Shiga Toxin Upregulates Tissue Factor Gene Expression in and Functional Tissue Factor On Endothelium in the Presence of Complement Activation

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1075-1075
Author(s):  
Eric F. Grabowski ◽  
Rafail I. Kushak ◽  
Julie R. Ingelfinger

Abstract Abstract 1075 The pathophysiology of Shiga toxin (Stx)-related hemolytic uremic syndrome remains poorly understood. We hypothesize that tissue factor (TF) expression on vascular endothelium is central to the genesis of this disorder and is driven both by direct effects of Stx on endothelium activated by inflammatory cytokines derived from the action of Stx in the gastrointestinal tract, and by Stx-induced complement activation, which further augments TF expression. We used human umbilical vein endothelial cell monolayers to examine 1) gene expression of TF and TF pathway inhibitor (TFPI) with TNFα (20 ng/ml) ± Stx-1 (10 pM) compared to control, 2) total cellular and cell surface antigenic TF and TFPI, 3) TFPI secretion into supernatant, 4) factor Xa production, and 5) soluble levels of C5b-9 in complete media in response to 3–30 pM Stx-1 in the absence of cells. TF mRNA increased 2.82 ± 0.92-fold (N=13; p <0.0005) with TNFα alone vs. 1.25 ± 0.32-fold (N= 9; p =0.041) for Stx-1 alone (Fig. 1). TNFα plus Stx-1 yielded a 6.51 ± 3.48-fold increase (N=17; p <0.0005; Fig. 1). TFPI mRNA decreased with TNFα (p <0.001) andTNFα plus Stx-1 (p < 0.0005). Total cellular (p = 0.048) and cell surface (p = 0.027) TF antigen increased with TNFα, and no further with TNFα plus Stx-1. Total TFPI cellular (p = 0.0017) and cell surface (p = 0.030) antigen levels, and secretion of TFPI (p = 0.018) decreased with TNFα plus Stx-1. Median factor Xa production for TNFα plus Stx-1 vs. TNFα alone increased (p < 0.001) 3.24-fold. In the absence of cells, M199 with 10% human serum to which was added Stx-1 yielded levels of C5b-9 of 648 and 1102 ng/ml vs. 106 and 313 ng/ml in the presence of 25 mM EDTA (to block the classical and alternative pathways of complement), and intermediate levels in the presence of 15 mM EGTA and 7.5 mM Mg++ (to block the classical pathway). Similar results were found with M199 with 10% human plasma, collected using 0.2 U/ml FC in media of dalteparin. C5b-9 levels increased between 3 and 10 pM Stx-1, but did not increase further at 30 pM Stx-1 (Fig. 2). Finally, by means of immunofluorescence we also detected and measured C5b-9 on fixed cell monolayers, whether treated prior to fixation with TNFα alone or TNFα plus Stx-1. We conclude that Stx-1 augments functional TF on endothelium by increasing TF mRNA, and impairing synthesis, cell-surface association, and secretion of TFPI, while at the same time activating both the alternative and classical complement pathways. These findings support the development of therapeutic approaches to epidemic HUS that incorporate inhibitors of the TF pathway, inhibitors of the alternative and classical complement pathways, or both. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1924-1924
Author(s):  
Gourab Bhattacharjee ◽  
Jasimuddin Ahamed ◽  
Brian Pedersen ◽  
Amr El-Sheikh ◽  
Cheng Liu ◽  
...  

Abstract In vivo biopanning with phage displayed peptide libraries has generated a group of peptide probes which bind selectively to the surface of atherosclerotic plaque endothelium. The highest affinity peptide, EKO130, binds to the 78 kDa glucose regulated protein (Grp78). Grp78 has been demonstrated to play a role in numerous pathological processes as well as a possible role in the local cell surface regulation of the coagulation cascade. The goal of this study is to determine the role of Grp78 in coagulation including plasma clotting, factor Xa (Xa) generation, and tissue factor (TF) gene expression. siRNA mediated inhibition of Grp78 results in a marked increase in TF gene expression in bEND.3 endothelial cells and RAW macrophage-like cells. Antibody mediated inhibition of cell surface Grp78 results in increased TF procoagulant activity and TF-dependent Xa generation in both the endothelial and macrophage cell types. These studies are consistent with results from another laboratory demonstrating that Grp78 over-expression inhibits TF mediated initiation and support of the coagulation protease cascade. Thus, our work indicates that Grp78 suppresses TF at both the functional and molecular level by inhibiting both its thrombogenic potential and gene expression.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2328-2328 ◽  
Author(s):  
Deepa Jayakody Arachchillage ◽  
Ian J Mackie ◽  
Maria Efthymiou ◽  
Andrew Chitolie ◽  
Beverley J Hunt ◽  
...  

