Histones, Like Platelet Factor 4 (PF4), Affect Generation of Activated Protein C: Implications for the Pathogenesis of Severe Sepsis

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 530-530
Author(s):  
M. Anna Kowalska ◽  
Guohua Zhao ◽  
George David ◽  
Mortimer Poncz

Abstract Abstract 530 Platelet factor 4 (PF4) increases aPC generation by the thrombin (IIa)/thrombomodulin (TM) complex and may impact outcome in sepsis. PF4's effect on aPC generation follows a biphasic curve when tested in solution, on human TM expressing HEK293, and on primary endothelial cells (ECs) with a peak concentration at around 25 μg/ml. Formation of complexes at a specific molar ratio between positively-charged tetramers of PF4 and negatively-charged chondroitin sulfate (CS) on the TM glycosaminoglycan (GAG) is crucial for the increase in aPC generation. Other positively-charged molecules like protamine sulfate (PRT) affect aPC generation in a similar manner, and heparin, which is known to bind PF4 and PRT more avidly than CS, lowers effective PF4 or PRT concentrations. Here we examined whether histones, that are also small positively-charged molecules, affect aPC generation. Histones released from cells in sepsis are cytotoxic toward ECs and lethal when injected into mice, and aPC reverses this lethality. May histones affect aPC generation by the same mechanism as other positively-charged molecules, and how does the presence of PF4 or heparin influence this effect? We have addressed these questions both in solution and with TM-expressing cells, in the absence or presence of endothelial protein C receptor. We found that individual, or mixed histones affect aPC formation following a similar biphasic curve seen with PF4 with a peak effect at around 10 μg/ml but to lesser extent (2-fold maximal increase compared to 6-fold for PF4). Histones and PF4 are additive at low concentrations; however, more importantly, histones only decreased aPC generation when tested in the presence of optimal or higher PF4 concentration (>25 μg/ml). Just as with PF4, added heparin decreased effective histone concentration and shifted the curve for aPC generation to the right, both in the absence or presence of PF4. We hypothesize that normally PF4 released from platelets augments aPC generation and low concentration of histones have similar effect. But when histones are released in sepsis in high concentrations, their interaction with CS on TM blocks formation of complexes between PF4 and TM's CS that are optimal for maximal increase of aPC generation. Further we tested the effect of histones on aPC generation in vivo. Injection of histones in mice increased IIa-induced (2U/kg) aPC generation in plasma. This increase was concentration dependent (at 1 to 20 mg/kg increasing aPC generation up to 10-fold), but injection of higher amount of histones (40 mg/kg) became lethal. Mice that were overexpressing human PF4 had an increased lethality when histones at 40 mg/kg were co-injected with thrombin (2U/kg) over the littermate mice deficient in murine PF4 (60% vs. 0% mortality, respectively, n=5 for each group) suggesting that in vivo histones may also act additively with PF4 on aPC generation. We propose that in severe septic patients, especially those with high levels of released PF4, concurrently available histones suppress aPC generation. By binding to the excess of PF4 and/or histones, heparin may be beneficial in severe sepsis by allowing improved aPC generation. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2003 ◽  
Vol 102 (1) ◽  
pp. 146-151 ◽  
Author(s):  
Arne Slungaard ◽  
Jose A. Fernandez ◽  
John H. Griffin ◽  
Nigel S. Key ◽  
Janel R. Long ◽  
...  

Abstract Platelet factor 4 (PF4), an abundant platelet α-granule protein, accelerates in vitro generation of activated protein C (APC) by soluble thrombin/thrombomodulin (TM) complexes up to 25-fold. To test the hypothesis that PF4 similarly stimulates endothelium-associated TM, we assessed the influence of human PF4 on thrombin-dependent APC generation by cultured endothelial monolayers. APC generated in the presence of 1 to 100 μg PF4 was up to 5-fold higher than baseline for human umbilical vein endothelial cells, 10-fold higher for microvascular endothelial cells, and unaltered for blood outgrowth endothelial cells. In an in vivo model, cynomolgus monkeys (n = 6, each serving as its own control) were infused with either PF4 (7.5 mg/kg) or vehicle buffer, then with human thrombin (1.0 μg/kg/min) for 10 minutes. Circulating APC levels (baseline 3 ng/mL) peaked at 10 minutes, when PF4-treated and vehicle-treated animals had APC levels of 67 ± 5 ng/mL and 39 ± 2 ng/mL, respectively (P < .001). The activated partial thromboplastin time (APTT; baseline, 28 seconds) increased maximally by 27 ± 6 seconds in PF4-treated animals and by 9 ± 1 seconds in control animals at 30 minutes (P < .001). PF4-dependent increases in circulating APC and APTT persisted more than 2-fold greater than that of control's from 10 through 120 minutes (P ≤ .04). All APTT prolongations were essentially reversed by monoclonal antibody C3, which blocks APC activity. Thus, physiologically relevant concentrations of PF4 stimulate thrombin-dependent APC generation both in vitro by cultured endothelial cells and in vivo in a primate thrombin infusion model. These findings suggest that PF4 may play a previously unsuspected physiologic role in enhancing APC generation. (Blood. 2003;102:146-151)


