The Effect of Unpaired Cysteine Residues and the C Domains On the Expression of Von Willebrand Factor

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1078-1078
Author(s):  
Thomas A J Mckinnon ◽  
Susie Shaperio ◽  
Agata Anna Nowak ◽  
M. Laffan

Abstract Abstract 1078 Von Willebrand Factor (VWF) is a large multimeric plasma glycoprotein that mediates platelet adhesion under high shear stress and is the carrier molecule for FVIII. VWF contains a large number of cysteine residues that were previously thought to all participate in either intra- or inter-molecular disulphide bonds. However, recently it has been shown that VWF contains a proportion of unpaired cysteine residues, or free thiols and these may be involved in lateral self association of VWF. Initially Choi et al concluded that two free thiols are present in the D3 domain C889 and C898) and seven in the C domains (C2448, C2451, C2453, C2490, C2491, C2528 and C2533). Moreover, Ganderton et al recently showed that expression of the isolated VWF C2 domain resulted in the formation of disulphide linked oligomers and suggested that lateral self-association of VWF involved the C2431-C2453 bond located in the VWF C2 domain. When they mutated C2453 to Alanine the extent of oligomerisaton was enhanced. However it is not clear how this relates to the full length VWF molecule. In the present study we investigated the effect of mutating the predicted unpaired cysteine residues on the expression of full length VWF. Initially we used the binding of MPB to VWF to compare the relative amount of free thiol on plasma derived and recombinant VWF (rVWF). Interestingly, rVWF presented an increased free thiol content compared to purified plasma derived VWF indicating that free thiols, at least in rVWF are formed without exposure to the circulation. Next we created nine individual point mutations, based the observations of Choi et al, changing the predicted unpaired cysteine residues to alanine in full length VWF and analysed their expression in HEK293T cells. Interestingly, all of the point mutations failed to secrete from HEK293T cells, with the protein being retained within the cell lysate. A double point mutant, C2431A-C2453A, similarly failed to secrete. Analysis of the pro-VWF:mature-VWF ratio and Endo-H digestion of intracellular VWF demonstrated that all the mutants were retained within the endoplasmic reticulum (ER). Co-expression experiments with wild type VWF partially restored expression of some mutants, however co-expression with a deletion A1/A3 construct, demonstrated that the molecules containing the cysteine point mutations were retained predominately in the ER. Together these data suggest that in full length VWF, correct disulphide bonding within the ER is required for protein secretion. Since the point mutations did not express we created a series of deletion mutants to remove portions of the C-terminus of VWF. While VWF with either its A1, A2, A3 or D4 domain was expressed at comparable levels to wild type, all of the created C-terminal deletion variants: ΔC1C6(2255–2720), ΔC1C2(2255–2428), ΔC3(2431–2494), ΔC3C4-(2400–2515) and ΔC3C6-(2400–2662) also failed to secrete at significant levels. This data suggest that in the full length VWF molecule an intact sequence of C-domains is required for proper expression. To establish if the cysteine mutants could be expressed in smaller VWF constructs we introduced the same mutations into VWF molecules spanning the A2-CK, A2C6 and C3-CK domains. Interestingly, the mutants failed to express in VWF-A2CK and A2C6, again being retained in the ER, but were secreted in VWF-C3CK although to a significantly less extent than wild type C3CK. Furthermore, the A2C6 construct only expressed as monomers with very few dimers. Together these data demonstrate that correct disulphide bonding and an intact series of C domains are required for passage through the ER into the Golgi and efficient VWF secretion. The location and mechanism by which certain disulphide bonds break, forming free thiols remains to be established. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3451-3451
Author(s):  
Dominic W Chung ◽  
Junmei Chen ◽  
Minhua Ling ◽  
Taisha Doo ◽  
Teri Blevens ◽  
...  

