a unique NAMPT-binding profile based on in silico modeling compared with earlier compounds pursued against this target. KPT-9274 elicited loss of mitochondrial respiration and glycolysis and induced apoptosis in AML subtypes independent of mutations and genomic abnormalities. These actions occurred mainly through the depletion of NAD+, whereas genetic knockdown of p21-activated kinase 4 did not induce cytotoxicity in AML cell lines or influence the cytotoxic effect of KPT-9274. KPT-9274 exposure reduced colony formation, increased blast differentiation, and diminished the frequency of leukemia-initiating cells from primary AML samples; KPT-9274 was minimally cytotoxic toward normal hematopoietic or immune cells. In addition, KPT-9274 improved overall survival in vivo in 2 different mouse models of AML and reduced tumor development in a patient-derived xenograft model of AML. Overall, KPT-9274 exhibited broad preclinical activity across a variety of AML subtypes and warrants further investigation as a potential therapeutic agent for AML.


Sign in / Sign up

Export Citation Format

Share Document