Activity of the Aurora Kinase Inhibitor, MLN8237 (alisertib) Alone or in Combination with Ponatinib Against Imatinib-Resistant BCR-ABL-Positive Cells

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1333-1333
Author(s):  
Seiichi Okabe ◽  
Tetsuzo Tauchi ◽  
Seiichiro Katagiri ◽  
Yuko Tanaka ◽  
Kazuma Ohyashiki

Abstract Abstract 1333 Chronic myeloid leukemia (CML) is characterized by cytogenetic aberration (Philadelphia chromosome: Ph) and chimeric tyrosine kinase BCR-ABL. ABL tyrosine kinase inhibitor, imatinib has demonstrated the potency against CML patients. However, resistance to imatinib can develop in CML patients due to BCR-ABL point mutations. One of T315I mutation is resistant to currently available ABL tyrosine kinase inhibitors. Therefore, new approach against T315I mutant may improve the outcome of Ph-positive leukemia patients. Aurora kinases are serine/threonine kinases and upregulated in many malignancies including leukemia, and play an important role in cell cycle control and tumor proliferations. Because Aurora kinases are overexpressed in leukemia cells, Aurora kinases may present attractive targets for leukemia treatment. One of Aurora kinase inhibitor, MLN8237 (alisertib) is an oral and selective Aurora kinase A inhibitor and is currently being investigated in a pivotal phase 3 clinical trial against hematological malignancies. We suggested that alisertib mediated inhibition Aurora kinase activity and in combination with ponatinib, also known as AP24534 may abrogate the proliferation and survival of Ph-positive cells including T315I mutation. In this study, we investigated the combination therapy with a ponatinib and an alisertib by using the BCR-ABL positive cell line, K562, murine Ba/F3 cell line which was transfected with T315I mutant, ponatinib resistant Ba/F3 cells and T315I primary sample. Protein expression of Aurora A and B were increased in Ph-positive leukemia cells. 72 hours treatment of alisertib exhibits cell growth inhibition and induced apoptosis against K562 cells in a dose dependent manner. Alisertib also induced cell cycle arrest. The treatment of ponatinib exhibits cell growth inhibition partially against K562 cells in the presence of feeder cell (HS-5) conditioned media. We found that the treatment of alisertib abrogated the protective effects of HS-5 conditioned media in K562 cells. We investigated the alisertib activity against T315I positive cells. Alisertib potently induced cell growth inhibition of Ba/F3 cells ectopically expressing T315I mutation and induced cell cycle arrest. We investigated the efficacy between ponatinib and alisertib by using these cell lines. Combined treatment of Ba/F3 T315I cells with ponatinib and alisertib caused significantly more cytotoxicity than each drug alone. Ponatinib and alisertib were also effective against T315I primary samples. We examined the intracellular signaling of alisertib. Phosphorylation of Aurora A was inhibited in a time dependent manner. We also found the phosphorylation of histone H3 was also reduced in a dose dependent manner suggested that high concentration of alisertib also inhibits Aurora B activity. We next investigated by using ponatinib resistant Ba/F3 cells. In the ponatinib resistant cell lines, IC50 of ponatinib was up to 200 nM. BCR-ABL triple point mutations (T315I, E255K and Y253H) were detected by direct sequence analysis. The treatment of alisertib exhibits cell growth inhibition against Ba/F3 ponatinib resistant cells in the dose dependent manner. Alisertib induced cell cycle arrest in ponatinib resistant cells. Combined treatment of Ba/F3 ponatinib resistant cells with ponatinib and alisertib caused significantly more cytotoxicity. To assess the activity of alisertib and ponatinib, we performed to test on CML tumor formation in mice. We injected nude mice subcutaneously with 1×107 Ba/F3 T315I cells. A dose of 30 mg/kg/day p.o of ponatinib and 30 mg/kg/day p.o of alisertib inhibited tumor growth and reduced tumor volume compared with control mice. The treatments were well tolerated with no animal health concerns observed indicating the feasibility of alisertib combination strategies in the clinic. Data from this study suggested that administration of the ponatinib and Aurora inhibitor, alisertib may be a powerful strategy against BCR-ABL mutant cells including T315I. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 5025-5025 ◽  
Author(s):  
Seiichi Okabe ◽  
Tetsuzo Tauchi ◽  
Shinya Kimura ◽  
Taira Maekawa ◽  
Kazuma Ohyashiki