Abstract Background Complement activation may play a role in the pathogenesis of thrombosis and other pathological processes in the antiphospholipid syndrome (APS). Since coagulation proteases, such as factor Xa, can cleave complement proteins, we investigated complement activation in thrombotic APS patients receiving rivaroxaban, a direct factor Xa inhibitor. Aims To assess markers of complement activation (C3a, C5a, terminal complement complex (SC5b-9) and Bb fragment) in patients with thrombotic APS treated with rivaroxaban or warfarin in a prospective randomised controlled trial. Methods 116 APS patients with previous venous thromboembolism, including 22 with systemic lupus erythematosus (SLE), on long-term warfarin (target INR 2.5) were studied. 59 patients remained on warfarin and 57 (11 with SLE in each group) switched to rivaroxaban (20mg daily). EDTA samples were collected at baseline (all patients on warfarin) and on day 42 (2-4 hours after the last dose of rivaroxaban in patients on rivaroxaban). 5/116 patients were excluded (samples from four patients were haemolysed and one patient withdrew from the trial after randomisation), leaving 111 (55 rivaroxaban and 56 warfarin) patients for analysis at both baseline and day 42. Samples were also collected from 55 normal controls (NC). C3a, C5a SC5b-9 and Bb fragment were assessed using ELISA assay kits (QUIDEL Corp). Results Median (95% CI) C3a, C5a, SC5b-9 and Bb fragment were 48.9 (30.1-100.2) ng/mL, 6.8 (2.2-11.8 ng/mL, 113.9 (50.5-170) ng/mL and 1.1 (0.64-1.86) µg/mL in NC, respectively. APS patients had significantly higher complement activation markers compared to NC at both time points irrespective of the anticoagulant (p<0.0001 for C3a, C5a, SC5b-9 and Bb). There were no differences in the markers between the two patient groups at baseline, or in patients remaining on warfarin at day 42 [median (95% CI) for C3a, C5a, SC5b-9 and Bb fragment levels in patient on warfarin on day 0 vs day 42 were: C3a (ng/mL) 77.2 (33.4-180.1) vs 73.6 (34.7-156), C5a (ng/mL) 10.8 (3.2-19.4) vs 10.3 (3.7-19.8), SC5b-9 (ng/mL) 203.5 (70.5-440.3) vs 214.4 (78.3-470.4) and Bb fragment (µg/mL) 1.3 (0.6-2.8) vs 1.4 (0.7-2.4)]. In 55 patients randomised to rivaroxaban, C3a, C5a and SC5b-9 decreased significantly compared with baseline values on warfarin [day 0 versus day 42: C3a (ng/mL): 82.8 (34.6-146.6) vs 64.0 (29.2-125.1), (p=0.004); C5a (ng/mL):12.0 (4.1-17.9) vs 9.0 (2.4-14.8), p=0.01; SC5b-9 (ng/mL): 201.0 (65.6-350.2) vs 171.5 (55.6-245.5), (p=0.001)]. However, Bb fragment levels were unchanged. Conclusions Complement activation occurs in APS despite anticoagulation with warfarin. Rivaroxaban decreased complement activation compared to warfarin, although levels of the markers did not normalise in the majority of patients. This action of rivaroxaban appears to occur via the classical pathway, since Bb fragment (a marker of alternative pathway activation) was unchanged. The observations in rivaroxaban-treated patients may reflect inhibition of factor Xa cleavage of complement proteins, or inhibition of its pro-inflammatory effects (and consequent complement activation). These data suggest that rivaroxaban may have an additional therapeutic modality in thrombotic APS patients by limiting complement activation. Disclosures Mackie: Volution Immuno Pharmaceuticals (Uk) Ltd: Research Funding. Cohen:Bayer: Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Honoraria diverted to local charity, Research Funding, Speakers Bureau.