Abstract Von Willebrand factor (VWF) is a plasma glycoprotein that mediates platelet adhesion at sites of vessel injury. It is synthesized in megakaryocytes and endothelial cells and is assembled in the endoplasmic reticulum and Golgi into an array of multimers. Upon secretion from microvascular endothelium, VWF multimers can further self-associate under shear stress and form surface-bound fibers of potentially enormous sizes capable of spanning the lumens of vessels up to 300 mm in diameter (Zheng et al. Nature Communications 2015 In press). These structures are normally removed by the plasma metalloprotease ADAMTS13. However, when ADAMTS13 is inactivated or when massive VWF secretion overwhelms the capacity of ADAMTS13 to process VWF, these structures persist in the microcirculation and bind platelets avidly to form occlusive thrombi, a process characteristic of the devastating disease thrombotic thrombocytopenic purpura (TTP). These microvascular VWF-platelet thrombi have also been implicated in the microvascular dysfunction that accompanies malaria, sickle cell disease, and sepsis. We recently identified high density lipoprotein particles (HDL) as being able to prevent VWF self-association into thick strands (Chung et al. Blood 2015 in revision). In these studies, we also studied VWF self-association in citrated human plasma under shear stress in a test tube in the presence of EDTA (to inhibit ADAMTS13). VWF self-associated and adsorbed to the tube surface, a phenomenon prevented by addition of HDL at concentrations above those already present in plasma. When EDTA was not added to the plasma, the majority of the VWF was not cleaved but was nevertheless stabilized in solution. This result suggests that when ADAMTS13 has been progressively inactivated by citrate at 37°C, it is able to prevent VWF self-association. It is not clear why EDTA-inhibited ADAMTS13 did not stabilize VWF to the same extent as citrate-inhibited ADAMTS13. It is possible that EDTA and citrate have different effects on the stabilization function of ADAMTS13. Further, addition of recombinant ADAMTS13 to citrated plasma (final ratio VWF monomer:ADAMTS13 = 1.6:1) did not enhance VWF cleavage under shear, but completely stabilized the VWF multimers. These results demonstrate a new function for ADAMTS13: it regulates VWF adhesive activity by preventing VWF self-association through direct binding instead of cleavage. Therefore, we hypothesize that the relative levels of VWF, HDL, and ADAMTS13 in plasma regulate the propensity of VWF multimers to self-associate under shear stress. While high VWF levels and high shear stress favor VWF self-association, high HDL and ADAMTS13 levels prevent self-association. We tested the hypothesis with plasma from wild-type or knockout mice on the C57BL6 background. In comparison to humans, wild-type C57BL6 mice have low VWF levels, high HDL levels (calculated from HDL-cholesterol levels), and express a truncated version of ADAMTS13. Further, ADAMTS13-deficient C57BL6 mice do not spontaneously develop microvascular occlusion. Unlike human citrated plasma, when citrated plasma from wild-type mice was sheared in the presence of EDTA, the VWF multimers did not self-associate. We attributed this difference from human plasma to the low VWF:HDL ratio in this mouse strain. When the plasma from apolipoprotein (Apo) A-I knockout mice was sheared in the presence of EDTA, the VWF multimers also did not self-associate, which we attributed to the low VWF level and the ability of EDTA-inhibited truncated ADAMTS13 to stabilize VWF. When the plasma of a double knockout of ApoA-I and ADAMTS13 was sheared, the VWF self-associated and adsorbed to the tube surface. Addition of HDL to this double knockout plasma stabilized the VWF. The VWF antigen levels in wild-type, single and double knockout mouse plasma were comparable. Double knockout mice challenged with a bolus injection of VWF developed more severe thrombocytopenia than did mice with either single ApoA-I or ADAMTS13 deficiency. Together, these results suggest that ADAMTS13 synergizes with HDL in stabilizing VWF and dampening its self-association into hyperadhesive forms under shear stress, and that interplay between concentrations of VWF, ADAMTS13, and HDL particles can determine the propensity for developing TTP and its severity once developed. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2000 ◽  
Vol 96 (2) ◽  
pp. 560-568 ◽  
Author(s):  
Simon Allen ◽  
Adel M. Abuzenadah ◽  
Joanna Hinks ◽  
Joanna L. Blagg ◽  
Turkiz Gursel ◽  
...  

Abstract In this report we describe the molecular defect underlying partial and severe quantitative von Willebrand factor (VWF) deficiencies in 3 families previously diagnosed with types 1 and 3 Von Willebrand-disease. Analysis of the VWF gene in affected family members revealed a novel C to T transition at nucleotide 1067 of the VWF complemetary DNA (cDNA), predicting substitution of arginine by tryptophan at amino acid position 273 (R273W) of pre–pro-VWF. Two patients, homozygous for the R273W mutation, had a partial VWF deficiency (VWF:Ag levels of 0.06 IU/mL and 0.09 IU/mL) and lacked high-molecular weight VWF multimers in plasma. A third patient, also homozygous for the R273W mutation, had a severe VWF deficiency (VWF:Ag level of less than 0.01 IU/mL) and undetectable VWF multimers in plasma. Recombinant VWF having the R273W mutation was expressed in COS-7 cells. Pulse-chase experiments showed that secretion of rVWFR273W was severely impaired compared with wild-type rVWF. However, the mutation did not affect the ability of VWF to form dimers in the endoplasmic reticulum (ER). Multimer analysis showed that rVWFR273W failed to form high-molecular-weight multimers present in wild-type rVWF. We concluded that the R273W mutation is responsible for the quantitative VWF deficiencies and aberrant multimer patterns observed in the affected family members. To identify factors that may function in the intracellular retention of rVWFR273W, we investigated the interactions of VWF expressed in COS-7 cells with molecular chaperones of the ER. The R273W mutation did not affect the ability of VWF to bind to BiP, Grp94, ERp72, calnexin, and calreticulin in COS-7 cells.


