Inhibition of Histone Methylation Arrests Ongoing Graft-Versus-Host Diseases in Mice by Selectively Inducing Apoptosis of Alloreactive Effector T Cells

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 820-820
Author(s):  
Shan He ◽  
Jina Wang ◽  
Koji Kato ◽  
Fang Xie ◽  
Sooryanarayana Varambally ◽  
...  

Abstract Abstract 820 Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a potentially curative treatment option for patients with hematological malignancies. However, its success is limited by life-threatening graft-versus-host disease (GVHD). Novel approaches are needed to control GVHD. Recent studies have shown the importance of histone methylation in regulating the expression of genes associated with effector T cell differentiation and proliferation. Using several mouse models of allo-HSCT, we report that in vivo administration of the histone methylation inhibitor 3-Deazaneplanocin A (DZNep) arrested ongoing GVHD while preserving graft-versus-leukemia activity (GVL). To assess the therapeutic effect of pharmacologic modulation of histone methylation on GVHD, we administered DZNep to BALB/c mice receiving major histocompatibility-mismatched C57BL/6 mouse T cells 7 days after transplantation, in which GVHD had been fully established. Notably, injection of 12 doses of DZNep controlled the disease in these recipients, with approximately 80% of them surviving long-term without significant clinical signs of GVHD. We found that in vivo administration of DZNep caused selective apoptosis in alloantigen-activated T cells, but did not impair the generation of effector T cells that produced inflammatory cytokines (e.g., TNF-α, IFN-γ and IL-17) and cytotoxic molecules (e.g., granzyme B and Fas ligand). As a result, alloreactive T cells retained potent GVL activity, leading to improved overall survival of the recipients challenged by leukemic cells. These data suggest that DZNep-mediated inhibition of GVHD may be accounted for by reduced number of alloreactive effector T cells. In vitro culture assays showed that DZNep treatment induced apoptosis in T cells activated by anti-CD3/CD28 antibodies but not in naive T cells stimulated by IL-2 or IL-7. This effect was associated with DZNep's ability to selectively reduce trimethylation of histone H3 lysine 27 (H3K27), deplete the histone methyltranferase Ezh2 that specifically catalyzes trimethylation of H3K27, and activate Ezh2-repressed pro-apoptotic gene Bim. Inactivation of Bim partially protected alloreactive T cells from DZNep-mediated apoptosis. Importantly, unlike DNA methylation inhibitors, inhibition of histone methylation by DZNep had no toxicities to hematopoietic cells or impairment on the reconstitution of hematopoiesis and thymopoiesis. Our findings indicate that modulation of histone methylation may have significant implications in the development of novel approaches to treat established GVHD and other T cell-mediated inflammatory disorders in a broad context. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2001 ◽  
Vol 98 (10) ◽  
pp. 3156-3158 ◽  
Author(s):  
Sébastien Maury ◽  
Benoı̂t Salomon ◽  
David Klatzmann ◽  
José L. Cohen

Abstract After non-T-cell–depleted allogeneic hematopoietic stem cell transplantation (HSCT), both alloreactive and homeostatic signals drive proliferation of donor T cells. Host-reactive donor T cells, which proliferate on alloantigen stimulation, are responsible for the life-threatening graft-versus-host disease. Non–host-reactive donor T cells, which proliferate in response to homeostatic signals, contribute to the beneficial peripheral T-cell reconstitution. The elimination of alloreactive T cells is a major therapeutic challenge for HSCT and would greatly benefit from their specific identification. After T-cell transfer in lymphopenic recipients, the present results show that alloreactive T cells rapidly divided; up-regulated CD69, CD25, and CD4 molecules; and down-regulated CD62L. In contrast, nonalloreactive T cells started to divide later and did not up-regulate CD69, CD25, and CD4. Thus, these 2 cell populations can be effectively discriminated. This should facilitate the specific depletion of alloreactive T cells in allogeneic HSCT.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4432-4432
Author(s):  
Ying Wang ◽  
Shan He ◽  
Yongnian Liu ◽  
Robert Hooper ◽  
Hongshuang Yu ◽  
...  