1998 ◽  
Vol 188 (12) ◽  
pp. 2313-2320 ◽  
Author(s):  
Dror Mevorach ◽  
John O. Mascarenhas ◽  
Debra Gershov ◽  
Keith B. Elkon

Apoptotic cells are rapidly engulfed by phagocytes, but the receptors and ligands responsible for this phenomenon are incompletely characterized. Previously described receptors on blood- derived macrophages have been characterized in the absence of serum and show a relatively low uptake of apoptotic cells. Addition of serum to the phagocytosis assays increased the uptake of apoptotic cells by more than threefold. The serum factors responsible for enhanced uptake were identified as complement components that required activation of both the classical pathway and alternative pathway amplification loop. Exposure of phosphatidylserine on the apoptotic cell surface was partially responsible for complement activation and resulted in coating the apoptotic cell surface with C3bi. In the presence of serum, the macrophage receptors for C3bi, CR3 (CD11b/CD18) and CR4 (CD11c/CD18), were significantly more efficient in the uptake of apoptotic cells compared with previously described receptors implicated in clearance. Complement activation is likely to be required for efficient uptake of apoptotic cells within the systemic circulation, and early component deficiencies could predispose to systemic autoimmunity by enhanced exposure to and/or aberrant deposition of apoptotic cells.


2001 ◽  
Vol 194 (6) ◽  
pp. 747-756 ◽  
Author(s):  
Anthony P. Manderson ◽  
Matthew C. Pickering ◽  
Marina Botto ◽  
Mark J. Walport ◽  
Christopher R. Parish

There is evidence that the classical complement pathway may be activated via a “C1-tickover” mechanism, analogous to the C3-tickover of the alternative pathway. We have quantitated and characterized this pathway of complement activation. Analysis of freshly collected mouse and human plasma revealed that spontaneous C3 activation rapidly occurred with the generation of C3 fragments in the plasma. By the use of complement- and Ig-deficient mice it was found that C1q, C4, C2, and plasma Ig were all required for this spontaneous C3 activation, with the alternative complement pathway further amplifying C3 fragment generation. Study of plasma from a human with C1q deficiency before and after therapeutic C1q infusion confirmed the existence of a similar pathway for complement activation in humans. Elevated levels of plasma C3 were detected in mice deficient in complement components required for activation of either the classical or alternative complement pathways, supporting the hypothesis that there is continuous complement activation and C3 consumption through both these pathways in vivo. Blood stasis was found to stimulate C3 activation by classical pathway tick-over. This antigen-independent mechanism for classical pathway activation may augment activation of the complement system at sites of inflammation and infarction.


2010 ◽  
Vol 23 (4) ◽  
pp. 740-780 ◽  
Author(s):  
Sanjay Ram ◽  
Lisa A. Lewis ◽  
Peter A. Rice

SUMMARY The complement system comprises several fluid-phase and membrane-associated proteins. Under physiological conditions, activation of the fluid-phase components of complement is maintained under tight control and complement activation occurs primarily on surfaces recognized as “nonself” in an attempt to minimize damage to bystander host cells. Membrane complement components act to limit complement activation on host cells or to facilitate uptake of antigens or microbes “tagged” with complement fragments. While this review focuses on the role of complement in infectious diseases, work over the past couple of decades has defined several important functions of complement distinct from that of combating infections. Activation of complement in the fluid phase can occur through the classical, lectin, or alternative pathway. Deficiencies of components of the classical pathway lead to the development of autoimmune disorders and predispose individuals to recurrent respiratory infections and infections caused by encapsulated organisms, including Streptococcus pneumoniae, Neisseria meningitidis, and Haemophilus influenzae. While no individual with complete mannan-binding lectin (MBL) deficiency has been identified, low MBL levels have been linked to predisposition to, or severity of, several diseases. It appears that MBL may play an important role in children, who have a relatively immature adaptive immune response. C3 is the point at which all complement pathways converge, and complete deficiency of C3 invariably leads to severe infections, including those caused by meningococci and pneumococci. Deficiencies of the alternative and terminal complement pathways result in an almost exclusive predisposition to invasive meningococcal disease. The spleen plays an important role in antigen processing and the production of antibodies. Splenic macrophages are critical in clearing opsonized encapsulated bacteria (such as pneumococci, meningococci, and Escherichia coli) and intraerythrocytic parasites such as those causing malaria and babesiosis, which explains the fulminant nature of these infections in persons with anatomic or functional asplenia. Paramount to the management of patients with complement deficiencies and asplenia is educating patients about their predisposition to infection and the importance of preventive immunizations and seeking prompt medical attention.


2021 ◽  
Author(s):  
Rachel E Lamerton ◽  
Edith Marcial Juarez ◽  
Sian E Faustini ◽  
Marisol E Perez-Toledo ◽  
Margaret Goodall ◽  
...  