Abstract The use of imatinib, an ABL tyrosine kinase inhibitor, has led to a dramatic change in the management of BCR-ABL positive leukemia patients. However, the resistance to imatinib mediated by mutations in the BCR-ABL domain has become a major problem in the treatment. Histone deacetylase (HDAC) inhibitors have been shown to mediate the regulation of gene expression, induce cell growth, cell differentiation and apoptosis of tumor cells. Vorinostat (suberoylamide hydroxamic acid:SAHA) is a hydroxamic acid based polar HDAC inhibitor. Vorinostat have shown efficacy in a wide range of cancers such as cutaneous T-cell lymphoma (CTCL). However, efficacy of vorinostat against the BCR-ABL mutants has fully not known. Here we report on the studies performed against murine Ba/F3 cell line which was transfected wild type (Wt) p210 and p185 BCR-ABL or imatinib resistant BCR-ABL mutants such as G250E, Q252H, Y253F, E255K, M294V, T315I, T315A, F317L, F317V, M351T, H396P and T315I(p185). 48 hours treatment of vorinostat exhibits cell growth inhibition and proapoptotic activity murine Ba/F3 cells ectopically expressing Wt and imatinib resistant BCR-ABL mutants including T315I mutation in a dose dependent manner. IC50 of these cell lines are Wt(720nM), G250E(625nM), Q252H(220nM), Y253F(525nM), E255K(685nM), M294V(785nM), T315I(500nM), T315A(715nM), F317L(560nM), F317V(565nM), M351T(375nM) and H396P(485nM). Aurora kinases play a pivotal role in the regulator of mitotic processes during cell division. MK-0457 is a small molecule inhibitor of the Aurora kinase family and was found to be active against the cells from BCR-ABL positive patients with T315I mutation in clinical trial. Because vorinostat also depleted BCR-ABL, as well as induced apoptosis and sensitized BCR-ABL-expressing leukemia cells, we examined whether vorinostat and MK-0457 enhances the apoptosis in imatinib resistant BCR-ABL-expressing cells. 48 hours treatment of MK-0457 exhibits cell growth inhibition of Ba/F3 cells ectopically expressing Wt and imatinib resistant BCR-ABL mutants including T315I mutation. IC50 of MK-0457 is Wt(215nM), G250E(205nM), Q252H(185nM), Y253F(245nM), E255K(185nM), M294V(238nM), T315I(205nM), T315A(165nM), F317L(200nM), F317V(200nM), M351T(225nM) and H396P(195nM). We examined the intracellular signaling by using these cell lines. We found that caspase 3, and poly (ADPribose) polymerase (PARP) were activated after MK-0457 treatment in a dose dependent manner. Phosphorylation of BCR-ABL and Crk-L which is downstream target of BCR-ABL was reduced after MK-0457 treatment. We found that combination of vorinostat and MK-0457 synergistically cell growth inhibition of Wt and BCR-ABL mutants Ba/F3 cells in 48 hours treatment. Phosphorylation of Crk-L was reduced after vorinostat and MK-0457 treatment. Caspase 3 and PARP activation were also synergistically increased after vorinostat and MK-0457 treatment. We evaluated the activity of MK-0457 and vorinostat in primary BCR-ABL positive acute lymphoblastic leukemia (ALL) cells with the T315I mutation. We found that MK-0457 potently induced cell growth inhibition of primary T315I cells in 48 hours treatment. Moreover, combination of vorinostat and MK-0457 synergistically increased the cell growth inhibition in primary T315I cells. This study demonstrate monotherapy of vorinostat and the combination of vorinostat and MK-0457 are more potent efficacy not only wild type BCR-ABL but also imatinib resistant BCR-ABL mutants cells and represents a promising new strategy for treatment of imatinib resistant BCR-ABL positive leukemias, including those harboring the T315I mutation.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3737-3737
Author(s):  
Seiichi Okabe ◽  
Tetsuzo Tauchi ◽  
Seiichiro Katagiri ◽  
Yuko Tanaka ◽  
Kazuma Ohyashiki