Blood ◽  
2017 ◽  
Vol 130 (Suppl_1) ◽  
pp. 997-997
Author(s):  
Kandace Gollomp ◽  
Ian Johnston ◽  
Minna Kim ◽  
Li Zhai ◽  
Guohua Zhao ◽  
...  

Abstract When stimulated by infection or inflammation, neutrophils expel NETs, decondensed chromatin coated with histones and antimicrobial proteins that ensnares pathogens but also damages host tissue. Platelet factor 4 (PF4, CXCL4) is a CXC chemokine stored in platelet alpha-granules and released in high concentrations during platelet activation. Tetrameric PF4 has a very high affinity for polyanionic molecules, including DNA, and we have found that PF4 binds and physically compacts NETs, causing them to have increased resistance to endonuclease digestion. Our group has also observed that PF4 expression leads to enhanced survival in a murine model of sepsis. Based on these findings, we chose to investigate whether PF4-mediated NET compaction is protective in endotoxemia. To study PF4-NET interactions, we developed a microfluidic assay in which neutrophils were adhered to fibronectin-coated channels and then stimulated to release NETs with phorbol myristate acetate(PMA). NETs were visualized by staining with the fluorescent nucleic acid stain SYTOX. Changes in NET morphology and fluorescence were quantified in the presence of varying PF4 concentrations. DNase I was then infused through these channels and the extent of digestion was measured. These experiments showed that the presence of PF4 led to NET compaction and decreased NET degradation following DNase infusion. We then performed in vitro studies examining NET-endothelial interactions in which isolated neutrophils were stimulated to release NETs, incubated with buffer alone or buffer containing PF4, and flowed through human endothelial umbilical vein cell (HUVEC) lined microfluidic channels that had been stimulated with tumor necrosis factor (TNF) α. EC viability was assessed 24-hours post NET exposure and revealed that the presence of PF4 protected HUVECs from NET-induced damage. To further investigate PF4-NET interactions in endotoxemia, we conducted in vivo studies using PF4-deficient mice (mPF4-/-) and wildtype (WT) controls injected with lipopolysaccharide (LPS). Plasma NET markers [cell free DNA (cfDNA), citrullinated histones (cit-His), and myeloperoxidase (MPO)] were quantified via ELISA and Western blot at various time points following LPS injection. mPF4-/- mice were also implanted with PF4-containing osmotic pumps and the NET markers were also assessed following LPS exposure. These experiments revealed that compared to WT mice, LPS injected mPF4-/- mice had significantly higher plasma levels of NET components, including cfDNA, cit-His and MPO. When mPF4-/- mice were implanted with PF4-releasing osmotic pumps prior to LPS injection, they had plasma NET component levels comparable to those observed in WT mice. Based on the results of our in vitro and in vivo studies, we propose that PF4 infusion compacts NETs, decreasing their susceptibility to DNAse lysis, and preventing the release of toxic NET degradation products (NDPs) such as cfDNA and cit-His. We posit that PF4-mediated sequestration of NDPs prevents endothelial cell damage in the HUVEC-lined microfluidic model. We believe that the results of our studies in mPF4-/- mice demonstrate that PF4 has a similarly protective effect in vivo, decreasing NET lysis and reducing NDP generation. These findings suggest that in sepsis, the stabilization rather than the lysis of NETs may be therapeutic. Further investigation should be performed to determine if treatment with PF4 or other small positively-charged proteins such as protamine sulfate that can sequester NDPs, may be beneficial the treatment of sepsis. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 721-721
Author(s):  
M. Anna Kowalska ◽  
Lubica Rauova ◽  
Vincent Hayes ◽  
Douglas B. Cines ◽  
Daniel W. Bougie ◽  
...  