Despite pharmacological prophylaxis using calcineurin (CN) inhibitors (i.e., cyclosporin A and Tacrolimus), graft-versus-host disease (GVHD) remains a major barrier to the success of allogeneic hematopoietic stem cell transplantation (allo-HSCT). Upon antigen stimulation, activated T cell receptor (TCR) signaling triggers rapid Ca2+ influx. This induces both CN-mediated NFAT activation, and increase of mitochondrial Ca2+ content, a major driver of metabolic activity. However, mitochondrial Ca2+ overload triggers opening of the mitochondrial permeability transition pore and cell death. We hypothesize that pharmacologically increasing mitochondrial Ca2+ load may decrease T cell survival capability, thereby reducing the GVH reaction. If this can be accomplished, it may lead to new strategies for inhibition of GVHD, which is conceptually different from the use of CN inhibitors. To test this hypothesis, we employed a high throughput drug screening system with the proliferation and cytotoxicity of TCR-activated human T cells as the readout, and screened the NPL-800 library (https://www.timtec.net) composed of 800 pure natural compounds. With a stringent criterion in consideration of dose-dependent effect, 26 compounds stood out for reducing the count of activated human T cells with a reduction rate of at least 30% at both 1.0uM and 10.0uM. Positive hits included inhibitors of DNA synthesis, the Na-K-ATPase and mitochondrial metabolism. We were particularly interested in artesunate (ART), which is a derivative of artemisinin that has been used for treating malaria in patients. While artemisinin acts by inhibiting sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) in P. falciparum malaria, which causes passive endoplasmic reticulum (ER) Ca2+ depletion and the subsequent cytosolic Ca2+ influx, ART did not inhibit SERCA in T cells. Ex vivo culture assays showed that ART dose-dependently reduced the survival of TCR-activated murine T cells. This inhibitory effect of ART was abrogated by inhibiting Ca2+ influx using BTP2, a potent inhibitor of store-operated Ca2+ channels. Furthermore, treatment of murine CD8 T cells with ART induced significant increases in mitochondrial Ca2+ loading upon TCR activation. These data suggest that inhibition of T cell survival by ART was dependent on TCR activation-induced Ca2+ influx and associated with enhanced mitochondrial Ca2+ uptake. We examined the impact of ART on GVHD in Balb/c mice receiving C57BL/6 (B6) mouse T cell-depleted bone marrow (TCD-BM) and CD4+ T cells. Intraperitoneal injection of ART (10 mg/kg, every other day) from day 1 to day 28 after transplantation reduced clinical signs of GVHD in these recipients and significantly improved their overall survival. Similar inhibition effects of ART on GVHD were observed in miHA-mismatched B6 anti-Balb/b and haplo-identical B6 anti-BDF1 mouse models of GVHD. Further investigations showed that in vivo administration of ART caused significant decreases in the number of host-reactive donor T cells in the spleen and liver of Balb/c mice 7 days after transfer of B6 TCD-BM plus CD4+ T cells. ART treatment did not affect the capacity of donor T cells to produce effector cytokines (e.g., IFN-g and TNF-α) in individual cells. Importantly, in vivo administration of ART preserved anti-leukemia activity of donor T cells and did not impair the reconstitution of hematopoiesis and lymphocytes. Collectively, our findings indicate that pharmacologically increasing mitochondrial Ca2+ loading may have significant implications in the development of novel strategies to prevent GVHD and other T cell-mediated inflammatory disorders in a broad context. Since ART therapy has been clinically approved, this work could be immediately translated into patients. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4999-4999
Author(s):  
Katie Matthews ◽  
ZiYi Lim ◽  
Laurence Pearce ◽  
Khalid Tobal ◽  
Alejandro Madrigal ◽  
...  