Blood ◽  
2021 ◽  
Vol 138 (23) ◽  
pp. 2425-2434
Author(s):  
Hongxia Fu ◽  
Yan Jiang ◽  
Wesley P. Wong ◽  
Timothy A. Springer

Abstract von Willebrand factor (VWF) is an ultralong concatemeric protein important in hemostasis and thrombosis. VWF molecules can associate with other VWF molecules, but little is known about the mechanism. Hydrodynamic drag exerts tensile force on surface-tethered VWF that extends it and is maximal at the tether point and declines linearly to 0 at the downstream free end. Using single-molecule fluorescence microscopy, we directly visualized the kinetics of binding of free VWF in flow to surface-tethered single VWF molecules. We showed that self-association requires elongation of tethered VWF and that association increases with tension in tethered VWF, reaches half maximum at a characteristic tension of ∼10 pN, and plateaus above ∼25 pN. Association is reversible and hence noncovalent; a sharp decrease in shear flow results in rapid dissociation of bound VWF. Tethered primary VWF molecules can recruit more than their own mass of secondary VWF molecules from the flow stream. Kinetics show that instead of accelerating, the rate of accumulation decreases with time, revealing an inherently self-limiting self-association mechanism. We propose that this may occur because multiple tether points between secondary and primary VWF result in lower tension on the secondary VWF, which shields more highly tensioned primary VWF from further association. Glycoprotein Ibα (GPIbα) binding and VWF self-association occur in the same region of high tension in tethered VWF concatemers; however, the half-maximal tension required for activation of GPIbα is higher, suggesting differences in molecular mechanisms. These results have important implications for the mechanism of platelet plug formation in hemostasis and thrombosis.


2019 ◽  
Vol 3 (7) ◽  
pp. 957-968 ◽  
Author(s):  
Changjie Zhang ◽  
Anju Kelkar ◽  
Sriram Neelamegham

Abstract von Willebrand factor (VWF) self-association results in the homotypic binding of VWF upon exposure to fluid shear. The molecular mechanism of this process is not established. In this study, we demonstrate that the shear-dependent unfolding of the VWF A2 domain in the multimeric protein is a major regulator of protein self-association. This mechanism controls self-association on the platelet glycoprotein Ibα receptor, on collagen substrates, and during thrombus growth ex vivo. In support of this, A2-domain mutations that prevent domain unfolding due to disulfide bridging of N- and C-terminal residues (“Lock-VWF”) reduce self-association and platelet activation under various experimental conditions. In contrast, reducing assay calcium concentrations, and 2 mutations that destabilize VWF-A2 conformation by preventing coordination with calcium (D1498A and R1597W VWD type 2A mutation), enhance self-association. Studies using a panel of recombinant proteins that lack the A1 domain (“ΔA1 proteins”) suggest that besides pure homotypic A2 interactions, VWF-A2 may also engage other protein domains to control self-association. Addition of purified high-density lipoprotein and apolipoprotein-A1 partially blocked VWF self-association. Overall, similar conditions facilitate VWF self-association and ADAMTS13-mediated proteolysis, with low calcium and A2 disease mutations enhancing both processes, and locking-A2 blocking them simultaneously. Thus, VWF appears to have evolved 2 balancing molecular functions in a single A2 functional domain to dynamically regulate protein size in circulation: ADAMTS13-mediated proteolysis and VWF self-association. Modulating self-association rates by targeting VWF-A2 may provide novel methods to regulate the rates of thrombosis and hemostasis.