Abstract Abstract 3737 ABL kinase inhibitor, imatinib is highly effective therapy against chronic myeloid leukemia (CML) patients and eliminates disease progression and transformation. However, imatinib is not curative for most CML patients. Residual CML cells are present in bone marrow microenvironment. Bone marrow microenvironment is a source of soluble factors and regulates the proliferation of leukemia cells. These leukemia cells are contained within a niche in the bone marrow and are often impervious to current treatments, thus maintaining their proliferative activity when the treatment is ceased, suggests that the new therapeutic strategies designed to override stroma-associated drug resistance are required to treat against Philadelphia (Ph)-positive leukemia patients. The hematopoietic cytokine receptor signaling is mediated by tyrosine kinases termed Janus kinases (Jaks) and downstream transcription factors, signal transducers and activators of transcription (STATs). Jak-STAT signaling is also activated in CML cells. One of the Jak kinase inhibitor, TG101348 (SAR302503) is an orally available inhibitor of Jak2 and developed for the treatment of patients with myeloproliferative diseases. Therefore, combination therapy using a BCR-ABL tyrosine kinase inhibitors and a Jak inhibitor, TG101348 may help prevent stroma-associated drug resistance and these approaches may be expected to improve the outcomes of CML patients. In this study, we investigated the ABL tyrosine kinase inhibitor, imatinib and TG101348 efficacy by using the BCR-ABL positive cell lines, K562 and primary CML samples when leukemic cells were protected by the feeder cell lines (HS-5 and S9). 72 hours treatment of imatinib exhibits cell growth inhibition and induced apoptosis against K562 cells in a dose dependent manner. However, the treatment of imatinib exhibits cell growth inhibition partially against K562 cells in the presence of HS-5 conditioned media. We found that the treatment of TG101348 did not exhibit cell growth inhibition against K562 cells directly, but the combination treatment with imatinib and TG101348 abrogated the protective effects of HS-5 conditioned media in K562 cells. We next investigated the intracellular signaling of imatinib and TG101348. Phosphorylation of BCR-ABL, Crk-L was not reduced after TG101348 treatment. However, phosphorylation of BCR-ABL, Crk-L was significantly reduced and increased apoptosis after combination treatment with imatinib and TG101348. We next investigated the efficacy between imatinib and TG101348 by using CD34 positive primary CML samples. The treatment of imatinib exhibits cell growth inhibition partially against CD34 positive CML samples in the presence of feeder cells. Combined treatment of CD34 positive primary samples with imatinib and TG101348 caused significantly more cytotoxicity and induced apoptosis. We also found that mitogen-activated protein kinase (MAPK) was also inhibited by imatinib and TG101348 treatment. We next investigated the intracellular signaling of imatinib and TG101348 by using the CD34 positive primary samples. Phosphorylation of BCR-ABL, Crk-L was significantly reduced and increased apoptosis after treatment with imatinib and TG101348. Moreover, combination of imatinib and TG101348 inhibited the colony growth of Ph-positive primary samples. We also investigated the TG101348 activity against feeder cell. Phosphorylation of STAT5 was reduced by TG101348 in a dose dependent manner. The cytokine production was analyzed by using cytokine array systems. The cytokine production such as granulocyte macrophage colony-stimulating factor (GM-CSF) from HS-5 was also reduced by TG101348 treatment. Data from this study suggested that administration of the imatinib and Jak inhibitor, TG101348 may be a powerful strategy against stroma-associated drug resistance of Ph-positive cells and enhance cytotoxic effects of imatinib in those residual CML cells. Disclosures: No relevant conflicts of interest to declare.


2020 ◽  
Vol 19 (16) ◽  
pp. 2019-2033 ◽  
Author(s):  
Pratibha Pandey ◽  
Mohammad H. Siddiqui ◽  
Anu Behari ◽  
Vinay K. Kapoor ◽  
Kumudesh Mishra ◽  
...  