Abstract Lymphocyte depletion using the anti CD52 monoclonal antibody alemtuzumab reduces the incidence of graft versus host disease (GvHD) after allogeneic hematopoietic stem cell transplantation (allo-HSCT), but some patients still develop this potentially life-threatening complication. We previously reported that patients achieving rapid full donor T cell chimerism after fludarabine, busulphan and alemtuzumab (FBC) conditioned allo-HSCT have a significantly increased risk of GvHD compared to patients with prolonged mixed donor chimerism beyond day 100 (Lim et al. Br. J. Haematology 2007). We performed a prospective study of 29 patients who received allo-HSCT with FBC conditioning (median age: 53 years; range: 34 – 69 presenting with AML or MDS) to examine the kinetics of lymphocyte reconstitution in relation to T-cell chimerism patterns and incidence of GvHD. Naïve, memory, effector and terminally differentiated CD4+ and CD8+ T-cells, activated T-cells (CD25+ HLA-DR+); putative regulatory CD4+ CD25high Foxp3+ T-cells, B-cells and NK cells were enumerated in whole peripheral blood of patients at days 30, 60, 90, 180, 270 and 360 after HSCT. Chimerism analysis of purified T-cells was performed by genetic profiling of polymorphic short tandem repeat loci. Ten patients developed GvHD (acute or chronic). Although alemtuzumab induced profound depletion of all T-cell subsets, significantly higher numbers of CD4+ effector (CD45RO+ CD27−) T-cells were detected at day 30 post transplant in patients who later developed GvHD (24 cells/μl; range: 1 – 84 cells/μl) compared to patients without GvHD (5 cells/μl; range: 1 – 40 cells/μl) (p = 0.026). In contrast, there were no significant differences in the numbers or rate of reconstitution of CD8+ T-cell sub-populations, NK cells or B-cells in patients that developed GvHD and those who did not at any time points. T-cells present at day 30 in patients that subsequently developed GvHD were 100% donor whereas the majority of patients that did not develop GvHD exhibited mixed donor and recipient T cell chimerism. Development of GvHD pathology was associated with expansion of these donor effector CD4+ T-cells (at day 60: 35 cells/μl; range: 9 – 154 cells/μl compared to 7 cells/μl; range: 1 – 56 cells/μl for patients without GvHD, p = 0.04). Absolute numbers of CD4+ CD25high Foxp3+ T-cells at day 30 were similar in both groups of patients (p = 0.8). However, of note, a significant deficit of these putative regulatory T-cells in the group that developed GvHD was apparent when numbers were considered relative to CD4+ effector T cells at day 30 (41 CD4+ effector T-cells; range: 28 – 51 /per regulatory CD4+ T cell for the GvHD group compared to 12 CD4+ effector T-cells; range: 2 – 33 /per regulatory CD4+ T-cell for patients without GvHD, p = 0.03). We speculate the higher numbers of effector CD4+ T-cells detected in patients at day 30 post HSCT are donor-derived mature T cells that alemtuzumab fails to deplete. In the solid organ transplant setting, alemtuzumab has been shown to be relatively sparing of effector memory CD4+ T-cells. Our correlation of donor-derived effector CD4+ T-cells with subsequent development of GvHD suggests they are alloreactive and that a deficit of T-regs relative to CD4+ effector T-cells early post HSCT contributes to GvHD.


Blood ◽  
2009 ◽  
Vol 114 (13) ◽  
pp. 2829-2836 ◽  
Author(s):  
Claudia Stuehler ◽  
Stephan Mielke ◽  
Manik Chatterjee ◽  
Johannes Duell ◽  
Sarah Lurati ◽  
...  