1986 ◽  
Vol 41 ◽  
pp. 138
Author(s):  
C.L. Verweij ◽  
P.J. Diergaarde ◽  
M.H.L. Hart ◽  
H. Pannekoek

Blood ◽  
1994 ◽  
Vol 83 (12) ◽  
pp. 3553-3561 ◽  
Author(s):  
O Christophe ◽  
AS Ribba ◽  
D Baruch ◽  
B Obert ◽  
C Rouault ◽  
...  

Abstract We compared the properties of plasma von Willebrand factor (vWF) from normal individuals and from two patients with type IIA (Glu875Lys) and type IIB (duplication of Met 540) von Willebrand disease (vWD) with the corresponding fully multimerized recombinant proteins. We included cryosupernatant from normal human plasma and type IIA plasma (Cys509Arg). Functions of vWF were analyzed by binding assays to platelets in the presence of ristocetin or botrocetin. Parameters of binding (number of binding sites per vWF subunit, and dissociation constant Kd) were quantitatively estimated from the binding isotherms of 125I-botrocetin or glycocalicin to vWF, independently of the size of the multimers. We found that ristocetin- or botrocetin-induced binding to platelets was correlated in all cases with the size of vWF multimers. In the absence of inducer, only type IIB rvWF Met-Met540 spontaneously bound to platelets. No significant difference of binding of purified botrocetin to vWF was found between normal and patients' plasma, or between wild-type rvWF (rvWF-WT) and rvWF-Lys875. In contrast, affinity of botrocetin for type IIB rvWF Met-Met540 was decreased. Botrocetin-induced binding of glycocalicin to vWF from all plasma and cryosupernatant was similar. Compared with rvWF-WT, binding of glycocalicin to rvWF-Lys875 was normal. In contrast, the affinity for type IIB rvWF Met-Met540 was 10-fold greater. Thus, our data suggest that, in the patients tested, the abnormal IIA phenotype results from the lack of large-sized multimers and is independent of the point mutations. In contrast, the type IIB mutation is directly involved by providing a conformation to the vWF subunits that allows the high molecular weight multimers to spontaneously interact with platelet glycoprotein Ib.


Blood ◽  
1992 ◽  
Vol 79 (8) ◽  
pp. 2048-2055 ◽  
Author(s):  
PA Kroner ◽  
ML Kluessendorf ◽  
JP Scott ◽  
RR Montgomery

Abstract von Willebrand disease (vWD) variant type IIB is an inherited bleeding disorder resulting from the spontaneous binding of defective von Willebrand factor (vWF) to platelets in vivo. To identify the molecular basis for type IIB vWD, we used reverse transcription and the polymerase chain reaction to examine the nucleotide sequence of the platelet glycoprotein (GP) Ib-binding domain encoded by the vWF messenger RNA in an affected family, and in an unrelated affected individual. We identified two different missense mutations linked with expression of type IIB vWD. These mutations, which lead to Pro574---- Leu and Val553----Met substitutions, respectively, were each introduced into the full-length vWF expression vector pvW198, and both wild-type (wt) and mutant vWF were transiently expressed in COS-7 cells. Binding assays showed that both mutant proteins showed significant non- ristocetin-dependent spontaneous binding to platelets, and that complete binding was induced by low concentrations of ristocetin that failed to induce platelet binding by wt vWF. The vWF/platelet interaction was inhibited by the anti-vWF monoclonal antibody (MoAb) AvW3, and the anti-GPIb MoAb AP1, which both block vWF binding to platelets. These results show that the identified missense mutations are the likely basis for the expression of type IIB vWD in these affected individuals.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 258-258
Author(s):  
Hendrik B Feys ◽  
Patricia J Anderson ◽  
J. Evan Sadler