Abstract Abstract 721 Previous studies have shown that platelet factor 4 (PF4) increases activated protein C (aPC) generation both in vitro and in vivo. PF4 increase of aPC generation by thrombin (IIa) and thrombomodulin (TM) complex followed a bell-shaped curve when tested in solution, on human TM expressing HEK293 and on endothelial cells. PF4 failed to enhance aPC in the presence of chondroitin sulfate (CS)-free TM. These results were consistent with PF4 binding to the CS on the TM glycosaminoglycan (GAG) domain and forming complexes that are similar to PF4/GAG antigenic complexes seen in heparin-induced thrombocytopenia (HIT). We tested the hypothesis that PF4 forms a HIT-like antigenic complex with the TM-CS using the HIT-like monoclonal antibody KKO. KKO abolished the potentiating effects of PF4 on aPC formation measured with TM in solution or with a TM-expressing cell line. To further address the nature of complexes formed between PF4 and TM, we used a mutant of PF4, PF4T38Q, which forms complexes with GAGs that are not recognized by KKO and a subgroup of HIT antibodies. Similar to PF4, PF4T38Q potentiated TM-dependent aPC generation in a bell-shaped manner, but this potentiation was not blocked by KKO. Moreover, KKO did not have any effect when PF4 was replaced with protamine sulfate (PS), which can also form macromolecular complexes with heparin/GAGs and can also enhance aPC generation. We also tested HIT antibodies isolated from patients that developed HIT with thrombocytopenia and thromboembolism developing >4 days after the last exposure to heparin. Patient IgGs specific for PF4/GAG complex were purified using PF4 bound to heparin columns. Specific binding of antibodies to PF4/heparin complexes was checked by ELISA. Complex-specific antibodies were then tested in an aPC generation assay in the presence IIa and TM and near peak concentration of PF4 and compared to a control human IgG. Three of four patient‘s antibodies significantly inhibited the increase in aPC generation in the presence of PF4. These studies provide evidence that HIT-like PF4/GAG complexes develop naturally in vivo. In this case, the ability of HIT or HIT-like antibodies to specifically inhibit the PF4-dependent increase in aPC formation may contribute to the prothrombotic state in HIT. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2007 ◽  
Vol 110 (6) ◽  
pp. 1903-1905 ◽  
Author(s):  
M. Anna Kowalska ◽  
Shawn A. Mahmud ◽  
Michele P. Lambert ◽  
Mortimer Poncz ◽  
Arne Slungaard

AbstractPharmacologic infusion of activated protein C (APC) improves survival in severe sepsis, and platelet factor 4 (PF4) accelerates APC generation in a primate thrombin-infusion model. We now tested whether endogenous platelet PF4 content affects APC generation. Mice completely deficient in PF4 (mPF4−/−) had impaired APC generation and survival after thrombin infusion, similar to the impairment seen in heterozygote protein C–deficient (PC+/−) mice. Transgenic mice overexpressing human PF4 (hPF4+) had increased plasma APC generation. Overexpression of platelet PF4 compensated for the defect seen in PC+/− mice. In both a thrombin and a lipopolysaccharide (LPS) survival model, hPF4+ and PC+/−/hPF4+ mice had improved survival. Further, infusion of hPF4+ platelets improved survival of wild-type mice after an LPS challenge. These studies suggest that endogenous PF4 release may have biologic consequences for APC generation and survival in clinical sepsis. Infusions of PF4-rich platelets may be an effective strategy to improve outcome in this setting.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 535-535
Author(s):  
Sanjana Dayal ◽  
Katina M Wilson ◽  
Ryan Hutchins ◽  
Steven R. Lentz