Abstract Graft-versus-host disease (GVHD) is a major cause of morbidity and mortality in patients with hematologic malignancies undergoing allogeneic hematopoietic stem cell transplantation. Current treatment of GVHD relies on immunosuppressive regimens, considerably increasing the incidence of opportunistic infections. As T cells mediate both GVHD as well as protection against viral infections and the malignant disease, strategies to selectively target host-reactive T cells without impairing pathogen- and disease-specific immunity are highly warranted. Activation of T cells is accompanied by increased expression of the chaperone heat shock protein of 90 kDa (Hsp90), which stabilizes several key signaling pathways crucial for T-cell activation. In this study, selective targeting of Hsp90 in activated T lymphocytes with pharmacologic inhibitors already applied successfully in anticancer therapy resulted in induction of apoptosis predominantly in activated cells. Moreover, if T cells were stimulated with allogeneic dendritic cells, alloreactive T cells were selectively eliminated. In contrast, third party reactions including antiviral T-cell immunity were quantitatively and functionally fully preserved. These data suggest that Hsp90 represents a novel target for selective depletion of alloreactive T cells, and provide the rationale for application of Hsp90 inhibitors as potential approach to selectively prevent and treat GVHD in hematopoietic stem cell transplantation recipients without impairing pathogen- and disease-specific T-cell immunity.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3353-3353 ◽  
Author(s):  
Jaebok Choi ◽  
Matthew L Cooper ◽  
Kiran R. Vij ◽  
Bing Wang ◽  
Julie Ritchey ◽  
...  

Abstract The therapeutic benefits of allogeneic hematopoietic stem cell transplantation (allo-HSCT) for hematologic malignancies are primarily derived from an anti-leukemia effect that is mediated by T cells in donor grafts. Unfortunately, these T cells also mediate graft-versus-host disease (GvHD), the major complication of allo-HSCT. We have previously published that in vivo administration of JAK1/JAK2 inhibitors to murine allo-HSCT recipients of interferon gamma receptor deficient (IFNγR-/-) T cells results in 100% survival in a fully MHC-mismatched B6 to Balb/c allo-HSCT model (Choi et al., 2014, PLoS ONE). Since the infusion of IFNγR-/- T cells alone is associated with only ~70% survival, we hypothesize that JAK1/JAK2 inhibitors have either additional off-target effects or are inhibiting other non-IFNγR signaling pathways which are themselves dependent on JAK1/JAK2. The major other cytokine receptor signaling pathway mediated via both JAK1 and JAK2 is the interleukin 6 receptor (IL6R) signaling pathway. Thus, it is possible that JAK1/JAK2 inhibitors also block signaling through IL6R in addition to IFNγR. In addition, Alam et al. have recently reported that single nucleotide polymorphisms of donor IFNγ and IL6 are closely linked to gastrointestinal GvHD in patients (2015, BMT). Therefore, we examined if blockade of both IFNγR and IL6R signaling results in complete elimination of GvHD after a fully MHC-mismatched allo-HSCT in which B6 (H-2b) T cell-depleted bone marrow cells (5x106) along with B6 pan T cells (5x105) are intravenously injected into lethally irradiated Balb/c mice (H-2d). As shown in Fig. 1, we have found that blocking both IFNγR (IFNγR-/- T cells) and IL6R (α-IL6R Ab) signaling dramatically reduces GvHD and results in >95% survival. In addition, we found that blocking both IFNγR and IL6R signaling significantly increased regulatory T cells (Tregs) in peripheral blood (23.2% Foxp3+ in CD4+ T cells (n=17) vs 2.5% in WT T cell control (n=16) at day 27 after allo-HSCT), suggesting that increase in Tregs might be a potential mechanism underlying the reduced GvHD after dual blockade of IFNγR and IL6R signaling. Baricitinib is a potent and balanced JAK1/JAK2 inhibitor currently being clinically developed by Eli Lilly for the treatment of inflammatory diseases. We hypothesize that baricitinib will optimally block both IFNγR and IL6R signaling pathways and prevent GvHD. We found that that baricitinib is a potent suppressor of GvHD in B6 to Balb/c allo-HSCT models (100% survival), superior to ruxolitinib and similar to blockade of both IFNγR and IL6R signaling (Fig. 2A). Baricitinib increases Tregs in vivo (Fig. 2B) and reduces the ratio of IL5 (Th2 cytokine) to IL2 (cytokine for Treg induction) in plasma (p=0.0046), a potential diagnostic marker for GvHD (Fujii et al., 2006, Int J Mol Med), significantly better than ruxolitinib. Lastly, we found that baricitinib inhibits the expression of T-bet (Fig. 2C), which is the master transcription factor of Th1 cells, that are primary effector T cells in inducing GvHD. These data suggest that the suppression of GvHD by baricitinib results from increased Tregs and decreased Th1 and Th2 cells. We next examined if the prevention of GvHD by baricitinib is dependent on natural regulatory T cells (Tregs) in donor grafts. Tregs were depleted from donor pan T cells before allo-HSCT (B6 to Balb/c). We found that in vivo administration of baricitinib resulted in 70% survival (0% control, p<0.0001; 100% Treg-replete T cells + baricitinib. In addition, based on clinical GvHD score when recipients of Treg-replete T cells were compared with those of Treg-deplete T cells, the beneficial effect of Tregs in the donor grafts for the prevention of GvHD was observed only for the first two weeks after allo-HSCT (p≤0.01). Lastly, we examined whether baricitinib can cure ongoing GvHD by administering baricitinib starting at day 10 after allo-HSCT when GvHD is established (B6 to Balb/c). We found that baricitinib treatment results in a significant reduction of GvHD and 100% survival (10% control, p<0.0001). All of these data suggest that pharmacologic co-blockade of IFNγR and IL6R pathways is a promising therapeutic strategy to prevent and effectively treat established GvHD. The inhibitory effect of baricitinib, ruxolitinib, and blockade of IFNγR and IL6R on JAK-STAT signaling using JAK/STAT phosphorylation antibody arrays is currently being investigated and will be presented. Disclosures DiPersio: Incyte Corporation: Research Funding.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4433-4433
Author(s):  
Chuanfeng Xiong ◽  
Wei Huang ◽  
Xiaoli Nie ◽  
Ying Huang ◽  
Yiqun Jiao ◽  
...  