Background: The aberrant alteration in Jab1 signalosome (COP9 Signalosome Complex Subunit 5) has been proven to be associated with the progression of several carcinomas. However the specific role and mechanism of action of Jab1 signalosome in carcinogenesis of gall bladder cancer (GBC) are poorly understood. Objective: The main objective of our study was to elucidate the role and mechanism of Jab1 signalosome in gall bladder cancer by employing siRNA. Methods: Jab1 overexpression was identified in gall bladder cancer tissue sample. The role of Jab1-siRNA approach in cell growth inhibition and apoptotic induction was then examined by RT-PCR, Western Blotting, MTT, ROS, Hoechst and FITC/Annexin-V staining. Results: In the current study, we have shown that overexpression of Jab1 stimulated the proliferation of GBC cells; whereas downregulation of Jab1 by using Jab1-siRNA approach resulted incell growth inhibition and apoptotic induction. Furthermore, we found that downregulation of Jab1 induces cell cycle arrest at G1 phase and upregulated the expression of p27, p53 and Bax gene. Moreover, Jab1-siRNA induces apoptosis by enhancing ROS generation and caspase-3 activation. In addition, combined treatment with Jab1-siRNA and gemicitabine demonstrated an enhanced decline in cell proliferation which further suggested increased efficacy of gemcitabine at a very lower dose (5μM) in combination with Jab1-siRNA. Conclusion: In conclusion, our study strongly suggests that targeting Jab1 signalosome could be a promising therapeutic target for the treatment of gall bladder cancer.


2013 ◽  
Vol 700 (1-3) ◽  
pp. 13-22 ◽  
Author(s):  
Hui-Yu Xu ◽  
Zhi-Wei Chen ◽  
He Li ◽  
Li Zhou ◽  
Feng Liu ◽  
...  

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3693-3693
Author(s):  
Seiichi Okabe ◽  
Tetsuzo Tauchi ◽  
Yuko Tanaka ◽  
Juri Sakuta ◽  
Kazuma Ohyashiki