Abstract Abstract 535 In vitro studies have suggested that reactive oxygen species such as superoxide can produce several potentially prothrombotic effects, including enhanced platelet activation, increased tissue factor (TF) expression, and an oxidative modification in thrombomodulin that impairs its capacity to enhance the generation of activated protein C (APC) by thrombin. It is not known, however, if elevated levels of superoxide accelerate susceptibility to experimental thrombosis in vivo. Using a murine model that is genetically deficient in superoxide dismutase-1 (SOD1, an antioxidant enzyme that dismutates superoxide to hydrogen peroxide), we tested the hypothesis that lack of superoxide dismutase enhances susceptibility to thrombosis. Additionally, we investigated the mechanisms of superoxide-enhanced thrombosis. First, we examined the susceptibility to carotid artery thrombosis in a photochemical injury model. We found that Sod1−/− mice formed stable occlusions significantly faster than Sod1+/+ or Sod1+/− mice (P<0.05). Further, using an inferior vena cava (IVC) stasis method we observed that Sod1−/− mice developed significantly larger thrombi 48 hours after IVC ligation (P<0.05 compared with Sod1+/+ or Sod1+/− mice). These findings suggest that deficiency of SOD1 leads to increased susceptibility to both arterial and venous thrombosis in mice. To address the mechanism of accelerated thrombosis, we first examined activation of platelets in response to multiple agonists using flow cytometry. After activation by thrombin (0.5 U/ml) and convulxin (200 ng/ml), no differences in surface expression of P-selectin or binding of fibrinogen to activated platelets were observed between Sod1−/−, Sod1+/+, or Sod1+/− mice, suggesting that increased susceptibility to thrombosis in Sod1−/− mice is not platelet mediated. Next, we measured expression of TF mRNA in lung by real time qPCR. TF mRNA levels in Sod1−/− mice were similar to those in Sod1+/+ mice, suggesting that deficiency of SOD1 does not influence TF expression in mice. Finally, we measured the activation of protein C in vivo in response to infusion of thrombin (40 U/Kg). Generation of activated protein C was significantly lower in Sod1−/− mice compared with Sod1+/+ mice (P<0.05). No differences in mRNA levels for thrombomodulin or endothelial protein C receptor were detected in Sod1−/− mice compared with Sod1+/+ mice (P=0.4 and 0.6 respectively), suggesting that altered generation of activated protein C in Sod1−/− mice may be related to a direct oxidative effect on thrombomodulin rather than to decreased expression of thrombomodulin or EPCR. We conclude that lack of SOD1 in mice accelerates thrombosis and impairs the protein C anticoagulant response to thrombin. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2197-2197 ◽  
Author(s):  
Kandace Gollomp ◽  
Johnston Ian ◽  
Diarra Fatoumata ◽  
Guohua Zhao ◽  
Sriram Krishnaswamy ◽  
...  

Abstract In response to infection and inflammation, neutrophils release neutrophil extracellular traps (NETs), web like structures composed of nuclear DNA associated with histones that may have both beneficial and deleterious effects. The formation of NETs alters the course of late-stage sepsis and the associated release of histones has been shown to contribute to many of the observed pathologic complications of sepsis. Histones are octamers comprised of two copies of H2A, H2B, H3 and H4, each of which is highly positively charged. NET formation is dependent on chromatin decondensation mediated by the enzyme peptidylarginine deiminase 4 (PAD4). PAD4 potentiates chromatin decondensation by decreasing the overall positive charge of histones through citrullinating many of their lysines residues, forming Cit-histones, which have a decreased affinity for negatively charged DNA. Platelets also contribute to events in late sepsis by undergoing significant activation and degranulation. We propose that one way platelets may affect outcomes in late sepsis is through the release of large amounts of the highly positively charged chemokine platelet factor 4 (PF4, CXCL4). After its release, we believe that PF4 can displace histones and cit-histones from cell free DNA, altering the composition of NETs. We chose to investigate whether PF4 might liberate cit-histones from NET fibers more effectively than non-citrullinated histones. We initially sought to examine the effect of PF4 on histone attachment to DNA. In a competitive binding assay, we found that PF4 binds to DNA with greater affinity than histones. Of note, cit-histones were approximately 5 times more easily displaced from DNA than non-cit-histones consistent with a model of decreased DNA affinity of cit-histones. Furthermore, using immunofluorescence studies and confocal microscopy, we showed that when NETs are generated in the presence of platelets, endogenous PF4 adheres readily to NET DNA. We have also demonstrated that exogenous PF4 avidly binds to NETs generated from neutrophils isolated with minimal platelet contamination. Based on the results of these experiments, we decided to investigate the interaction between PF4, NETs and histones in a novel microfluidic system that is designed to mimic intravascular flow conditions. We isolated neutrophils from fresh whole blood samples obtained from healthy human donors and stimulated them with TNFα to promote adherence to fibronectin coated microfluidic channels. After the neutrophils had firmly bound to the channels, we exposed them to NET stimuli, including lipopolysaccharide (LPS) and calcium ionophore and visualized NET formation. Extracellular DNA was detected using the cell membrane impermeable dye, SYTOX Green. After NET formation occurred, PF4 was flowed through the channels at 25-100 μg/mL, concentrations similar to those observed in terminal sepsis. Exposure to PF4 at these concentrations lead to the dissolution of NET fibers. Interestingly, although the residual NET fibers continued to stain positive for non-cit-histones, they no longer stained positive for cit-histones. In conclusion, cit-histones are present in NETs and may contribute to the pathobiology of late sepsis. We propose that cit-histones are competitively displaced from NETs by PF4. This may be due to their decreased relative affinity for DNA binding. These studies provide new insights into how histones are released from NET fibers into the circulation during sepsis. This information sheds new light on the interaction of chemokines and NETs and may lead to the identification of new therapeutic strategies in the treatment of sepsis. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2004 ◽  
Vol 104 (10) ◽  
pp. 3173-3180 ◽  
Author(s):  
Don E. Eslin ◽  
Chunyan Zhang ◽  
Kathleen J. Samuels ◽  
Lubica Rauova ◽  
Li Zhai ◽  
...  