Antibodies specific for the spike glycoprotein (S) and nucleocapsid (N) SARS-CoV-2 proteins are typically present during severe COVID-19, and induced to S after vaccination. The binding of viral antigens by antibody can initiate the classical complement pathway. Since complement could play pathological or protective roles at distinct times during SARS-CoV-2 infection we determined levels of antibody-dependent complement activation along the complement cascade. Here, we used an ELISA assay to assess complement protein binding (C1q) and the deposition of C4b, C3b, and C5b to S and N antigens in the presence of anti-SARS-CoV-2 antibodies from different test groups: non-infected, single and double vaccinees, non-hospitalised convalescent (NHC) COVID-19 patients and convalescent hospitalised (ITU-CONV) COVID-19 patients. C1q binding correlates strongly with antibody responses, especially IgG1 levels. However, detection of downstream complement components, C4b, C3b and C5b shows some variability associated with the antigen and subjects studied. In the ITU-CONV, detection of C3b-C5b to S was observed consistently, but this was not the case in the NHC group. This is in contrast to responses to N, where median levels of complement deposition did not differ between the NHC and ITU-CONV groups. Moreover, for S but not N, downstream complement components were only detected in sera with higher IgG1 levels. Therefore, the classical pathway is activated by antibodies to multiple SARS-CoV-2 antigens, but the downstream effects of this activation may differ depending on the specific antigen targeted and the disease status of the subject.


Blood ◽  
1990 ◽  
Vol 76 (2) ◽  
pp. 361-367 ◽  
Author(s):  
SD Carson ◽  
DR Johnson

Abstract Complement activation at the cell surface initiates cell damage through a series of reactions occurring at the cell membrane and, after assembly of the terminal membrane attack complex, produces leakage of cytoplasmic contents from the cell. It has been documented that chemical or physical damage to cell membranes can cause a rapid increase in the expression of tissue factor procoagulant activity. In this study, antibody-mediated complement activation at the cell surface resulted in increased tissue factor activity, which correlated with cytolysis, as measured by 51-chromium release. Therefore, complement fixation on the cell surface can have a direct and immediate stimulatory effect on the coagulation cascade at the point of its initiation, with formation of a fibrin clot requiring only three consecutive proteolytic reactions after immunologically mediated cell damage.


Blood ◽  
2021 ◽  
Author(s):  
Sanjay Khandelwal ◽  
Ayiesha Barnes ◽  
Lubica Rauova ◽  
Amrita Sarkar ◽  
Ann H Rux ◽  
...  

Heparin-induced thrombocytopenia (HIT) is a prothrombotic disorder mediated by ultra-large immune complexes (ULICs) containing IgG antibodies to a multivalent antigen composed of platelet factor 4 (PF4) and heparin. The limitations of current anti-thrombotic therapy in HIT supports the need to identify additional pathways that may be targets for therapy. Activation of FcgRIIA by HIT ULICs initiates diverse procoagulant cellular effector functions. HIT ULICs are also known to activate complement, but the contribution of this pathway to the pathogenesis of HIT has not been studied in detail. We observed that HIT ULICs physically interact with C1q in buffer and plasma, activate complement via the classical pathway, promote co-deposition of IgG and activated C3 complement fragments (C3c) on neutrophil and monocyte cell surfaces. Complement activation by ULICs, in turn, facilitates Fcg receptor(R)-independent monocyte tissue factor expression, enhances IgG binding to the cell surface FcgRs and promotes platelet adhesion to injured endothelium. Inhibition of the proximal, but not terminal, steps in the complement pathway, abrogates monocyte tissue factor expression by HIT ULICs. Together, these studies suggest a major role for complement activation in regulating Fc-dependent effector functions of HIT ULICs, identify potential non-anticoagulant targets for therapy, and provide insights into the broader roles of complement in immune complex-mediated thrombotic disorders.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 11-12
Author(s):  
Sanjay Khandelwal ◽  
Lubica Rauova ◽  
Ayiesha Barnes ◽  
Ann Rux ◽  
Serge Yarovoi ◽  
...  