Allogeneic hematopoietic cell transplantation is a potentially curative treatment choice for a wide variety of hematological malignancies. However, graft-versus-host disease (GVHD), which is mediated by donor alloreactive T cells, limits the success of this procedure. Previous studies have demonstrated that several microRNAs (miRs) modulate graft-versus-host disease. miR-191 was previously reported to be able to support T cell survival after TCR stimulation. We hypothesize that miR191 regulates T cell response during GVHD. To test this hypothesis, we first studied miR-191 expression in alloreactive T cells. The result demonstrated that miR-191 was up-regulated in donor T cells isolated from murine GVHD recipients, suggesting that miR-191 may play a role in GVHD induction. We further studied the role of miR-191in GVHD using miR-191 deficient T cells (KO). Lethally irradiated (8.5 Gy) BALB/c mice were injected intravenously with 1×107 T cell-depleted bone marrow (TCDBM) cells along with 1×106 purified T cells from wild-type (WT) or KO mice, which are in C57BL/6 background. Interestingly, all recipients in the WT group died within 35 days after transplantation, while only one out of ten animals died in the KO group during an observation period of 56 days. Body weights and clinical scores were also improved in KO T cell recipients when compared with the WT controls. Similar results were also observed in a second GVHD model (C57BL/6→C3H/HeJ). To understand the mechanism by which miR-191 KO T cells have decreased ability to mediate GVHD, we first measured the ability of KO T cells to respond to alloantigens in vitro in a mixed lymphocytes reaction assay. Dramatically decreased alloresponse was observed with KO T cells as compared with WT T cells. Similarly, decreased clonal expansion was observed in KO T cells in vivo upon challenge with alloantigens as measured by bioluminescent imaging (Figure 1A). These results were further supported by data from a co-transfer experiment, in which equal numbers of WT and KO T cells were transplanted into the same GVHD recipient. At day7 after transplantation, KO T cells showed significantly reduced expansion in the spleen and liver compared with WT T cells. Reduced alloresponses mediated by KO T cells may not due to decreased proliferative capability directly as an in vivo carboxyfluorescein succinimidyl ester (CFSE) assay showed a comparable cell division between WT and KO T cells upon challenge with alloantigens. Rather, increased cell death is responsible for decreased alloresponse observed in KO T cells because dramatically increased number of dead cells was observed in KO group compared with WT group upon response to alloantigens in vitro and vivo. To determine the genes that are regulated by miR-191, we did a screening based on the prediction. Humans and mice share more than 100 predicted targets for miR-191. We chose top 20 of these targets for RT-qPCR screening. The result demonstrated that Taf5 was a target gene of miR-191. Expression of TAF5 protein was down-regulated in activated KO T cells when compared with the WT T cells. Finally, we investigated whether miR-191 KO T cells preserve graft-versus-leukemia effects. 1×106 T cells from WT or KO mice were transplanted into lethally irradiated BALB/c mice along with 1×107 TCDBM cells and 1×105 host-type BCL-1 cells. While all recipients that received only TCDBM and tumor cells developed lethal leukemia/lymphoma, none of WT and KO T cells recipients developed tumor. In conclusion, our findings reveal a critical role of miR-191 during GVHD process and demonstrate that miR-191 is a novel therapeutic target for GVHD. Figure 1 Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2009 ◽  
Vol 113 (9) ◽  
pp. 2088-2095 ◽  
Author(s):  
Motoko Koyama ◽  
Daigo Hashimoto ◽  
Kazutoshi Aoyama ◽  
Ken-ichi Matsuoka ◽  
Kennosuke Karube ◽  
...  