Abstract The platelet-specific chemokine platelet factor 4 (PF4) is released in large amounts at sites of vascular injury. PF4 binds to heparin with high affinity, but its in vivo biologic role has not been defined. We studied the role of PF4 in thrombosis using heterozygote and homozygote PF4 knock-out mice (mPF4+/– and mPF4–/–, respectively) and transgenic mice overexpressing human PF4 (hPF4+). None of these lines had an overt bleeding diathesis, but in a FeCl3 carotid artery thrombosis model, all showed impaired thrombus formation. This defect in thrombus formation in the mPF4–/– animals was corrected by infusing hPF4 over a narrow concentration range. The thrombotic defect in the mPF4+/– and mPF4–/– animals was particularly sensitive to infusions of the negatively charged anticoagulant heparin. However, the same amount of heparin paradoxically normalized thrombus formation in the hPF4+ animals, although these animals were anticoagulated systemically. Upon infusion of the positively charged protein, protamine sulfate, the reverse was observed with mPF4+/– and mPF4–/– animals having improved thrombosis, with the hPF4+ animals having worsened thrombus formation. These studies support an important role for PF4 in thrombosis, and show that neutralization of PF4 is an important component of heparin's anticoagulant effect. The mechanisms underlying these observations of PF4 biology and their clinical implications remain to be determined.


1977 ◽  
Vol 37 (01) ◽  
pp. 073-080 ◽  
Author(s):  
Knut Gjesdal ◽  
Duncan S. Pepper

SummaryHuman platelet factor 4 (PF-4) showed a reaction of complete identity with PF-4 from Macaca mulatta when tested against rabbit anti-human-PF-4. Such immunoglobulin was used for quantitative precipitation of in vivo labelled PF-4 in monkey serum. The results suggest that the active protein had an intra-platelet half-life of about 21 hours. In vitro 125I-labelled human PF-4 was injected intravenously into two monkeys and isolated by immuno-precipita-tion from platelet-poor plasma and from platelets disrupted after gel-filtration. Plasma PF-4 was found to have a half-life of 7 to 11 hours. Some of the labelled PF-4 was associated with platelets and this fraction had a rapid initial disappearance rate and a subsequent half-life close to that of plasma PF-4. The results are compatible with the hypothesis that granular PF-4 belongs to a separate compartment, whereas membrane-bound PF-4 and plasma PF-4 may interchange.


1968 ◽  
Vol 19 (03/04) ◽  
pp. 578-583 ◽  
Author(s):  
R Farbiszewski ◽  
S Niewiarowski ◽  
K Worowski ◽  
B Lipiński

SummaryPlatelet factor 4 released from platelets into the circulating blood was determined using both the heparin thrombin time and paracoagulation methods. It has been found that thrombin injected intravenously into rabbits releases large amounts of this factor. Infusion of plasmin does not release this factor and this finding may be of importance for the differential diagnosis between disseminated intravascular clotting and primary fibrinolysis. PF4 is not released during the hyper coagulable condition induced by HgCl2 intoxication. Only small amounts of this factor are released after contact factor infusion.A significant elevation of extraplatelet PF4 was found in 23 patients with fresh coronary thrombosis and in 9 patients with thrombophlebitis and thromboembolic complications.The significance of the above findings for the pathogenesis, treatment and laboratory diagnosis of thrombotic diseases with particular reference to heparin tolerance test is discussed.


1984 ◽  
Vol 52 (02) ◽  
pp. 157-159 ◽  
Author(s):  
M Prosdocimi ◽  
N Scattolo ◽  
A Zatta ◽  
F Fabris ◽  
F Stevanato ◽  
...  

Summary13 male New Zealand rabbits were injected with two different doses (25 μg/Kg and 100 μg/Kg) of human platelet factor 4 antigen (PF4). The disappearance of the protein was extremely fast with an half-life for the fast component of 1.07 ± 0.16 and 1.76 ± 0.11 min respectively. The half-life for the slow component, detectable only with the highest dosage, was 18.8 min.The administration of 2500 I.U. of heparin 30 min after PF4 administration induced a partial release of the injected protein and its clearance from plasma was slow, with half-life of 23.3 ± 5.9 min and 30.9 ± 2.19 min respectively.


Sign in / Sign up

Export Citation Format

Share Document