Abstract ADAMTS13 is a plasma metalloprotease that is essential for the normal proteolytic processing of von Willebrand factor (VWF). Dysfunctional ADAMTS13 may lead to thrombotic thrombocytopenic purpura, as uncleaved and unusually large VWF multimers accumulate in the blood and cause intravascular platelet aggregation. Many studies indicate that proteolysis of multimeric VWF involves conformational changes in the VWF A2 domain that expose the Y1605-M1606 scissile bond and also allow substrate binding to multiple exosites on ADAMTS13. For example, VWF is resistant to proteolysis by ADAMTS13 unless the VWF is subjected to fluid shear stress, mild denaturation with guanidine or urea, or adsorption onto a surface. However, the functional interactions between shear stress, various ADAMTS13 binding sites and VWF cleavage are not understood. Therefore, we investigated the effect of fluid shear stress and ADAMTS13 structure on ADAMTS13-VWF binding and VWF cleavage. Upon mixing recombinant VWF (rVWF) and ADAMTS13 in a physiological buffer (50 mM HEPES, 5 mM CaCl2, 1 μM ZnCl2, 150 mM NaCl, pH 7.4), we found that immunoprecipitation with anti-VWF also pulled down substantial amounts of ADAMTS13. Although less striking, a similar result was obtained with purified plasma VWF. Therefore, ADAMTS13 can bind VWF without gaining access to the cleavage site in VWF domain A2. When fluid shear stress was applied for 2 min with a bench-top vortexer, ADAMTS13 binding increased 3-fold and VWF was also cleaved. Lowering the ionic strength markedly increased the rate of VWF cleavage but did not affect ADAMTS13 binding, which suggests that cleavage and binding depend on distinct VWF-ADAMTS13 interactions. Shear-induced binding was reversible slowly upon removal of unbound ADAMTS13 or rapidly by addition of SDS. ADAMTS13-VWF binding was stable for at least 24 h after cessation of shear stress, indicating that the structural change in VWF that promotes binding was not readily reversible. Using a catalytically inactive ADAMTS13 variant to simplify the analysis of binding assays, 30 nM ADAMTS13(E231Q) bound to 30 μg/ml rVWF (120 nM subunits) with a stoichiometry of 0.012 ± 0.004 under static conditions and 0.098 ± 0.023 after shearing (mean ± SD, n = 3, P = 0.019). With 120 nM ADAMTS13(E231Q) the stoichiometry increased to 0.086 ± 0.036 under static conditions and 0.469 ± 0.033 after shearing for 2 min. Recombinant ADAMTS13 truncated after TSP-1 repeat 8 (lacking the C-terminal CUB domains, delCUB), or truncated after the Spacer domain (consisting of domains MDTCS), did not bind rVWF under static conditions, implicating the CUB domains in binding to VWF. In contrast, full-length ADAMTS13, delCUB and MDTCS bound similarly to rVWF after shearing. In a previous study, delCUB and MDTCS did not cleave VWF subjected to fluid shear stress (Zhang et al, Blood2007; 110: 1887–1894). However, under the conditions employed in these experiments, MDTCS and delCUB displayed significant proteolytic activity, cleaving VWF at a rate comparable to that of full length ADAMTS13 when shear stress was applied over a time course of 0–160 sec. We conclude that ADAMTS13 CUB domains contribute to binding a few sites on multimeric VWF under static conditions, whereas ADAMTS13 MDTCS domains are sufficient to bind many sites in an altered conformation of VWF that is induced by fluid shear stress. Binding of ADAMTS13 to unsheared VWF multimers may facilitate the cleavage of VWF within a growing thrombus.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 541-541
Author(s):  
Giancarlo Castaman ◽  
Sofia Helene Giacomelli ◽  
Paula M. Jacobi ◽  
Tobias Obser ◽  
Reinhard Schneppenheim ◽  
...  

Abstract Abstract 541 Background. Von Willebrand Disease (VWD) is caused by mutations in von Willebrand factor (VWF) that have different pathophysiologic effect in causing low plasma VWF levels. Type 1 VWD includes patients with quantitative plasma VWF deficiency with normal VWF structure and function. Aim of the study. We report three different novel type 1 VWF mutations (A1716P, C2190Y and R2663C) which although located in different VWF domains are associated with reduced secretion and lack of formation of Weibel-Palade body-like granules. Methods. Transient expression of recombinant mutant full-length VWF in 293 EBNA cells was performed and secretion, collagen binding, and GpIb binding assessed in comparison to wild-type VWF. Furthermore, expression was also examined in HEK293 cells that form Weibel-Palade body (WPB)-like granules when transfected with wt VWF. Results. The multimer analysis of plasma VWF was compatible with type 1 VWD. The results of 3 different expression experiments showed a slightly reduced VWF synthesis and drastically impaired secretion into the medium with homozygous expression. In HEK293 cells, homozygous A1716P and C2190Y VWF variants failed to form WPB-like granules, while R2663C was capable of forming granules, but had fewer cells with granules and more with ER-localized VWF. Heterozygous expression of A1716P and C2160Y VWF variants had a negative impact on wild-type VWF and WPB-like granules were observed in transfected cells. Conclusions. Our results demonstrate that homozygous and heterozygous quantitative VWF deficiency caused by missense VWF mutations can be associated with inability to form endothelial Weibel-Palade-like granules and mutations in different VWF domains can affect the formation of these organelles. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document