Dendritic cells (DCs) can be classified into 2 distinct subsets: conventional DCs (cDCs) and plasmacytoid DCs (pDCs). cDCs can prime antigen-specific T-cell immunity, whereas in vivo function of pDCs as antigen-presenting cells remains controversial. We evaluated the contribution of pDCs to allogeneic T-cell responses in vivo in mouse models of graft-versus-host disease (GVHD) after allogeneic hematopoietic stem cell transplantation by an add-back study of MHC-expressing pDCs into major histocompatibility complex-deficient mice that were resistant to GVHD. Alloantigen expression on pDCs alone was sufficient to prime alloreactive T cells and cause GVHD. An inflammatory environment created by host irradiation has the decisive role in maturing pDCs for T-cell priming but this process does not require Toll-like receptor signaling. Thus, functional outcomes of pDC–T-cell interactions depend on the immunologic context of encounter. To our knowledge, these results are the first to directly demonstrate an in vivo pathogenic role of pDCs as antigen-presenting cells in an antigen-specific T cell–mediated disease in the absence of other DC subsets and to provide important insight into developing strategies for tolerance induction in transplantation.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. SCI-14-SCI-14
Author(s):  
Ivan Maillard

Abstract SCI-14 Notch is a highly conserved signaling pathway with multiple functions in health and disease. In the hematopoietic system, Notch was first described for its essential role at early stages of T cell development in the thymus and for its involvement in T cell acute lymphoblastic leukemia. In addition, Notch is being increasingly recognized as a potent regulator of antigen-driven mature T cell responses with context-dependent effects. These effects are influenced by the regulated expression of Jagged and Delta-like Notch ligands in antigen-presenting cells under the control of Toll-like receptors and other innate signals. We are investigating the importance of the Notch pathway in T cell alloimmunity in the setting of allogeneic bone marrow or peripheral blood stem cell transplantation (allo-BMT). After allo-BMT, alloimmune T cell responses mediate beneficial graft-versus-tumor (GVT) activity as well as detrimental graft-versus-host disease (GVHD). Using the pan-Notch inhibitor DNMAML and other genetic models of Notch inhibition, we have discovered an essential function for Notch signaling in donor-derived alloreactive T cells. In multiple mouse models of allo-BMT, infusion of Notch-deficient T cells as compared to wild-type T cells led to dramatically reduced GVHD severity and lethality. This effect was apparent for both CD4+ and CD8+ T cells and did not involve global immunosuppression, since Notch-deficient T cells proliferated normally and expanded in host lymphohematopoietic organs. However, Notch-deficient donor T cells failed to accumulate in the gut, a key GVHD target organ, and produced markedly decreased amounts of the pro-inflammatory cytokines IFN-γ, TNF-α, and IL-2. In parallel, Notch inhibition was associated with increased accumulation of FoxP3+CD4+ T cells. Decreased cytokine production could not be explained by a classical T helper differentiation defect. In contrast to their defective induction of GVHD, Notch-deficient T cells remained capable of mediating cytotoxic and anti-tumor responses both in vitro and in vivo, leading to preserved GVT activity even against large numbers of tumor cells. We are currently investigating the molecular and cellular mechanisms of Notch action in alloreactive T cells. We are also exploring the role of individual Notch receptors and ligands at the alloimmune synapse in vivo. Altogether, our findings identify Notch inhibition in donor T cells as a novel strategy to induce beneficial immunomodulation rather than global immunosuppression after allo-BMT. Disclosures: No relevant conflicts of interest to declare.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Kai Zhao ◽  
Yu Tian ◽  
Junjie Wang ◽  
Chong Chen ◽  
Bin Pan ◽  
...  