Abstract Introduction: Chronic myeloid leukemia (CML) is characterized by the t(9:22) translocation known as the Philadelphia chromosome (Ph). ABL tyrosine kinase inhibitor (TKI), imatinib and second-generation ABL TKIs, nilotinib and dasatinib have demonstrated the potency against CML patients. However, resistance to ABL TKI can develop in CML patients due to BCR-ABL point mutations. Moreover, ABL TKIs do not eliminate the leukemia stem cells (LSCs). Therefore, new approach against BCR-ABL mutant cells and LSCs may improve the outcome of Ph-positive leukemia patients. In eukaryotic cells, histone acetylation/deacetylation is important in transcriptional regulation. Chromatin acetylation is controlled by the opposing effects of two families of enzymes: histone acetyltransferases (HAT) and histone deacetylases (HDACs). Deregulation of HDAC activity may be a cause of malignant disease in humans. Phosphoinositide 3-kinase (PI3K) pathway also regulates cell metabolism, proliferation and survival. Furthermore, aberrant activation of PI3K signaling pathway has been shown to be important in initiation maintenance of human cancers. CUDC-907 is an oral inhibitor of class I PI3K as well as class I and II HDAC enzymes. CUDC-907 is currently being investigated in a pivotal phase 1 clinical trial against hematological malignancies such as malignant lymphoma. We suggested that CUDC-907 mediated inhibition PI3K and HDAC activity and in combination with ABL TKIs may abrogate the proliferation and survival of Ph-positive leukemia cells including T315I mutation and ABL TKI resistant. Materials and methods: In this study, we investigated the combination therapy with a CUDC-907 and an ABL TKIs (imatinib, nilotinib and ponatinib) by using the BCR-ABL positive cell line, K562, murine Ba/F3 cell line which was transfected with T315I mutant, nilotinib resistant K562 and ponatinib resistant Ba/F3 cells and primary samples. Results: The treatment of imatinib, nilotinib and ponatinib exhibits cell growth inhibition partially against K562 cells in the presence of feeder cell (HS-5). We found that mRNA of PI3K subunit is significantly increased after a co-culture with HS-5 in K562 and primary CD34 positive CML samples. 72 h treatment of CUDC-907 exhibits cell growth inhibition and induced apoptosis against K562 cells in a dose dependent manner. We examined the intracellular signaling after treatment of CUDC-907. Phosphorylation of JNK, histone acetylation and activity of caspase 3, poly (ADP-ribose) polymerase (PARP) was increased. Anti-apoptotic protein, Mcl-1 was decreased in a dose dependent. We next investigated the efficacy between imatinib and CUDC-907 by using these cell line. Combined treatment of K562 cells with imatinib and CUDC-907 caused significantly more cytotoxicity than each drug alone. Caspase activity was increased and Akt activity was reduced. Phosphorylation of BCR-ABL, Crk-L was reduced and cleaved PARP was increased after imatinib and CUDC-907 treatment. We investigated the CUDC-907 activity against T315I positive cells. CUDC-907 potently induced cell growth inhibition of Ba/F3 T315I cells in a dose dependent manner. Combined treatment of Ba/F3 T315I cells with ponatinib and CUDC-907 caused significantly more cytotoxicity than each drug alone. Caspase activity was increased and Akt activity was reduced after ponatinib and CUDC-907 treatment. To assess the activity of ponatinib and CUDC-907, we performed to test on tumor formation in mice. We injected nude mice subcutaneously with Ba/F3 T315I mutant cells. A dose of 20 mg/kg/day p.o of ponatinib and 30 mg/kg/day p.o of CUDC-907 inhibited tumor growth and reduced tumor volume compared with control mice. The treatments were well tolerated with no animal health concerns observed. We also found that the treatment of CUDC-907 exhibits cell growth inhibition against Ba/F3 ponatinib resistant cells, K562 nilotinib resistant cells, T315I mutant primary samples and CD34 positive CML samples. Conclusion: These results indicated that administration of the dual PI3K and HDAC inhibitor, CUDC-907 may be a powerful strategy against ABL TKI resistant cells including T315I mutation and enhance cytotoxic effects of ABL TKI against those Ph-positive leukemia cells. Disclosures No relevant conflicts of interest to declare.


Oncogene ◽  
2001 ◽  
Vol 20 (23) ◽  
pp. 2927-2936 ◽  
Author(s):  
Sreenivasa R Chinni ◽  
Yiwei Li ◽  
Sunil Upadhyay ◽  
Prathima K Koppolu ◽  
Fazlul H Sarkar

2020 ◽  
Author(s):  
Nianli Liu ◽  
Aoxing Chen ◽  
Ning Feng ◽  
Xiaochen Liu ◽  
Longzhen Zhang

Abstract Background: Our previous study has demonstrated that small nuclear ribonucleoprotein polypeptides B And B’ (SNRPB) is highly expressed in non-small-cell lung cancer (NSCLC) and functions as an oncogene. However, whether SNRPB contributes to cisplatin resistance in NSCLC is still unknown. This study aimed to explore how SNRPB regulates the effect of cisplatin in NSCLC.Methods: In this study, cell counting kit-8 (CCK-8) and flow cytometry assays were performed to examine cell survival, cell cycle and apoptosis in NSCLC cells upon cisplatin treatment. Western blotting assays were used to examine the cell cycle and apoptosis-related protein expression. The effects of SNRPB on cisplatin-mediated tumor inhibition was measured via a xenograft tumor model in nude mouse.Results: SNRPB negatively regulates cisplatin resistance in NSCLC cells. Knocking out of SNRPB could significantly decrease cisplatin-induced cell growth inhibition, cell cycle arrest and apoptosis in H1299 cells. However, enforced expression of SNRPB in H460 cells can markedly promote cisplatin-induced cell growth inhibition, cell cycle arrest and apoptosis. Our results also indicate that overexpression of SNRPB enhances the inhibitory effects of cisplatin on H460 cell-mediated xenograft tumors.Conclusion: Our results suggest that SNRPB may be a prediction marker for NSCLC patients in response to cisplatin-based chemotherapy.


Sign in / Sign up

Export Citation Format

Share Document