Heparin induced thrombocytopenia (HIT) is a prothrombotic disorder mediated by ultra-large immune complexes (ULICs) containing IgG antibodies bound to multivalent complexes of platelet factor 4 (PF4) and heparin (H). HIT ULICs activate cellular FcγIIA receptors that initiate diverse cellular effector functions including neutrophil degranulation and monocyte expression of tissue factor (TF). Previous studies have shown that HIT ULICs also potently activate complement through the classical pathway (Cines et al., 1980). Whether complement activation contributes to FcγRIIA-dependent prothrombotic pathways has not been addressed in detail. In studies that follow, we describe: 1) robust complement activation by HIT ULICs in plasma and whole blood (WB), 2) cell-surface deposition of complement and IgG triggered by HIT ULICs, 3) complement-dependent neutrophil degranulation and monocyte TF expression, 4) efficacy of proximal, but not terminal, pathway inhibition in regulating monocyte TF expression, and 5) deposition of complement in thrombi formed in "HIT mice" that generate ULICs containing KKO, a HIT-like monoclonal antibody (Arepally et al., 2000). Consistent with prior studies showing involvement of the classical pathway in HIT (Cines et al., 1980), we observed that binding of C1q induced marked enlargement of HIT ULICs in buffer assessed by dynamic light scattering as well as in plasma using confocal microscopy (data not shown). To assess complement activation by HIT ULICs, we incubated WB and plasma with PF4 (25 µg/mL) ± heparin (1 U/mL) in the presence of KKO (or isotype, "ISO"; 50 µg/mL) or HIT IgG (or control IgG, "CON"; 500 µg/mL) and measured C3c with a capture immunoassay as previously described (Khandelwal et al., 2018). KKO (Figure 1A) or HIT ULICs (n=3; HIT1-3, Figure 1B), showed robust generation of C3c in the presence of PF4/heparin, but not antigens alone or with control IgG (ISO/CON). Complement activation by HIT ULICs leads to downstream generation of C5a and formation of sC5b-9 (data not shown). Pre-incubation of plasma or WB with a variety of classical pathway inhibitors, including a C1r inhibitor derived from Borrelia burgdorferi (BBK 32), C1 esterase inhibitor (Berinert, CSL Behring) and anti-C1q antibody (α-C1q Ab; Annexon Biosciences) inhibited C3c generation by KKO ULICs (p &lt;0.001), whereas inhibitors of the alternative pathway (anti-properdin antibody) or C5 inhibitor (α-C5 Ab; Eculizumab, Alexion Pharmaceuticals) did not (data not shown). Incubation of WB with KKO or HIT ULICs, but not ISO or CON IgG, markedly increased deposition of C3 and IgG on neutrophils, monocytes and B cells (data not shown) and lead to cell activation assessed by neutrophil degranulation (MMP9 release) and monocyte TF expression (data not shown). To examine the contribution of complement activation in monocyte TF expression, WB was pre-incubated with α-C1q, α-C5 or IV.3 (a monoclonal antibody to FcγRIIA) or isotype controls prior to addition of HIT ULICs. As shown in Figure 2, the classical pathway inhibitor, α-C1q Ab markedly diminished TF expression (about 70% reduction; p&lt;0.001 vPF4/H/ KKO), as did IV.3 (about 85% reduction; p&lt;0.001 vPF4/H/ KKO) but not α-C5 Ab or ISO antibodies, demonstrating: 1) FcγRIIA independent mechanism of monocyte TF expression and 2) a requirement for proximal rather than terminal complement pathway components in the induction of monocyte TF. We next asked if complement activation facilitates binding of ULICs and promotes subsequent ULIC engagement of FcγRIIA. To examine complement dependent binding of HIT ULICs, we incubated WB with α-C1q Ab prior to addition of KKO ULICs and measured ULIC binding to monocytes and TF expression. As shown in Figure 3, classical pathway inhibition markedly reduced cell-surface IgG (Figure 3A) and monocyte TF expression (Figure 3B). The effects of complement inhibition could not be overcome with increasing amounts of KKO IgG (2-4 fold excess). We observed significant co-localization of complement with KKO ULICs in a cremaster-laser injury model in "HIT mice" and in in situ thrombi formed in uninjured vessels (data not shown). Together, these studies demonstrate an independent role for complement activation in regulating the binding and procoagulant effects of HIT ULICs and identify new non-anticoagulant therapeutic targets that could improve clinical outcomes in this otherwise potentially devastating thrombotic disorder. Disclosures Arepally: Novartis: Consultancy; Alexion: Other; Annexon Biosciences: Consultancy, Other; Veralox Therapeutics: Consultancy, Membership on an entity's Board of Directors or advisory committees; Biokit: Consultancy, Patents & Royalties; Apotex: Consultancy, Research Funding.


Sign in / Sign up

Export Citation Format

Share Document