Prevention of acute graft-versus-host disease (aGVHD) after allogeneic hematopoietic stem cell transplantation (allo-HSCT) is still to be explored. Statins are potent immunomodulatory agents that hold promise as novel and safe agents for aGVHD prophylaxis, yet the controversial effect and regulatory mechanism are incompletely understood. Here, in an MHC mismatched murine model, we found that Fluvastatin-pretreated donor cells could attenuate aGVHD severity by remission tissue pathological injury. Fluvastatin served to restrain effector T cells entry into aGVHD target organs from secondary lymphoid organs (SLOs). The potential mechanism of correcting the effector T cell biased distribution was that Fluvastatin elevated CD62L and CCR7 expression while decreased CXCR3 and CD44 levels, which were correlated with Kruppel-like factor 2 (KLF2) sustention in donor-derived cells. In addition, Fluvastatin was contributed to reducing cytokines IFN-γ, TNF-α, and granzyme-B production in allogeneic effector CD4+ and CD8+ T cells. Furthermore, evidence confirmed that Fluvastatin had a long-lasting effect to sustain KLF2 expression both in vitro and in vivo even under the stimulated circumstance. In conclusion, administration of Fluvastatin to donor mice showed protective effects against recipient aGVHD when compared to untreated mice due to the retention of effector T cells in lymphoid organs accompanying with reduction of nonlymphatic infiltration and related inflammatory cytokines.


1976 ◽  
Vol 144 (3) ◽  
pp. 776-787 ◽  
Author(s):  
R M Zinkernagel

In mice, primary footpad swelling after local infection with lymphocytic choriomeningitis virus (LCMV) and delayed-type hypersensitivity (DTH) adoptively transferred by LCMV immune lymphocytes are T-cell dependent. Nude mice do not develop primary footpad swelling, and T-cell depletion abrogates the capacity to transfer LCMV-specific DTH. Effector T cells involved in eliciting dose-dependent DTH are virus specific in that vaccinia virus-immune lymphocytes could not elicit DTH in LCMV-infected mice. The adoptive transfer of DTH is restricted to H-2K or H-2D compatible donor-recipient combinations. Distinct from the fowl-gamma-globulin DTH model, I-region compatibility is neither necessary nor alone sufficient. Whatever the mechanisms involved in this K- or D-region associated restriction in vivo, it most likely operates at the level of T-cell recognition of "altered self" coded in K or D. T cells associated with the I region (helper T cells and DTH-T cells to fowl-gamma-globulin) are specific for soluble, defined, and inert antigens. T cells associated with the K and D region (T cells cytotoxic in vitro and in vivo for acute LCMV-infected cells, DTH effector T cells, and anti-viral T cells) are specific for infectious, multiplying virus. The fact that T-cell specificity is differentially linked with the I region or with the K and D regions of H-2 may reflect the fundamental biological differences of these antigens. Although it cannot be excluded that separate functional subclasses of T-effector cells could have self-recognizers for different cell surface structures coded in I or K and D, it is more likely that the antigen parameters determine whether T cells are specific for "altered" I or "altered" K- or D-coded structures.


Sign in / Sign up

Export Citation Format

Share Document